- 无标题文档
查看论文信息

中文题名:

 基于C-V2X的车路协同对异质交通流特性的影响    

姓名:

 孙斯怡    

学号:

 20011210108    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 工学 - 信息与通信工程 - 通信与信息系统    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 信息与通信工程    

研究方向:

 异质交通流分析    

第一导师姓名:

 陈睿    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-03-31    

答辩日期:

 2023-05-29    

外文题名:

 Effects of C-V2X-Based Vehicle-Infrastructure Cooperation on the Characteristics of Heterogeneous Traffic Flow    

中文关键词:

 异质交通流 ; 跟驰模型 ; 换道模型 ; 稳定性条件 ; 通信时延    

外文关键词:

 Heterogeneous Traffic ; Car-following Model ; Lane-changing Model ; Stability Analysis ; Communication Delay    

中文摘要:

随着蜂窝车联网(Cellular Vehicle-to-Everything,C-V2X)技术的发展以及大规模路侧传感器设备的部署,越来越多的网联车(Connected Vehicle,CVs)与普通车辆(Regular Vehicle,RVs)共同行驶在道路上。由于普通车辆的保有量巨大,因此包括CVs和RVs的异质交通流会共存很长一段时间,交通流特性也随之逐渐改变。已存的大量的文献较多地考虑了CVs的自动驾驶性能而忽视了CVs车辆内驾驶员的反应时间,或者仅考虑了CVs之间的V2V(Vehicle-to-Vehicle,V2V)交互通信而忽视了CVs与其他交通参与者之间的V2X交互通信。结合C-V2X通信范围广、通信时延低、设计复杂度低以及落地成本小的优点,本文提出了一种基于C-V2X的车路协同场景。为了深入研究CVs的加入对交通流的特性产生的影响,对所提场景下的异质交通流特性进行分析研究,主要研究了该场景下RVs和CVs的跟驰模型和换道规则以及基于C-V2X的车路协同的参数对异质交通流特性的影响。本文的主要研究内容如下:
(1)基于C-V2X技术的大力发展以及大规模传感器的部署,本文提出了一种基于C-V2X的车路协同场景并在此基础上构建了车辆跟驰模型。在基于C-V2X的车路系统场景下,CVs能够获得路侧传感器检测范围内的所有车辆(包括CVs和RVs)的行驶数据。考虑到CVs和RVs获取车辆状态信息的方式不同,本文分别对CVs和RVs进行跟驰行为建模并将两者结合形成异质交通流的跟驰模型。然后在周期有界的情况下,采用微小扰动法从理论上对异质交通流的稳定性条件进行推导。推导过程中,本文采用一阶和二阶级数展开并结合长短波极限的分析得到异质交通流的稳定性的充分条件,该条件表明了异质交通流的稳定性与场景中的参数包括交通密度、CV的渗透率、路侧传感器的检测精度、V2X通信中的时间延迟密切相关。最后通过模拟仿真分析了基于C-V2X的车路协同的参数对异质交通流稳定性、流量及安全性的影响。
(2)实际的交通环境中不仅包含了车辆的跟驰行为,还存在着车辆的换道行为。在基于C-V2X的车路协同场景下,CVs可以获得更加准确可靠的车辆状态信息以及路况信息,实现更准确的换道行为。本文主要分析了车辆换道过程中的换道决策阶段,结合车辆间最小安全间隙以及车辆换道的动机分别建立了CVs和RVs的换道规则,并仿真分析了CV 渗透率对车辆换道的频次的影响及车辆的换道行为对异质交通流特性的影响。

外文摘要:

With the development of cellular vehicle-to-everything (C-V2X) technology and the massive deployment of large-scale roadside sensors equipment, more and more connected vehicles (CVs) and regular vehicles (RVs) can drive together on the road. Due to the large number of regular vehicles, the heterogeneous traffic flow including CVs and RVs will coexist for a long time, and the characteristics of traffic flow is changing. A large number of existing documents have considered the automatic driving performance of CVs more than the reaction time of drivers in CVs vehicles, or only considered the vehicle-to-vehicle (V2V) interactive communication between CVs and ignored the V2X interactive communication between CVs and other traffic participants. In order to deeply study the impact of the addition of CVs on the characteristics of traffic flow, this paper proposes a vehicle-vehicle/vehicle-infrastructure cooperation scenario based on C-V2X, analyzes and studies the characteristics of heterogeneous traffic flow in this scenario. This paper respectively studies the car-following model and lane change rules of RVs and CVs in this scenario, and the impact of the parameters of C-V2X-based vehicle-vehicle/vehicle-infrastructure cooperation on heterogeneous traffic flow. It has positive significance for the future traffic congestion control and traffic safety improvement. The main research contents are as follows:
1. Based on the rapid development of C-V2X technology and the deployment of large-scale sensors, this paper propose a vehicle-vehicle/vehicle-infrastructure cooperation scenario based on C-V2X and build a car-following model for heterogeneous traffic flow. In this scenario, CVs can obtain the driving data of all vehicles (including CVs and RVs) within the detection range of roadside sensors. Considering the different ways of vehicle information obtained by CVs and RVs, this paper models different car following models of CVs and RVs respectively and combine them to form a car-following model of heterogeneous traffic flow. Then, in the case of bounded period, the stability condition of heterogeneous traffic flow is theoretically derived by using the perturbation method. In the process of derivation, the first and second order numbers are used to expand and the analysis of long and short wave limits is considered to obtain the sufficient stability conditions of heterogeneous traffic flow. The condition shows that the stability is related to the traffic density, the penetration of CV, the detection accuracy of roadside sensors, the time delay in V2X communication. Finally, the influence of the parameters of C-V2X-based vehicle-vehicle/vehicle-infrastructure cooperation on the stability, flow and safety of heterogeneous traffic flow is analyzed through simulation.
2. In the actual traffic environment, there is not only car following behavior but also vehicle lane changing behavior. In the scene of C-V2X-based vehicle-vehicle/vehicle-infrastructure cooperation, CVs can obtain more accurate and reliable vehicle status information and road condition information to achieve more accurate lane changing behavior. This paper mainly analyses the decision-making stage of changing lanes in the process of changing lanes. Combining the minimum safety gap between vehicles and the motivation of changing lanes, the paper establishes the rules of changing lanes for CVs and RVs, and analyses the influence of CV penetration on frequency of lane-changing behaviors and the effect of changing lanes behavior on traffic flow characteristics from both theoretical and simulation perspectives.

参考文献:
[1] CHEN S, HU J, YAN S, et al. Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G[J]. IEEE Communications Standards Magazine, 2017, 1(2): 70-76.
[2] MA Z, HUO Q, YANG X, et al. Safety cruise control of connected vehicles using radar and vehicle-to-vehicle communication[J]. IEEE Systems Journal, 2020, 14(3): 4602–4613.
[3] PRATEEK B, KOCKELMAN K, et al. Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies[J]. Transportation Research Part A: Policy and Practice, 2017, 95: 49-63.
[4] CALVERT S, SCHAKEL W, VANLINT W. Will automated vehicles negatively impact traffic flow[J]. Journal of Advanced Transportation, 2017, 1-17.
[5] GEDDES N B. Magic Motorways[J]. Random Houses, 1940, 297.
[6] TAKADA K, TANAKA Y, IGARASHI A, et al. Road/Automobile communication system (RACS) and its economic effect[C]// IEEE Vehicle Navigation & Information Systems Conference, IEEE, 1989.
[7] TREIBER M, KESTING A. Traffic flow dynamics[M]. Springer Berlin Heidelberg, 2013.
[8] KAMAL M, TAGUCHI S, YOSHIMURA T. Efficient driving on multilane roads under a connected vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(9): 2541–2551.
[9] TALEBPOUR A, MAHMASSANI H S. Influence of connected and autonomous vehicles on traffic flow stability and throughput[J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 143–163.
[10] LI Y, WANG H, WANG W, et al. Evaluation of the impacts of cooperative adaptive cruise control on reducing rear-end collision risks on freeways[J]. Accident Analysis & Prevention, 2017, 98: 87-95.
[11] TALEBPOUR A, MAHMASSANI H S, HAMDAR S H. Effect of information availability on stability of traffic flow: Percolation theory approach[J]. Transportation Research Part B: Methodological, 2017, 33: 81–100.
[12] YE L, YAMAMOTO T, MORIKAWA T. Heterogeneous traffic flow dynamics under various penetration rates of connected and autonomous vehicle[C]// 2018 IEEE International Conference on Intelligent Transportation Systems, IEEE, 2018.
[13] JIA D, NGODUY D, VU H L. A multiclass microscopic model for heterogeneous platoon with vehicle-to-vehicle communication[J]. Transportmetrica B: Transport Dynamics, 2019, 7(1): 311–335.
[14] XIE D, ZHAO X, HE Z. Heterogeneous Traffic mixing regular and connected vehicles: modeling and stabilization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2060–2071.
[15] XIE D, WEN Y, ZHAO X, et al. Cooperative driving strategies of connected vehicles for stabilizing traffic flow[J]. Transportmetrica B: Transport Dynamics, 2020, 8(1): 166-181.
[16] JEONG E, OH C, LEE S. Is vehicle automation enough to prevent crashes? Role of traffic operations in automated driving environments for traffic safety[J]. Accident Analysis & Prevention, 2017, 104(7): 115-124.
[17] ABDULSATTAR H, SIAM M, WANG H. Characterisation of the impacts of autonomous driving on highway capacity in a mixed traffic environment: an agent-based approach[J]. IET Intelligent Transport Systems, 2020, 14(9): 1132–1141.
[18] WANG Z, WU G, BARTH M. Cooperative eco-driving at signalized intersections in a partially connected and automated vehicle environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(5): 2029-2038.
[19] HUANG K, DI X, DU Q, et al. Scalable traffic stability analysis in mixed-autonomy using continuum models[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 616–630.
[20] CHANG X, LI H, RONG J, et al. Analysis on traffic stability and capacity for mixed traffic flow with platoons of intelligent connected vehicles[J]. Physica A: Statistical Mechanics and its Applications, 2020, 557(1): 124829.
[21] ZHANG Z, YANG X. Analysis of highway performance under mixed connected and regular vehicle environment[J]. Journal of Intelligent and Connected Vehicles, 2021, 4(2): 68–79.
[22] WANG S, YU B, WU M. MVCM car-following model for connected vehicles and simulation-based traffic analysis in mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6): 5267-5274.
[23] CUI S, CAO F, YU B et al. Modeling heterogeneous traffic mixing regular, connected, and connected-autonomous vehicles under connected environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8579-8594.
[24] WANG J, Zheng Y, Chen C, et al. Leading cruise control in mixed traffic flow: system modeling, controllability, and string stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12861-12876.
[25] 陈山枝,时岩,胡金玲.蜂窝车联网(C-V2X)综述[J]. 中国科学基金, 2020, 34(2):179-185.
[26] CHEN S, HU J, SHI Y, et al. LTE-V: A TD-LTE-Based V2X solution for future vehicular network[J].IEEE Internet of Things Journal, 2016, 3(6): 997–1005.
[27] CHEN S, HU J, SHI Y, et al. A vision of C-V2X: technologies, field testing, and challenges with Chinese development [J]. IEEE Internet of Things Journal, 2020, 7(5): 3872–3881.
[28] CHANDLER R E, HERMAN R, MONTROLL E W. Traffic dynamics: studies in car following[J]. Operations Research, 1958, 6(2): 165-184.
[29] GAZIS D C, POTTS H R B. Car-following theory of steady-state traffic flow[J]. Operations Research, 1959, 7(4): 499-505.
[30] NEWELL G F. Nonlinear effects in the dynamics of car following[J]. Operations Research, 1961, 9(2): 209-229.
[31] HELLY W. Simulation of bottlenecks in single-lane traffic flow[J]. Theory of Traffic Flow, 1959, 207-238.
[32] KOMETANI E, SASAKI T. On the stability of traffic flow[J]. Operations Research, 1958.
[33] GIPPS P G. A behavioural car-following model for computer simulation[J]. Transportation Research Part B Methodological, 1981, 15(2): 105-111.
[34] BANDO M, HASEBE K, NAKAYAMA A, et al. Dynamical model of traffic congestion and numerical simulation[J]. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1995, 51(2): 1035-1042.
[35] 姜 锐, 吴清松, 朱祚金. 一种新的交通流动力学模型[J]. 科学通报, 2000(17): 1895-1899.
[36] 张新长, 城市地理信息系统[M]. 科学出版社, 2013.
[37] CREMER M, LUDWIG J. A fast simulation model for traffic flow on the basis of Boolean operations[J]. Mathematics and Computers in Simulation, 1986, 28(4): 297-303.
[38] WOLFRAM S. A new kind of science[J]. Artificial Life, 2002, 12(3): 449-451.
[39] NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2(12): 2221-2229.
[40] TREIBER M, KESTING A, HELBING D. Delays, inaccuracies and anticipation in microscopic traffic models[J]. Physica A Statistical Mechanics & Its Applications, 2006, 360(1): 71-88.
[41] GONG S, DU L. Optimal location of advance warning for mandatory lane change near a two-lane highway off-ramp[J]. Transportation research part B: methodological, 2016, 84: 1-30
[42] 聂建强. 高速公路车辆自主性换道行为建模研究[D]. 东南大学, 2017.
[43] BALAL E, CHEU R L, SARKODIE-GYAN T. A binary decision model for discretionary lane changing move based on fuzzy inference system[J]. Transportation Research Part C: Emerging Technologies, 2016, 67: 47-61
[44] GIPPS P G. A model for the structure of lane-changing decision[J]. Transportation Research Part B Methodological, 1986, 20(5): 403-414.
[45] KESTING A, TREIBER M, HELBING D. General lane-changing model MOBIL for car-following models[J]. Transportation Research Record, 1999, 1: 86–94.
[46] SIMON P, GUTOWITZ H A. A cellular automaton model for bi-directional traffic[J]. Physical review A, Atomic, molecular, and optical physics, 1998, 57(2): 2441-2444.
[47] HAYWARD J C. Near-miss determination through use of a scale of danger[J]. Highway Research Record, 1972.
[48] OH C, PARK S, RITCHIE S G. A method for identifying rear-end collision risks using inductive loop detectors[J]. Accident Analysis & Prevention, 2006, 38(2): 295-301.
[49] 孟凡兴, 张良, 张伟. 驾驶员车头时距研究[J]. 工业工程与管理, 2013, 18(2): 131-135.
[50] HE W, LI H, ZHI X, et al. Overview of V2V and V2I wireless communication for cooperative vehicle infrastructure systems[C]// 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, IEEE, 2019.
[51] Ma K. Influence of exclusive lanes for connected and autonomous vehicles on freeway traffic flow[J]. IEEE Access, 2019, 7: 50168-50178.
[52] CAO Z, LU L, CHEN C, et al. Modeling and simulating urban traffic flow mixed with regular and connected vehicles[J]. IEEE Access, 2021, 9: 10392-10399.
[53] CHIN H, OKUDA H, TAZAKI Y, et al. Model predictive cooperative cruise control in mixed traffic[C]// IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2016.
[54] NGODUY D. Analytical studies on the instabilities of heterogeneous intelligent traffic flow[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(10): 2699-2706.
[55] OROSZ G, WILSON R E, STEPAN G. Traffic jams: dynamics and control[J]. Philosophical Transactions Mathematical Physical & Engineering Sciences, 2010, 368: 4455-4479.
[56] TREIBER M, HENNECKE A, HELBING D. Congested traffic states in empirical observations and microscopic simulations[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62: 1805–1824.
[57] 张杰. C-V2X与智能车路协同技术的深度融合[J]. 中兴通讯技术, 2020, 26(1): 6.
[58] GUZMN H, LRRAGA M, ALVAREZ-ICAZA L, et al. A realistic two-lanes traffic simulation model based on cellular automata [C]// European Modelling Symposium, IEEE Computer Society, 2014.
[59] LU L, ZHENG F, LIU X, et al. A lagrangian traffic flow model considering lane changing behavior: formulation and numerical implementation [C]//Forum on Integrated and Sustainable Transportation Systems (FISTS), IEEE, 2020.
[60] LEES E, OLSEN E C B, WIERWILLE W. A comprehensive examination of naturalistic lane-changes[J]. Washington D. C.: Department of Transportation, 2004.
[61] 王雪松, 杨敏明. 基于自然驾驶数据的变道切入行为分析[J]. 同济大学学报: 自然科学版, 2018, 46(8): 1057-1063.
[62] 符锌砂, 胡嘉诚, 何石坚. 基于交通状况及行驶速度的高速公路换道时间研究[J]. 公路交通科技, 2020, 37(4): 133-139.
[63] 杨宁宁. 基于驾驶人风格的微观交通流建模方法研究[D]. 吉林大学, 2022.
[64] 容颖. 考虑驾驶人特性的微观交通流建模及其稳定性研究[D]. 华南理工大学, 2018.
中图分类号:

 U49    

馆藏号:

 59813    

开放日期:

 2023-12-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式