- 无标题文档
查看论文信息

中文题名:

 海水BOD荧光原位传感器的研究与应用    

姓名:

 周轩    

学号:

 1611122829    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085212    

学科名称:

 工学 - 工程(专业学位) - 软件工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 微电子学院    

专业:

 软件工程    

第一导师姓名:

 张军琴    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 董玉明    

完成日期:

 2019-05-30    

外文题名:

 Study and Application of Seawater BOD Fluorescence in-situ Sensor    

中文关键词:

 BOD浓度 ; 荧光分析 ; 实时监测 ; STM32单片机    

外文关键词:

 BOD ; fluorescence analysis ; real-time monitor ; STM32 microcontroller    

中文摘要:

~生化需氧量(Biochemical Oxygen Demand)可以定义为水体中的有机物被好氧微生物分解成无机物质这一过程中所消耗的溶解氧量,简称BOD。这一指标的大小间接反映了水体中有机污染物的量的多少,是表征水体污染程度的一项重要指标。在我国国家环境保护标准HJ505-2009中,规定了测量水体BOD的稀释与接种法。此方法需要付出5天的时间来测量BOD,测量周期太长,无法及时、高效地反映水体中有机物的污染状况,在需要快速测量水体中有机污染物含量的场合无法适用。因此,研发一款能在现场实时监测BOD的传感器是十分有必要的。
针对以上所研究的目的,本文探究了基于荧光分析法的海水BOD荧光原位传感器检测海水BOD的可能性。它的基本测量原理是通过紫外波段的光激发水体中的色氨酸产生荧光,探测器检测此荧光信号并由传感器内置的校正参数将色氨酸荧光信号转化为与之相关的生化需氧量,利用色氨酸间接测量BOD,解决BOD实时监测问题。相比国家环境保护标准中提到的稀释与接种法需要将水样采集回实验室并需要5天时间才能得到最终结果,本传感器在环境现场就能将BOD实时检测出来,而且不需要往水体中加入任何化学物质,对环境没有污染,并且具备快速、简单、便携、性能稳定等优点,在一些对BOD检测精度要求不太高,需要实时、稳定测量的场合具有很强的适用性。本文的海水BOD荧光原位传感器以基于ARM Cortex-M3的STM32单片机为核心,实现对激发光源的调制。使用光电倍增管PMT检测色氨酸荧光信号,转变为电压信号,由ADC进行采集并送给STM32单片机进行数据处理,得到的BOD值传给上位机显示。在光路结构方面本文采用激发光路与探测光路垂直的方式以减小激发光对所探测的荧光信号的干扰。本文的主要内容是BOD荧光原位传感器硬件电路设计及其软件部分的开发。硬件电路部分主要包含对LED驱动电路、数据采集控制电路、数据采集电路、接口电平转换电路的设计。软件部分主要是对单片机的配置以及对数据进行处理。最终结合实验测试与海水现场测试完成海水BOD荧光原位传感器的研制。
与其它测量BOD的传统传感器相比,本BOD荧光原位传感器所采用的测量机理比较新颖,传感器测量结果的线性度较好。并且本传感器具备一定的稳定性、可靠性以及良好的便携性,具有一定的实用价值。

外文摘要:

~Biological oxygen demand (BOD) can be defined as the amount of dissolved oxygen consumed in the process of decomposition of organic matter in water by aerobic microorganisms into inorganic substances. This index indirectly reflects the amount of organic pollutants in water, which is an important indicator of the degree of water pollution. In China's national environmental protection standard HJ505-2009, the method of dilution and inoculation for the measurement of BOD in water is stipulated. This method requires 5 days to measure BOD. The measurement cycle is too long to reflect the pollution status of organic matters in water timely and efficiently, and it cannot be applied in the case that the content of organic pollutants in water needs to be measured quickly. Therefore, it is necessary to develop a sensor that can monitor BOD in real time on site.

According to the above research, this paper explores the possibility of detecting the seawater BOD by the seawater BOD fluorescence in-situ sensor based on fluorescence analysis. The excitation of the tryptophan in water through the ultraviolet band could generate fluorescence, which is basic measuring principle of the sensor. The detector detects the fluorescence signal and converts the tryptophan fluorescence signal into the related biochemical oxygen demand by the built-in correction parameters of the sensor. The BOD is indirectly measured by tryptophan, and the problem of real-time monitoring of BOD is solved. Compared with the dilution and inoculation method mentioned in the national environmental protection standard which needs to collect water samples back to the laboratory and take 5 days to get the final result, this sensor can detect BOD in real time, without taking samples back to the laboratory, and does not need to add any chemical substances into the water. Therefore, there is no pollution to the environment, and it has the advantages of fast, simple, portable, stable performance and so on. It has strong applicability in some occasions where the BOD detection accuracy is not too high and real-time and stable measurement are required. The seawater BOD fluorescence in-situ sensor based on STM32 MCU of ARM Cortex M3 to achieve the modulation of the light source. The photomultiplier PMT was used to detect the tryptophan fluorescence signal, which was converted into a voltage signal. The signal was collected by the ADC and sent to STM32 MCU for data processing. The obtained BOD value was transmitted to the upper computer for display. In the aspect of optical path structure, the excitation light path is perpendicular to the detection optical path to reduce the interference of the excitation light on the detected fluorescent signal. The main content of this paper is the development of the hardware circuit design and software part of BOD fluorescence in-situ sensor. The hardware circuit part mainly includes the design of the LED driving circuit, the data acquisition control circuit, the data acquisition circuit, and the interface level conversion circuit. The software part mainly deals with the configuration of the microcontroller and the processing of the data. Finally, the development of seawater BOD fluorescence in-situ sensor was completed by combining experimental test and seawater field test.

Compared with other traditional sensors for measuring BOD, the measurement mechanism adopted by the BOD fluorescence in-situ sensor is relatively novel, and the linearity of the sensor measurement results is better. And the sensor has certain stability, reliability, good portability, and certain practical value.

参考文献:
[1] 李国刚, 王德龙. 生化需氧量(BOD)测定方法综述[J]. 中国环境监测, 2004, 20(2): 54-57.
[2] I.Edward Alcamo, 林稚兰. 微生物学[M]. 北京: 科学出版社, 2002.
[3] 李华玲, 杜秀月, 冉敬文等. 生物需氧量(BOD)测定方法进展[J]. 盐湖研究, 2005, 13(3): 62-66.
[4] Fox B, Attridge J, Rushworth C, et al. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors[C]. Egu General Assembly Conference. EGU General Assembly Conference Abstracts, 2015.
[5] 崔建升, 张静, 魏复盛. 生化需氧量(BOD)测定技术进展[J]. 中国环境监测, 2006, 22(3): 85-87.
[6] Karube I, Matsunaga T, Mitsuda S, et al. Microbial electrode BOD sensors[J]. Biotechnology & Bioengineering, 2010, 102(3): 659-672.
[7] Wang J, Bian C, Li Y, et al. A renewable BOD microsensor based on magnetically functionalized microorganism and ultramicroelectrode array[C]. Sensors. IEEE, 2016.
[8] 杨婷. 微生物燃料电池的专利技术综述[J]. 再生资源与循环经济, 2015, 16(7): 23-25.
[9] 王梅玉. 基于活性炭空气阴极的MFC型低成本BOD传感器的研究[D]. 天津: 天津大学环境科学与工程学院, 2015.
[10] Shailesh K, Yi T, Min L, et al. Development and Long-Term Stability of a Novel Microbial Fuel Cell BOD Sensor with MnO2 Catalyst[J]. International Journal of Molecular Sciences, 2017, 18(2): 76-285.
[11] Etheridge J R, Birgand F, Osborne J A, et al. Using in-situ ultraviolet-visual spectroscopy to measure nitrogen, carbon, phosphorus, and suspended solids concentrations at a high frequency in a brackish tidal marsh[J]. Limnology & Oceanography Methods, 2015, 12(1): 10-22.
[12] Henderson R K, Baker A, Murphy K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43(4): 863-881.
[13] Stuetz R, George S, Fenner R, et al. Monitoring wastewater BOD using a non-specific sensor array[J]. Journal of Chemical Technology & Biotechnology, 2015, 74(11): 1069-1074.
[14] 郭光美, 赵赟, 翁玉华等. 利用荧光响应的台式生化需氧量传感仪器的研制[J]. 分析化学, 2008, 36(4): 563-566.
[15] 张利锋. 几种荧光分子探针的设计、合成及离子识别性质研究[D]. 郑州大学, 2011.
[16] 郑龙江. 光纤式海藻叶绿素a浓度的荧光测量理论与实验研究[D]. 燕山大学, 2002.
[17] 张丽萍, 李淑荣, 梁青青等. 氢化物发生原子荧光光谱法测定茶叶中痕量硒[J]. 包头医学院学报, 2017, 33(4): 116-118.
[18] Hudson N, Baker A, Ward D, et al. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England[J]. Science of the Total Environment, 2008, 391(1): 149-158.
[19] Sorensen J P R, Lapworth D J, Marchant B P, et al. In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies[J]. Water Research, 2015, 81(13): 38-46.
[20] 江华, 周媛媛. 光电倍增管的结构与性能研究[J]. 舰船电子工程, 2009, 29(1): 193-196.
[21] Li B, Ryan P W, Shanahan M, et al. Fluorescence Excitation-Emission Matrix (EEM) Spectroscopy for Rapid Identification and Quality Evaluation of Cell Culture Media Components[J]. Applied Spectroscopy, 2011, 65(11): 1240-1249.
[22] Wang Q, Li T, He Q H. Dimmable and Cost-Effective DC Driving Technique for Flicker Mitigation in LED Lighting[J]. Journal of Display Technology, 2014, 10(9): 766-774.
[23] 李婷. 汽车照明用大功率白光LED温度分析及控制的研究[D]. 武汉理工大学, 2009.
[24] 潘传勇, 丁国臣, 陈世夏. 基于LM2596的不间断直流电源设计[J]. 现代电子技术, 2013(17): 107-109.
[25] 刘斌, 刘伟彦. 基于Cortex-M3的异步LED显示控制系统设计[J]. 计算机与现代化, 2012(7): 64-67.
[26] Li H, Ochani M K, Zhang H, et al. Design of micro-automatic weather station for modern power grid based on STM32[J]. The Journal of Engineering, 2017, 2017(13): 1629-1634.
[27] Abbasinezhad-Mood D, Nikooghadam M. An Ultra-Lightweight and Secure Scheme for Communications of Smart Meters and Neighborhood Gateways by Utilization of an ARM Cortex-M Microcontroller[J]. IEEE Transactions on Smart Grid, 2017, 9(6): 6194-6205.
[28] 张俊峰. 一种加油站收费系统的设计与开发[D]. 大连海事大学, 2016.
[29] 孙鹤源. 基于Cortex_M3的大功率LED温控系统设计与研究[D]. 大连理工大学, 2017.
[30] Shuanfeng Z, Wenbo W, Wei G, et al. A Human Body Pressure Distribution Imaging System Based on Wavelet Analysis and Resistance Tomography[J]. Sensors, 2017, 17(11): 26-34.
[31] Xiaoru H, Yudong G. Design and Implementation of the Universal RS232-GPIB Interface[C]. International Conference on Electronic Measurement and Instruments. IEEE, 2007, 3: 220-223.
[32] Bienvenue M. RS-232-to-TTL converter tests UARTs with a PC[J]. EDN, 2008, 17(5): 50-57.
[33] Tang Y, Luo H, Chen X, et al. Design of a Low-power-consuming Magnetoelastic Sensor Detecting System Based on STM32[J]. Journal of Biomedical Engineering, 2016, 33(5): 972-978.
[34] Gouta H, Said S H, Barhoumi N, et al. Observer-Based Backstepping Controller for a State-Coupled Two-Tank System[J]. Iete Journal of Research, 2015, 61(3): 259-268.
[35] Yang Q C, Chen Y, Ye L. A New Design of Mine Selective Leakage Protector Based on Advanced RISC Machine Cortex-M3[J]. Procedia Engineering, 2011, 15(6): 496-500.
[36] Fojtik M, Kim D, Chen G, et al. A Millimeter-Scale Energy-Autonomous Sensor System With Stacked Battery and Solar Cells[J]. IEEE Journal of Solid-State Circuits, 2013, 48(3): 801-813.
[37] Wang J, Shi P, Peng H. Membrane computing model for IIR filter design[J]. Information Sciences, 2016, 329(19): 164-176.
[38] S.C.D Roy. A simple derivation of the spectral transformations for IIR filters[J]. IEEE Transactions on Education, 2013, 48(2): 274-278.
[39] Pasquato L, Kale Z. Adaptive IIR filter initialization via hybrid FIR/IIR adaptive filter combination[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 50(6): 1830-1835.
[40] 黄波. IIR数字滤波器在MATLAB中的设计与实现[J]. 西部广播电视, 2018(21): 15-19.
[41] Kirschvink J L. The least-squares line and plane and the analysis of palaeomagnetic data[J]. Geophysical Journal International, 2010, 62(3): 699-718.
中图分类号:

 X85    

馆藏号:

 41959    

开放日期:

 2019-12-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式