- 无标题文档
查看论文信息

中文题名:

 空间模块化天线在轨装配误差分析及性能调控研究    

姓名:

 董航佳    

学号:

 18041110300    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 工学 - 机械工程 - 机械制造及其自动化    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 空间可展开结构    

第一导师姓名:

 李团结    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-06-27    

答辩日期:

 2023-05-29    

外文题名:

 Analysis of asse mbly errors and performance control study of space modular antennas on-orbit assembly    

中文关键词:

 空间模块化天线 ; 作动器 ; 在轨装配 ; 装配误差 ; 姿态控制    

外文关键词:

 Space modular antennas ; Actuators ; On-orbit assembly ; Assembly errors ; Attitude control    

中文摘要:

       空间可展开天线是深空探测、空间通信以及载人航天等任务中的核心部件之一,其展开口径和型面精度决定了空间通信系统的工作性能。为了满足未来航天任务的高质量通信要求,空间可展开天线需要同时具备超大口径和高精度。受到运载工具内部空间的限制,超大口径的空间可展开天线无法一次性发射入轨,因此在轨装配模块化天线的概念应运而生。模块化天线在轨装配过程中不可避免地会出现装配误差,导致天线型面精度降低,进而影响天线的电性能。因此需要在模块之间安装作动器对模块的位姿进行调整,以提高天线的型面精度。综上所述,模块化天线在轨装配是实现空间可展开天线超大口径的有效途径,模块间姿态调整作动器则是实现模块化天线高精度装配的重要部件之一。
       本文以在轨装配模块化天线为对象,系统研究了用于模块间位姿调整作动器的设计与可靠性分析、模块化天线装配误差、装配序列规划以及系统姿态控制等问题。本文的主要工作内容总结如下:
1. 针对模块化天线在轨装配过程中所产生的装配误差,基于尺蠖运动原理设计了一种用于各模块之间位姿调整的尺蠖式作动器。该作动器的驱动机构采用桥式放大机构,通过对压电陶瓷微小位移的累加实现作动器的大行程位移输出。箝位机构由杠杆式放大机构、弹性体和压电陶瓷组合而成,实现了作动器的断电箝位。综合考虑压电陶瓷的输出非线性和驱动机构的运动特性,建立了作动器的机电耦合模型,分析了压电陶瓷的驱动频率、驱动电压以及柔性铰链的刚度对作动器输出性能的影响。最后,设计了一套由作动器样机和专用驱动控制器组成的实验平台并进行了样机实验,测试结果表明,所设计的尺蠖式作动器最大行程为11mm,最大运行速度0.72mm/s,最大单步位移17μm,其性能指标满足模块化天线装配误差调整需求。
2. 作动器的可靠性受空间环境中的温度和箝位机构中磨损状态的影响,其可靠性的下降会直接影响模块间姿态调整的效果,因此需要研究空间环境中尺蠖式作动器的可靠性建模方法。首先从应用角度分析了作动器的主要失效模式。基于尺蠖作动器的驱动原理,综合考虑空间温度和驱动电压的影响,提出了适用于尺蠖式作动器的磨损模型,设计了实验装置对磨损模型进行验证。其次,提出了作动器工作失效准则,建立作动器可靠性模型。最后,分析了空间温度以及驱动电压对于作动器可靠性的影响。
3. 模块化天线由众多小模块装配而成,模块之间的装配误差不可避免的影响整个天线的型面精度。本文提出了一种考虑天线模块间安装缝隙的模块节点设计方法,实现了模块节点的高精度设计。其次,基于指数积理论建立了模块化天线的装配误差模型,分析不同类型装配误差对天线型面精度的影响,进而提出了可同时考虑旋转和平移两种装配误差的“误差球”模型。通过矩阵分解和最优化技术获得非理想型面与理想型面之间的旋转与位移矩阵,进而得到模块间作动器的位移量,实现天线型面的高精度调整。最后通过数值算例,验证了上述算法的准确性和有效性。
4. 为了提高装配效率与精度,在装配序列规划过程中需要同时综合考虑装配距离以及装配扰动两种因素。本文基于动量矩定理和假设模态法,建立了包含卫星本体、展开臂以及模块化天线在内的系统刚柔耦合动力学模型。其次,结合天线模块的几何特征,计算模块的装配距离。基于能量消耗最小原则,综合考虑装配距离和姿态扰动两种因素的影响,得到模块的最优装配点,进而得到天线的最优装配序列。最后,通过数值算例和软件仿真验证了动力学模型的准确性,分析了装配过程中系统能量的转化,模块化天线的展开臂长度和模块质量对于装配过程的影响。
5. 针对装配过程中导致系统姿态扰动问题,设计了一种基于非线性模型预测控制(NMPC)和深度神经网络(DNN)的姿态控制器。首先建立了模块化天线系统的刚体动力学模型,并采用离散化技术对动力学模型进行离散。其次,基于系统离散动力学模型,建立系统的非线性预测控制模型,并对处于扰动状态下的天线系统进行姿态控制,进而得到一组与时间相关的控制力矩。模型预测控制算法每一步都需要求解一个非线性优化问题,导致计算时间较长,因此将深度神经网络引入姿态控制过程。基于前期的控制力矩数据训练一个深度神经网络控制器,并使用该控制器完成姿态调整。
最后,通过数值算例验证了深度神经网络姿态控制器的有效性。

外文摘要:

The deployable space antenna is one of key components in deep space exploration, space communications, manned spaceflight, and other missions. The deployment aperture and surface accuracy of space antenna determine the performance of space communication systems. In order to meet the high-quality communication requirements of future space missions, deployable space antennas need to have large aperture and high surface accuracy. Due to the limitations of the internal space of the launch vehicle, large space antennas cannot be launched into orbit and deployed all at once, the concept of on-orbit assembly of modular antennas comes into being.
During the on-orbit assembly process, assembly errors between modules are inevitably occurred, which leads to decrease in the surface accuracy, affecting the electrical performance of the modular antenna. Therefore, it is necessary to install actuators between modules to adjust the position of the modules. In summary, modular antenna on-orbit assembly is an effective way to achieve a large aperture deployable space antenna, and attitude adjustment actuators between modules are the important components to achieve high surface accuracy of modular antennas.
The modular antenna on-orbit assembly is taken as research object. This thesis systematically studies the design and reliability analysis of inchworm actuators, modular antenna assembly errors, assembly sequence planning, and system attitude control for on-orbit assembly of modular antennas. The main contents of this thesis are summarized as follows:
1. Aiming at the assembly error of modular antenna on-orbit assembly, an inchworm-type actuator is designed for posture adjustment between modules of the modular antenna based on the inchworm motion principle. The driving mechanism of the actuator adopts a bridge-type amplification mechanism, and the large-stroke displacement output of the actuator is achieved by accumulating the small displacement of the piezoelectric ceramic. The clamping mechanism is composed of a lever-type amplification mechanism, an elastic body, and a piezoelectric ceramic, which realizes the power-off clamping of the actuator. Considering the output nonlinearity of the piezoelectric ceramic and the motion characteristics of the driving mechanism, the electromechanical coupling model of the inchworm-type actuator is established, and the influence of the driving frequency, driving voltage, and stiffness of the flexible hinge on the output performance of the actuator are analyzed. Finally, the performance testing system consisting of an actuator prototype and a dedicated driver is designed, and the performance of the prototype is tested. Test results show that the maximum displacement of 11mm, a maximum operating speed of 0.72mm/s, and a maximum single-step displacement of 17μm.
2. The reliability of the actuator is affected by the temperature in the space environment and the wear state in clamping mechanism. The decrease of actuator reliability will directly affect the effect of attitude adjustment modules. A reliability analysis method for actuators need to be studied. Firstly, the main failure modes of the inchworm actuator are analyzed from the application perspective. Based on the driving principle of the inchworm actuator and considering the influence of space temperature and driving voltage, a wear model suitable for the inchworm actuator is proposed, and an experimental device is designed to verify the wear model. Secondly, the actuator working failure criteria are proposed, the actuator reliability model is established. Finally, the influence of space temperature and driving voltage on the reliability of the actuator is analyzed.
3. Modular antennas are assembled from many small modules, and their assembly errors inevitably affect the surface accuracy of the entire antenna. Firstly, a module node design method that considers the installation gaps between antenna modules is proposed, which realizes the high-precision design of module nodes. Secondly, based on the theory of exponential products, an assembly error model of modular antennas is established to analyze the influence of different types of assembly errors on the surface accuracy of the antenna. Consequently, an error ball model that considers both rotational and translational assembly errors is proposed. By matrix decomposition and optimization techniques, the rotation and displacement matrices between non-ideal and ideal surfaces are obtained, and the displacement of the actuator is obtained to achieve high-precision adjustment of the antenna surface. Finally, numerical examples are used to verify the accuracy and effectiveness of the proposed algorithm.
4. In order to improve assembly efficiency and reduce energy consumption, assembly sequence planning need to consider the attitude disturbance and assembly distance. Firstly, based on the principle of momentum moment and the assumed mode method, a system rigid-flexible coupling dynamic model is established, which includes the satellite body, deployable arms, and modular antennas. Secondly, combined with the geometric characteristics of modular antennas, the assembly distance of the modules is calculated. Based on the principle of minimum energy consumption, the optimal assembly point of the module is obtained with considering the influence of assembly distance and attitude disturbance. And then the optimal assembly sequence of the antenna is obtained. Finally, numerical examples and software simulations are used to verify the accuracy of the dynamic model. The energy conversion during the assembly process is analyzed, the effects of the length of deployable arm and mass of modular antennas on the assembly process is studied.
5. Aiming at attitude disturbance caused by assembly process, an attitude control method is proposed based on based on nonlinear model predictive control (NMPC) and deep neural networks (DNN) for modular antenna systems. Firstly, the rigid body dynamic model of the modular antenna system is established, and the dynamic model is discretized using discretization techniques. Secondly, based on the discretized dynamic model of the system, the predictive control model of the system is established. Based on this control model, the attitude control of the antenna system under disturbance is carried out, and a set of time-dependent control torques are obtained. Since the model predictive control algorithm needs to solve a nonlinear optimization problem at each step, the calculation time is relatively long. Therefore, this thesis introduces deep neural networks into the attitude control process, and trains a deep neural network controller based on the control torque data in the early stage. This controller is used to complete the entire attitude adjustment process. Finally, numerical examples are used to verify the effectiveness of the deep neural network attitude controller.

参考文献:
[1] Roederer A G, Rahmat-samii Y. Unfurlable satellite antennas: A review[J]. Annales of Télécommunications, 1989, 44(9): 475-488.
[2]宋燕平. 美国的信号情报侦察卫星[J]. 空间电子技术, 1999, 01: 48-57.
[3]魏京华. 通信技术试验卫星一号发射成功[J]. 中国航天, 2015, 10: 7-8.
[4]高菲. 天通一号01星开启中国移动卫星终端手机化时代[J]. 卫星应用, 2016, 8: 73-74.
[5]吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2): 111-117.
[6]王明明, 罗建军, 袁建平等. 空间在轨装配技术综述[J]. 航空学报, 2021, 42(1): 523913
[7]贾平. 国外在轨装配技术发展简析[J]. 国际太空, 2016, 12: 61-64.
[8]NASA. On-orbit satellite servicing study, project report: NP-2020-08-162-GSFR [R]. Washington, D.C.: NASA Goddard Space Flight Center, 2010.
[9]Alhorn D C. Autonomous assembly of modular structures in space and extraterrestrial locations [C]. AIP Conference Proceedings. American Institute of Physics, 2005: 1121-1128.
[10]Boyd I D, Buencosjo R S, Piskorz D, et al. On-orbit manufacturing and assembly of spacecraft [M]. IDA Science & Technology Policy Institute, 2017.
[11] 梁斌, 徐文福, 李成等. 地球静止轨道在轨服务技术研究现状与发展趋势[J]. 宇航学报, 2010, 1: 1-2.
[12]Heard J R, Watson J J, Lake M S, et al. Tests of an alternate mobile transporter and extravehicular activity assembly procedure of the space station freedom truss: NASA-TP-3254 [R]. Washington, D. C.: NASA Langley Technical Report Server, 2000.
[13]周建平. 中国空间总体方案构想[J]. 太空探索, 2013, 12: 6-11.
[14]李明, 饶伟, 胡成威等. 空间站机械臂关键技术研究[J]. 载人航天, 2014, 3: 238-242.
[15] Maxar wins $142 million NASA robotics mission [EB/OL]. https://spacenews.com/maxar-wins-142-million-nasa-robotics-mission/
[16] In-Space Telescope Assembly [EB/OL]. https://www-robotics.jpl.nasa.gov/gallery/in-space-telescope-assembly/
[17]Li T J, Jiang J, Deng H Q, et al. Form-finding methods for deployable mesh reflector antennas [J]. Chinese Journal of Aerinautics, 2013, 26(5): 1276-1282.
[18]Ma X F, Li T J, Ma J, et al. Recent advances in space-deployable structures in China [J]. Engineering, 2022.
[19]王作为. 大型空间索网-框架结构型面精度保持设计方法[D]. 西安:西安电子科技大学, 2015.
[20]Li T J, Jiang J, Deng H Q, et al. Form-finding methods for deployable mesh reflector antennas[J]. Chinese Journal of Aeronautics, 2013, 26(5): 1276-1282.
[21]Guest S D, Pellegrino S. A new concept for solid surface deployable antennas [J]. Acta Astronautica, 1996, 38(2): 103-113.
[22]Freeland R E, Biliyeu G D, Veal G R, et al. Large inflatable deployable antenna flight experiment results [J]. Acta Astronautica, 1993, 30: 29-40.
[23]唐雅琼, 李团结, 陈聪聪. 环形张拉式索网可展开天线创新设计与分析[J]. 西安电子科技大学学报(自然科学版), 2022, 49(4): 193-200.
[24]邵锦成. 伽利略空间探测计划[J]. 中国航天, 1990, 3: 24-27.
[25]董志强, 段宝岩. 星载天线缠绕肋条的力学特性研究[J]. 西安电子科技大学学报, 2001, 28(6): 755-758.
[26]Selding P B. Boeing finishes deployment of struck SkyTerr 1 antenna [EB/OL]. Space News [2010-12-14].
[27]Ribble J W. Modular antenna design study [R]. NASA Contractor Report 3316,1981.
[28]Freeland R E, Helms R G. Deployable antenna structures technologies [C]. Large Apertures Workshop, California Institute of technology, 2008.
[29] IOSAM4T - In-Orbit Servicing, Assembly and Manufacture opportunities for Telecom missions (IOSAM4T) Study. [EB/OL]. https://artes.esa.int/projects/iosam4t
[30]李团结, 马小飞. 大型空间可展开天线技术研究[J]. 空间电子技术, 2012, 21(3): 35-39.
[31]Tabata M, Natori M C. Active shape control of deployable space antenna reflector [J]. Journal of Intelligent Material Systems and Structures, 1996, 7(2): 235-240.
[32]Jiang J, Li T J. Passive accuracy adjustment of membrane reflectors [J]. Proceedings of the Institution of Civil Engineers-Engineering and Computational Mechanics, 2013, 166(4): 222-228.
[33]Du J, Bao H, Cui C. Shape adjustment of cable mesh reflector antennas considering modeling uncertainties [J]. Acta Astronautica, 2014, 97: 164-171.
[34]Li T J, Wen J B, Shi Z Y, et al. Adjustment method of couple dual-surface accuracy for antennas using interval model updating [J]. Journal of Spacecraft and Rockets, 2022:1-12.
[35]Mitsugu J N, Yasaka T, Miura K. Shape control of the tension truss antenna [J]. AIAA Journal, 1990, 28(2): 316-322.
[36]赵淳生. 超声电机技术与应用[M]. 科学出版社.
[37]王瑞峰, 王亮, 贾博涛等. 单相驻波驱动的旋转型超声电机结构设计与试验研究[J]. 机械工程学报, 2022, 58(7): 227-236.
[38]Wang Y, Deng J, Zhang S, et al. Design of a linear-rotary ultrasonic for optical focusing inspired by the bionic motion principle of the earthworms [J]. International Journal of Smart and Nano Materials, 2022, 13(2): 346-365.
[39]Leng J, Jin L, Dong X, et al. A multi-degree-of-freedom clamping type traveling-wave ultrasonic motor [J]. Ultrasonics, 2022, 119: 106621.
[40]Le H D, Do Q D, Vo K, et al. A novel bidirectional MRF Based Actuator: Configuration, Optimal Design and Experimental Validation [C]. Advances in Asian Mechanism and Machine Science: Proceedings of IFToMM Asian MMS 2021, 889-898.
[41]Diep B, Nguyen Q H, Le T D. Design and control of 2-DoF joystick using MR-fluid rotary actuator [J]. Journal of Intelligent Material Systems and Structures, 2022, 33(12): 1562-1573.
[42]浦鸿汀, 蒋峰景. 磁流变液体材料的研究进展和应用前景[J]. 化工进展, 2005, 24(2): 132-136.
[43]王建, 沈亚鹏. 形状记忆合金作动器设计及优化[J]. 力学学报, 1998, 30(4): 449-460.
[44]Liu Q, Ghodrat S, Jansen K M. Modeling and mechanical design of a flexible tube-guided SMA actuator [J]. Materials & Design, 2022, 216: 110571.
[45]Hu B, Liu F, Mao B, et al. Modeling and position control simulation research on shape memory alloy spring actuator [J]. Micromachines, 2022, 13(2): 78-88.
[46]江水东, 侯仰青, 柏宏武等. 用于可重构天线的高精密作动器研究[J]. 空间电子技术, 2021, 006: 106-112.
[47]王勇. 基于粘滑原理的跨尺度精密驱动定位平台研究[D]. 苏州:苏州大学, 2014.
[48]刘华, 颜国正, 丁国清. 惯性式压电陶瓷驱动器的研究[J]. 压电与声光, 2001, 23(4): 1-10.
[49]潘雷, 王寅, 黄卫清. 尺蠖式压电直线电机的发展与研究[C]. 第十六届中国小电机技术研讨会论文集. 2011: 167-172.
[50]Stibitz G R. Incremental Feed Mechanisms. U.S. Patent [P]. 1964
[51]Brisbane A D. Transducer. U.S. Patent [P]. 1966
[52]Dong S X, Li L T, Gui Z L. A new type of linear piezoelectric stepper motor IEEE Transaction[J]. Components, Packaging, and Manufacturing Technology-Part A. 1995, 18:257-260.
[53]Kim J, Kim H K, Choi S. A hybrid inchworm linear motor Mechatronics [J]. Mechanics, 2002, 12(4): 252-42.
[54]Ma L, Xiao J, Zhou S, et al. A piezoelectric inchworm actuator of linear type using symmetrical lever amplification [J]. Proceeding of the Institution of Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229(4): 172-179.
[55]Zhang Z, Xu M, Feng B, et al. Research for a new actuator with variable step and large displacement [J]. International Journal of Applied Electromagnetics and Mechanics, 2010, 33(1): 597-604.
[56]Ma X, Liu Y, Deng J, et al. A walker-pusher inchworm actuator driven by two piezoelectric stacks [J]. Mechanical Systems and Signal Processing, 2022, 169: 108636.
[57]Ling J, Chen L, Feng Z, et al. Development and test of a high speed pusher-type inchworm driving and clamping configuration [J]. Mechanism and Machine Theory, 2022, 176: 104977.
[58]Ghenna S, Bernard Y, Danniel L. Design and experimental analysis of a high force piezoelectric linear motor [J]. Mechatronics, 2023, 89: 102928.
[59]Zmitrowic A. Wear patterns and laws of wear-a review [J]. Journal of theoretical mechanics, 2006, 44(2): 219-253.
[60]Kato K. Classification of wear mechanisms/models [J]. Wear-materials, mechanisms and practice, 2005: 9-20.
[61]冯元生. 机构磨损可靠性[J]. 航空学报, 1993, 14(12): 642-644
[62]周长聪, 赵浩东, 常吉等. 飞机舱门泄压阀磨损可靠性与灵敏度分析[J]. 北京航空航天大学学报, 2021, 047(4): 690-697.
[63]王东伟, 刘明星, 陈晓等. 电子连接器微动磨损问题研究综述[J]. 重庆理工大学学报(自然科学版), 2021, 35(10): 210-223.
[64]Han W, Cui W, Liu H, et al. Analysis and calculation method of wear reliability for a lock ring and hook [C], 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering IEEE, 2012: 848-852.
[65]Engel P A. Failure models for mechanical wear modes & mechanism [J], IEEE Transactions on Reliability, 1993, 42 (2): 262-266.
[66]Chang Q C, Xue C J. Reliability analysis and experimental verification of landing-gear steering mechanism considering environmental temperature [J]. Journal of Aircraft. 2018, 55(3): 1154-1164.
[67]Shahid E, Wang X Y, Fan Z J, et al. Numerical simulation of the stress, temperature & wear behaviors of the drum brake [C]. Conference Series Materials Science and Engineering. IOP Publishing, 2018, 398(1): 012018.
[68]Mirbagheri S E, Bassyiouni M A, Dasgupta A. Bearing wear model for optical disk drive stepper motor [C]. 13th Inter Society Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2012: 1274-1280.
[69]Zhu A H, Si S Y, Li Q. Simulation and measurement study of metro wheel wear based on the Archard model[J]. Industrial Lubrication and Tribology, 2019, 71(2): 284-294.
[70]Okobkwo P C, MohdShariq G K. The surface temperature prediction on steel tool steel sliding pairs [C]. 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 2019: 1-5.
[71]Riddar F, Rudophi A K. Friction, wear and surface damage mechanisms of pneumatic clutch actuators [J]. Wear, 2013, 305(1-2): 36-44.
[72]Wang W, Wang Y, Bao H, et al. Friction and wear progress in MEMS [J]. Sensors and Actuators: A Physical. 2002, 97: 486-491.
[73]Jiang S, Li W, Xue G, et al. Study on dynamic reliability of permanent magnet gear transmission system with wear and failure correlation [J]. Engineering Failure Analysis, 2022, 131: 105802.
[74]Lyu H, Ma L, Wang S, et al. Reliability modeling for dependent computing failure processes based on planar mechanism [J]. Communications in Statics-Simulation and Computation, 2023:1-24.
[75]潘冬, 赵阳, 李娜等. 齿轮磨损寿命预测方法[J]. 哈尔滨:哈尔滨工业大学学报, 2012, 44(9): 29-33.
[76]王宪成, 张晶, 孙耀文等. 发动机缸套-活塞磨损数值计算研究[J]. 兵工学报, 2010, 31(8): 1014-1019.
[77]Wan B S, Lu M C, Chiou S. Analysis of spindle AE signals and development of AE-based tool wear monitoring system in micro-milling [J]. Journal of Manufacturing and Materials Processing, 2022, 6(2): 42.
[78]Rao T B. Reliability analysis of the cutting tool in plasma-assisted turning and prediction of machining characteristics [J]. Australian Journal of Mechanical Engineering, 2022, 20(4): 1020-1034.
[79]Wang H, Men T, Li Y F. Transformer for high-speed train wheel wear prediction with multiplex logical-global temporal fusion [J]. IEEE Transactions on instrumentation and measurement, 2022,71: 1-12.
[80]Watanabe M, Meguro A, Mitsugi J, et al. Module composition and deployment method on deployable modular-mesh antenna structures [J]. Acta Astronautica, 1996, 39(7): 497-505.
[81]Fan X, Zheng X, Tian D, et al. Kinematic modeling and analysis of support deployable antenna [J]. Chinese Space Science and Technology, 2021, 41(5): 37.
[82]Ma X F, Li Y, Li T j, et al. Design and analysis of a novel deployable hexagonal prism module for parabolic cylinder antenna [J]. Mechanical Sciences, 2021, 12(1): 9-18.
[83]Huang H, Li B, Zhang T, et al. Design of large single-mobility surface-deployable mechanism using irregularly shaped modules [J]. Journal of Mechanical Design, 2019,141(1): 012301.
[84]Hu F, Song Y, Xu Y, et al. Synthesis and optimization of modular deployable truss antenna reflector [J]. Aircraft Engineering and Aerospace Technology, 2018, 90(8): 1288-1294.
[85]王岩. 展开四棱锥单元构型综合与模块化阵面天线机构设计[D]. 哈尔滨:哈尔滨工业大学, 2015.
[86]刘兆晶. 模块化可展开抛物面天线支撑机构设计与研制[D]. 哈尔滨:哈尔滨工业大学, 2011.
[87]田大可, 郭振伟, 刘荣强等. 模块化构架式可展开天线支撑机构设计[J]. 航天器工程, 2021, 30(4): 39-47.
[88]Guo J W, Zhao Y S, Xu Y D, et al. Mechanics analysis and structural design of a truss deployable antenna mechanism based on 3RR-3URU tetrahedral unit [J]. Mechanism and Machine Theory. 2022 171: 104749.
[89]Guo J W, Zhao Y S, Xu Y D, et al. A novel modular deployable mechanism for the truss antenna: Assembly principle and performance analysis [J]. Aerospace Science and Technology, 2020, 105: 105976.
[90]Chen Z J, Shi C, Guo H W, et al. Design and accuracy analysis of a new high-rigidity planar deployable antenna mechanism [J]. Engineering Structures, 2022, 253: 113770.
[91]宋小科. 空间展开机构单元构型综合与组网研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
[92]Warnaar D B, Chew M. Kinematic synthesis of deployable-foldable truss structures using graph theory, part 1: graph generation [J]. Journal of Mechanical Design. 1995, 117(1): 112-116.
[93]Warnaar D B, Chew M. Kinematic synthesis of deployable-foldable truss structures using graph theory, part 2: generation of deployable truss module design concepts [J]. Journal of Mechanical Design. 1995, 117(1): 112-116.
[94]Xu Y, Chen Y, Liu W, et al. Degree of freedom and dynamic analysis of the multi-loop coupled passive-input overconstrained deployable tetrahedral mechanisms for truss antennas [J]. Journal of Mechanisms and Robotics, 2020, 12(1): 011010.
[95]申理精, 耿坤,李盘浩等. 索杆桁架式可展开机构设计与力学分析[J]. 机械工程学报, 2022, 58(17): 9.
[96]李团结, 王鹏. 一种多环闭链空间可展开的尺度协同优化设计[J]. 西安电子科技大学学报, 2017, 44(3): 19-24.
[97]李团结, 周博, 王鹏. 多环闭链空间可展开机构力-热耦合协同优化[J]. 西安电子科技大学学报, 2018, 45(7): 42-47.
[98]Guo J W, Zhao Y S, Zhang G X, et al. Configuration synthesis and unfolding stiffness characteristics of a truss antenna connecting mechanism based on URU-RR-URU hexagonal deployable unit [J]. Mechanism and Machine Theory, 2022, 177: 105047.
[99]田大可, 范小东, 金路等. 六棱柱模块化可展开天线形面精度分析[J]. 光学精密工程, 2021, 29(12): 13.
[100]Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing [J]. Progress in aerospace sciences, 2014, 68: 1-26.
[101]Chen T, Wen H, Hu H, et al. On-orbit assembly of a team of flexible spacecraft using potential field based method [J]. Acta Astronautica, 2017, 133: 221-232.
[102]李团结, 马小飞, 华岳等. 大型空间可展开天线在轨装配技术[J]. 载人航天, 2013, 19(1): 86-90.
[103]郭继峰, 王平, 崔乃刚. 大型空间结构在轨装配技术的发展[J]. 导弹与航天运载技术, 2006, 3: 28-35.
[104]芦瑶, 空间在轨装配技术发展历程研究[D]. 哈尔滨:哈尔滨工业大学, 2011.
[105]郭继峰, 王平, 程兴等. 一种用于空间在轨装配的两级递阶智能规划算法[J]. 宇航学报, 2008, 29(3): 1059-1063.
[106]朱力, 李团结, 宁宇铭等. 腿臂融合型在轨装配机器人运动建模与步态规划[J]. 中国空间科学技术, 2023, 43(1): 100-108.
[107]Dai Y, Xiang C F, Bao Y D, et al. Research on orbit assembly strategy of large-scale space truss structure[J]. Recent Patents on Engineering, 2023, 17(1): 122-135.
[108]时月天, 候绪研, 饶笑山等. 面向空间太阳能电站的在轨爬行机器人关键技术[J]. 空间电子技术, 2018, 15(2): 106-112.
[109]Zhang X, Zhu W, Xie R, et al. Cross-coupling relative dynamics for on-orbit assembly in rotating frame of reference [J]. Applied Mathematical Modeling, 2023, 116: 372-392.
[110]Wang E M, Wu S N, Wang Z G, et al. Active vibration suppression for large space structure assembly: A distributed adaptive model predictive control approach [J]. Journal Vibration Control, 2021, 27: 365-377.
[111]Wang E M, Wu S N, Wang Z G, et al. Distributed adaptive vibration control for solar power satellite during on-orbit assembly [J]. Aerospace Science and Technology, 2019, 94: 105378.
[112]Li K. Tian Q. Shi J., et al. Assembly dynamics of a large space modular satellite antenna [J], Mechanism and Machine Theory, 2019, 142: 103601.
[113]She Y, Li S, Du B, et al. On-orbit assembly mission planning considering topological constraint and attitude disturbance [J]. Acta Astronautica, 2018, 152: 692-704.
[114]Lu Y, Huang Z, Zhang W, et al. Experimental investigation on automated assembly of space structure from cooperative modular components [J], Acta Astronautica, 2020, 171: 378-387.
[115]Zhang X, Zhu W, Wu X, et al. Dynamics and control for in-space assembly robots with large translational and rotational maneuvers [J], Acta Astronautica. 2020, 174: 166-179.
[116]Cao K, Li S, She Y, et al. Dynamics and on-orbit assembly strategies for an orb-shaped solar array [J]. Acta Astronautica. 2021, 178: 881-893.
[117]罗建军, 王嘉文, 王明明等. 机器人在轨构建空间桁架装配序列规划方法[J]. 宇航学报, 2021, 42(4): 13.
[118]孙楚琦. 在轨组装机动路径规划[D]. 哈尔滨:哈尔滨工业大学, 2018.
[119]Santos R R, Rade D A, Domingos A, et al. A machine learning strategy for optimal path planning of space robotic manipulator in on-orbit serving [J]. Acta Astronautica, 2022, 191: 41-54.
[120]黄文虎, 曹登庆, 韩增尧. 航天器动力学与控制的研究进展和展望[J]. 力学进展, 2012, 42(4): 367-394.
[121]黄志龙, 尚志, 柳宁. 变结构航天器动力学特性在轨辨识方法综述[J]. 航天器工程, 2015, 24(3): 100-106.
[122]胡海岩, 田强, 张伟等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4): 390-414.
[123]张世杰, 曹喜滨. 基于单神经单元自适应PID控制的航天器大角度姿态机动[J]. 上海航天, 2003, 20(6): 9-14.
[124]宋晓娟, 王宏伟, 吕书峰. 输入饱和的充液航天器抗干扰有限时间滑模控制[J]. 控制与决策, 2021, 36(5): 1078-1086.
[125]林晓冬, 张锐. 含有模型不确定和状态约束的航天器姿态鲁棒控制[J]. 宇航学报, 2022, 43(6):781-789.
[126]刘闯,航天器姿态鲁棒控制方法[D], 哈尔滨:哈尔滨工业大学, 2019.
[127]吕雪莹,基于泛Kriging-MPSO的挠性航天器姿态机动控制方法研究[D], 哈尔滨:哈尔滨工业大学, 2019.
[128]李信栋, 邹奎, 苟兴宇. 一种新型滑模控制算法在挠性多体卫星姿态控制中的应用[J]. 宇航学报, 2019, 40(11): 1304-1311.
[129]范国伟, 常琳, 戴路等. 敏捷卫星姿态机动的非线性模型预测控制[J]. 光学精密工程, 2015, 23(8): 2318-2326.
[130]陈虹. 模型预测控制[M]. 北京:科学出版社, 2013.
[131]Holkar K S, Wangh L M. An overview of model predictive control [J]. International Journal of Control and Automation. 2010, 3(4): 47-63.
[132]TayyebTaher M, Esmaeizadeh S M. Model predictive control of attitude maneuver of a genetic algorithm[J]. Advances in Space Research, 2017, 60(1): 57-64.
[133]Murilo A, Peixoto P J, Souza C G, et al. Real-time implementation of a parameterized Model Predictive Control for Attitude Control System of rigid-flexible satellite [J]. Mechanical System and Signal Processing, 2021, 149: 107129.
[134]刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014, 31(7):11.
[135]程林, 蒋方华,李俊峰. 深度学习在飞行器动力学与控制中的研究综述[J]. 力学与实践, 2020, 42(3): 1-10.
[136]Shirobokov M, Trofimov S, Ovchinnikov M. Survey of machine learning techniques in spacecraft control design [J]. Acta Astronautica, 2021, 186: 87-97.
[137]杨恩平, 薛栋吉. 基于深度学习的控制器设计研究[J]. 计算机与数字工程, 2022, 50(3): 656-673.
[138]Eldad, O., Lightsey, E.G., Claudel, C. Minimum-time attitude control of deformable solar sails with model uncertainty [J]. Journal of Space Rockets, 2017,54(4): 863-870.
[139]Cheng L, Wang Z, Jiang F. Real-time control for fuel-optimal moon landing based on an interactive deep reinforcement learning algorithm[J], Astrodynamics,2019, 3: 375-386.
[140]Yin S, Li J, Cheng L. Low-thrust spacecraft trajectory optimization via a DNN-based method[J]. Advances in Space Research, 2020, 66(7), 1635-1646.
[141]Kumar S S, Tulsyan A, Gopaluni B, et al. A deep learning architecture for predictive control[J]. IFAC-PapaersOnLine, 2018, 51(18): 512-517.
[142]Norouzi A, Shaphouri S, Gordon D, et al. Deep learning based model predictive control for compression ignition engines [J]. Control Engineering Practice, 2022, 127: 105299.
[143]Ma X, Huang L, Wen H, et al. Deep learning-based nonlinear model predictive control of the attitude manoeuvre of a barbell electric sail through voltage regulation [J]. Acta Astronautica, 2022, 195: 118-128.
[144]Chai R, Tsourdos A, Savvaris A, et al. Six-DOF spacecraft optimal trajectory planning and real-time attitude control a deep neural network-based approach [J]. IEEE Transactions on neural networks and learning systems, 2019, 31(11): 5005-5015.
[145]康国华, 金晨迪, 郭于洁等. 基于深度学习的组合体航天器模型预测控制[J]. 宇航学报, 2019, 40(11): 1322-1331.
[146]Greenwood J A, Willamson J B P. Contact of nominally flat surfaces [J]. Proceeding of the royal society of London Series A. Mathematical and physical sciences, 1996, 295(1442): 300-319.
[147]Kought L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat [J]. Journal of Applied Mechanics, 2002, 69(5): 657-662.
[148]Kogut L, Etsion I. Elastic-plastic contact analysis of a sphere and a rigid flat [J]. Journal of Applied Mechanics. 2002, 69(5): 657-662.
[149]波波夫. 接触力学与摩擦学原理及应用[M]. 清华大学出版社, 2011.
[150]Tan Y, Zhang L, Ma L, et al. Modeling and simulation of dynamical contact of asperities between flat rough surfaces [J]. Advances in Mechanical Engineering, 2016, 8(10): 1-12.
[151]Fu G, Fu J, She H, et al. Product-of-exponential formulas for precision enhancement of five-axis machine tools via geometric error modeling and compensation [J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 289-305.
[152]陈虹. 模型预测控制[M]. 科学出版社, 2013.
[153]李立涛, 荣思远. 航天器姿态动力学与控制[M]. 哈尔滨工业大学出版社, 2019.
中图分类号:

 V41    

馆藏号:

 56222    

开放日期:

 2023-12-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式