- 无标题文档
查看论文信息

中文题名:

 小型超宽带天线设计及其时域特性分析    

姓名:

 刘祥龙    

学号:

 1202110033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080904    

学科名称:

 电磁场与微波技术    

学生类型:

 博士    

学位:

 博士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 电磁场与无线技术    

第一导师姓名:

 尹应增    

第一导师单位:

 西安电子科技大学    

完成日期:

 2015-04-10    

答辩日期:

 2015-06-01    

外文题名:

 Design and Time-domain Characteristics Analysis of Compact UWB Antenna    

中文关键词:

 超宽带天线 ; 陷波技术 ; 多径效应 ; 多输入多输出 ; 准自互补天线    

外文关键词:

 Ultra-wideband (UWB) antenna ; Notch band technology ; Multi-path effect ; Multiple-input multiple-output (MIMO) ; Quasi-self-complementary antenna (QSCA)    

中文摘要:

摘要

 

超宽带技术(UWB)利用其极宽的工作带宽,可以实现高速率无载波的数据传输。其超低的发射功率和对多径效应的不敏感使其更方便的应用于室内近距离的无线通信。多输入多输出技术(Multi-input Multi-output,MIMO)可以在不牺牲额外频谱资源和总发射功率的基础上成倍地提高通信系统的信道容量,同时也具有提高信道可靠性,抵抗多径衰落和降低误码率等优点。很长时间以来超宽带技术和MIMO技术一直都以各自的方式为未来无线通信提供新的解决方案。但随着无线通信业务的发展,尤其是室内近距离通信的急剧增长,相信在不远的将来对近距离无线通信的速度要求将会达到Gb/s的量级。为了应对未来高速无线通信的需求,有人提出了把超宽带技术和多天线技术相结合的新方法。通过充分利用超宽带技术的极宽带宽和MIMO技术的空间复用能力,使通信速度可以达到Gb/s的量级。本文结合研究课题,围绕超宽带天线及其陷波和多天线技术,以及超宽带天线的时域特性分析展开了研究工作,作者主要的研究内容包括以下几个方面:

1.设计了多款结构紧凑的超宽带天线,包括窄地板结构的半月形超宽带天线、共面波导馈电的扇形超宽带天线、准自互补型的超宽带天线;对工作机理进行了分析,并给出了天线的阻抗带宽、增益、方向图、效率、群时延等参数。通过仿真结果和实验结果的对比可知,文中给出的超宽带天线都具有良好的工作性能,可以很好的满足未来无线通信对超宽带天线的各种需求。

2.以三种地板结构的半圆形单极子超宽带天线和两种形式的类偶极子超宽带天线为基础,研究了天线地板结构和辐射贴片形式对超宽带天线脉冲波形保真性能的影响。通过在天线六个基本方向上设置虚拟探针,分析天线在不同方向上的信号传播特性,包括信号的时域波形、能量谱、保真度等。通过接收信号与原始激励信号的对比可知,尽管天线的辐射贴片形式有所不同,但切角地板结构形式的超宽带天线具有比其他两种天线形式更加优良的时域波形保真度的性能。

3.提出了紧凑型超宽带天线陷波技术的多种实现形式,包括加载于辐射贴片上的Ω型弯折缝隙、加载于地板缝隙之上的双倒L枝节、加载于贴片缝隙上的倒T型枝节、具有四分之一波长工作特性的单端开路的平行双线结构;Ω型弯折缝隙的陷波主要通过调节其与辐射贴片的边缘距离和自身长度实现;双倒L枝节的陷波特性主要通过调节其自身长度和自身与地板的距离来实现,而其在圆弧上的位置并不会对其陷波特性造成明显的影响;T型结通过形成末端开路谐振来实现陷波,但由于其需要占用一定的空间,所以该方法的应用对辐射贴片的整体面积有一定的要求;单端开路的平行双线结构在地板和辐射贴片之间建立一个短路通路,然后根据陷波频段的要求调节另一条末端开路线的电长度就可以实现在所需频段的陷波。

4.以电小天线为基础,提出了具有紧凑结构的超宽带MIMO天线的两种新的实现形式。首先,提出了一种基于弯折单极子的超宽带MIMO天线,其极宽带宽的实现来自于弯折单极子与短路倒L寄生枝节间的容性耦合效应,且同时实现了天线单元间的高隔离;考虑到其实际的应用场景,对天线在靠近人头情况下的工作状态进行了分析和讨论。其次,提出了一种具有双陷波特性的超宽带MIMO天线,其加载的T型地板枝节实现了其在超宽频带上的去耦;并结合目前对超宽带通信中对陷波特性的需求,设计了具有双陷波特性的超宽带MIMO天线。

5.根据准自互补天线单元自身的辐射特性,提出了一种紧凑的基于准自互补结构的两单元超宽带MIMO天线,并对其分集性能、群时延和靠近人头的工作状态进行了分析和讨论;通过比较可以看出,基于准自互补天线的超宽带MIMO天线具有天然的高隔离度,能够很好的满足未来无线通信对超宽带覆盖和分集性能的双重需求;最后,根据准自互补天线的工作特性进一步提出了四单元并行排列和四单元逆时针排列的两种四单元的超宽带MIMO天线,并对它们的工作性能进行了仿真和分析。

外文摘要:

ABSTRACT

 

With extremely wide operating band, ultra-wideband (UWB) technology can be used in high-speed data rate transmission of no carrier. Its ultra-low emission power and insensitivity to multipath effects make it more convenient for indoor wireless communications. Multi-input Multi-output (MIMO) technology can increase channel capacity without sacrificing additional spectrum resources and total transmission power, and it also can improve channel reliability, resist to multipath fading and reduce error bit rate. For a long time, UWB and MIMO technology has been as two individual solutions for future wireless communications. With the development of high-definition television (HDTV) and high-speed short-range communication, it is believed that the indoor data rate will reach as high as 1Gb/s in the near future. To meet the future needs of high-speed communication, a new approach that combining UWB and MIMO technology is proposed. By taking full use of space diversity of MIMO system and wide frequency band of UWB technology, UWB-MIMO system can reach speed of Gb/s level. In this paper, author has studied compact UWB antenna, its notch band technology, multi-element technology and its time-domain characteristics analysis. The main aspects of this paper can be concluded as follows:

 

1. Several forms of compact UWB antnenas are designed, including half-moon-shape UWB antenna with narrow ground plane, fan-shape UWB antenna with CPW-fed, quasi-self-complementary antenna (QSCA) with UWB performance. Then, their impedance bandwidth, gains, radiation patterns, antenna efficiencies and group delays are measured and analyzed. By comparing simulated and measured results, the proposed UWB antennas show good performaces which can meet the demands of future UWB wirelss communications.

 

2. Based on the semi-circular patch antenna with three kinds ground planes and quasi-dipole with two kinds of ground planes, the impact of ground plane and radiation patch on the UWB antenna time-domain behaviors are studied. By placing virtual probes at six fundamental directions of the antenna, the transmission properties are analyzed, including signal waveforms, power spectrum and fidelity factors. By comparing the probe-received and the original signals, although with different radiation patches, the UWB antenna with triangular cut ground plane has better time-domain behaviors than others.

 

3. Several different forms of notch band technologies have been proposed, including meandering slots loading, dual L-shape grounded branch, inverted T-shape stub and quarter wavelength paralell microstrip lines with open-ended.  By adjusting the length of the slot and the distance between the slots and the patch edge , the desired notch band can be obtained. By adjusting its own length and the distance between branch and ground plane, the dual L-shape grounded branch can generate two desired notch bands; while its position on the circle affects a little on its notch band characteristics. The T-shape stub notch band come from its open-ended resonating, but its physical size make it need a large enough patch where the stub can be fully inserted; The open-ended quarter-wavelength line creates a short path between the ground plane and the radiation patch, and then by tunning the length of the other open-ended line, a desired notch band can be achieved.

 

4. Based on the electric small antenna, two novel UWB-MIMO antenna are proposed. Firstly, a UWB-MIMO antenna with meandered monopole is proposed; its ultra-wide band is obtained from the capacitive coupling between the end-shorted L-shape strips and meandering monopole; then, by introducing a wide gap between the two antenna elements, a higher isolation can be achieved; and considering its practical application scenarios, its work status near the head is analyzed. Secondly, a UWB-MIMO antenna with dual notch band is proposed, the loaded T-shape grounded branch enables its coupling reduction; To meet the future demand of the UWB communications, the UWB-MIMO antenna with dual notch band characteristics is also implemented.

 

5. According to the radiation characteristics of the QSCA, a two-element UWB-MIMO antenna is presented and its diversity performance, group delay and working status near the human head are all analyzed; by comparison, it can be seen in the absence of any decoupling methods and structures, the UWB-MIMO antenna based on QSCA can reach a high isolation, which both can cater the UWB coverage and diversity performance demand in the future wireless communications; then, on this basis, two more kinds of four-element UWB-MIMO antenna with elements parallel and anticlockwise arranged, are proposed, simulated and disscused.

参考文献:
参考文献

[1] C. E. Shannon. A Mathematical Theory of Communication[J]. Bell System Technical Journal.1948,27:623-656.
[2] Telatar I.E.. Capacity of multi-antenna gaussian channels [J]. Technology Report, BL0112170-950615-07TM. AT&TBell Lab Internal Tech Memo, 1995.
[3] 黄韬,袁超伟,杨睿哲等. MIMO相关技术与应用[M]. 北京:机械工业出版社,2006:1:4.
[4] Wei C.. New criteria and related techniques for 4G wireless systems [C]. International Workshop on Signal Design and Its Applications in Communications, 2007: 3.
[5] Frattasi S., Fathi H., Fitzek F.H.P., et al. Defining 4G technology from the users perspective [J]. IEEE Network , 2006, 20(1): 35-41.
[6] Bedekar A., Agrawal R.. Analysis of distributed mobility anchoring for 4G systems [C]. International Conference on Mobile Wireless Communications Networks, 2007:111-115.
[7] Lin M., Heesook C., Dawson T., et al. Network integration in 3G and 4G wireless networks international [C]. Conference on Computer Communications and Networks, 2010:1-6.
[8] Federal communications commission revision of part 15 of the commission’s rules regarding ultra-wideband transmission system from 3.1 to 10.6 GHz. FEDERAL Communications Commission[S]. Washington, DC: ET-Docket, 2002:98–153.
[9] 李福昌. 超宽带技术发展现状及展望[J]. 热点技术, 2007, 167:70-73.
[10] 武林俊,李燕文.超宽带技术在未来无线通信中的应用[J].无线通信,2007, 252:8-11.
[11] T. Kaiser, F. Zheng, and E. Dimitrov. An overview of ultra-wide-band systems with MIMO [J]. Proceeding of the IEEE, 2009, 97(2):285-312.
[12] L. A. de Rosa. Random impulse system[P]. U.S. patent, No. 2671896, 1954.
[13] C. H. Hoeppner. Pulse multiplex system[P]. U.S. patent, No. 2537056, 1951
[14] Gerald F. Ross, Lexington and Mass. Transimission and reception system for generating and receiving base-band duration pulse signals without distortion for short base-band pulse commnunication system [P]. United States Patent, 1973, Apr. 17.
[15] Fowler C, Entzminger J, Corum J. Assessment of ultra-wideband (UWB) technology[J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 5(11): 45-49.
[16] Sumit Roy, Jeff R. Foerster, V. Srinivasa Somayazulu, et al. Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity [J]. Proceeding of the IEEE, 2004, 92(2):295-311.
[17] V. H. Rumsey. Frequency independent antennas[C]. IRE International Convention Record, 1957, 5(1): 114-118.
[18] Kamya Yekeh Yazdandoost and Ryuji Kohno. Ultra wideband antenna[J]. IEEE Radio Communications, 2004, 529-532.
[19] Hans Gregoiy Schantz, Glenn Wolenec and Edward Mickel Myszka. Frequency notched UWB antennas[C]. IEEE Conference on Ultra-Wideband Systems and Technologies, 2003, 214-218.
[20] Gerard J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal, 1996, 41-59.
[21] Zhengyi Li, Zhengwei Du, Masaharu Takahashi, et al. Reducing mutual coupling of MIMO antennas with parasitic elements for mobile terminals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):473-481.
[22] Buon Kiong Lau, and Jørgen Bach Andersen. Simple and efficient decoupling of compact arrays with parasitic scatterers[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):464-472.
[23] Angus C. K. Mak, Corbett R. Rowell, and Ross D. Murch. Isolation Enhancement Between Two Closely Packed Antennas[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(11): 3411-3419.
[24] Akiyoshi Abe, Naobumi Michishita, Yoshihide Yamada, et al. Mutual coupling reduction between two dipole antennas with parasitic elements composed of composite right-/left-handed transmission lines[C]. International Workshop on Antenna Technology, 2009, 1-4.
[25] Shuai Zhang, Buon Kiong Lau, Yi Tan, et al. Mutual Coupling Reduction of Two PIFAs With a T-Shape Slot Impedance Transformer for MIMO Mobile Terminals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(3):1521-1531.
[26] Chi-Yuk Chiu, Chi-Ho Cheng, Ross D. Murch, et al. Reduction of mutual coupling between closely-packed antenna elements[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(6): 1732-1738.
[27] J. W. Park, H. M. Lee. Isolation improvement of two-port multiple-input-multiple-output antenna using slits and split ring resonators on the ground plane[C]. International Workshop on Antenna Technology, 2011, 392-395.
[28] J. OuYang, F. Yang, and Z. M. Wang. Reducing mutual coupling of closely spaced microstrip MIMO antennas for WLAN application[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10:310-313.
[29] Marko Sonkki, Erkki Salonen. Low mutual coupling between monopole antennas by using two λ/2 slots[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9:138-141.
[30] FuGuo Zhu, JiaDong Xu and Qian Xu. Reduction of mutual coupling between closely-packed antenna elements using defected ground structure[C]. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2009: 1-4.
[31] Younkyu Chung, Seong-Sik Jeon, Dal Ahn, et al. High Isolation Dual-Polarized Patch Antenna Using Integrated Defected Ground Structure[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(1):4-6.
[32] Hui Li, Jiang Xiong, and Sailing He. A compact planar MIMO antenna system of four elements with similar radiation characteristics and isolation structure[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1107-1110.
[33] Shuai Zhang, Buon Kiong Lau, Yi Tan, et al. Mutual coupling reduction of two PIFAs with a t-Shape slot impedance transformer for MIMO mobile terminals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(3):1521-1531.
[34] Xiang Zhou, XuLin Quan, and RongLin Li. A dual-broadband MIMO antenna system for GSM/UMTS/LTE and WLAN handsets[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11:551-554.
[35] Shin-Chang Chen, Yu-Shin Wang, and Shyh-Jong Chung. A decoupling technique for increasing the port isolation between two strongly coupled antennas[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(12):3650-3658.
[36] Rashid Ahmad Bhatti, Soongyu Yi, and Seong-Ook Park. Compact antenna array with port decoupling for LTE-standardized mobile phones[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1430-1433.
[37] S. Dossche, J. Rodriguez, L. Jofre, et al. Decoupling of a two-element switched dual band patch antenna for optimum MIMO capacity[C]. IEEE Antennas and Propagation Society International Symposium, 2006, 325-328.
[38] Christian Volmer, Metin S¸ engül, et al. Broadband Decoupling and Matching of a Superdirective Two-Port Antenna Array[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7:613-616.
[39] J. Bach Andersen, and Henrik Hass Rasmussen. Decoupling and descattering networks for antennas[J]. IEEE Transactions on Antennas and Propagation, 1976, 841-846.
[40] Kai-Chi Lin, Cheng-Hsun Wu, Chi-Hui Lai, et al. Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(11):5118-5128.
[41] Saou-Wen Su and Cheng-Tse Lee. Printed two monopole-antenna system with a decoupling neutralization line for 2.4-GHz MIMO applications[J]. Microwave and Optical Technology Letters, 2011, 53(9):2037-2043.
[42] Anissa Chebihi, Cyril Luxey, Aliou Diallo, et al. A Novel Isolation Technique for Closely Spaced PIFAs for UMTS Mobile Phones[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 7:665-668.
[43] Aliou Diallo, Cyril Luxey, Philippe Le Thuc, et al. Study and reduction of the mutual coupling between two mobile phone PIFAs operating in the DCS1800 and UMTS bands[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11):3063-3074.
[44] Yan Wang, and Zhengwei Du. A wideband printed dual-antenna with three neutralization lines for mobile terminals[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3):1495-1500.
[45] Chan Hwang See, Raed A. Abd-Alhameed, Zuhairiah Z. Abidin, et al. Wideband printed MIMO/diversity monopole antenna for WiFi/WiMAX applications[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(4):2028-2035.
[46] Huang Lihao, Zhao Huiling, Hu Zhang, et al. Reduction of mutual coupling between closely-packed antenna elements with split ring resonator (SRR)[C]. ICMMT 2010 Proceedings, 1873-1875.
[47] Prathaban Mookiah and Kapil R. Dandekar. Performance analysis of metamaterial substrate based MIMO antenna arrays[C]. IEEE GLOBECOM 2008 proceedings, 1-4.
[48] J. W. Park, H. M. Lee. Isolation improvement of two-port multiple-input-multiple-output antenna using slits and split ring resonators on the ground plane[C]. Interantional Workshop on Antenna Technology, 2011, 392-395.
[49] Prathaban Mookiah, and Kapil R. Dandekar. Metamaterial-Substrate Antenna Array for MIMO Communication System[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 3283-3292.
[50] M. Gulam Nabi Alsath, Malathi Kanagasabai, and Bhuvaneshwari Balasubramanian. Implementation of slotted meander-line resonators for isolation enhancement in microstrip patch antenna arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12:15-18.
[51] Dimitra A. Ketzaki, Traianos V. Yioultsis. Metamaterial-based design of planar compact MIMO monopoles[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5):2758-2766.
[52] Jiang Zhu, George V. Eleftheriades. A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9:379-382.
[53] Mohammed M. Bait-Suwailam, Graduate, Muhammed Said Boybay, et al. Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(9):2894-2902.
[54] Elena Sáenz, Iñigo Ederra, Ramón Gonzalo, et al. Coupling reduction between dipole antenna elements by using a planar meta-surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(2):383-394.
[55] P. J. Ferrer, J. M. Gonza´ lez-Arbesu´ , and J. Romeu. Decorrelation of two closely spaced antennas with a metamaterial AMC surface[J]. Microwave and Optical Technology Letters , 2008, 50(5):1414-1417.
[56] S.-H. Hwang, T.-S. Yang, J.-H. Byun, et al. Complementary pattern method to reduce mutual coupling in metamaterial antennas[J]. IET Microwaves, Antennas & Propagation, 2010, 4,(9): 1397–1405.
[57] Mohammed M. Bait-Suwailam, Omar F. Siddiqui, and Omar M. Ramahi. Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9:876-878.
[58] Constantine G. Kakoyiannis, Philip Constantinou. Compact printed arrays with embedded coupling mitigation for energy-efficient wireless sensor networking[J]. International Journal of Antennas and Propagation, 2010, 1-18.
[59] Hossein Sarbandi Farahani, Mehdi Veysi, Manouchehr Kamyab, et al. Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9:57-59.
[60] J. Sarrazin, Y. Mahé, S. Avrillon, et al. Collocated microstrip antennas for MIMO systems with low mutual coupling using mode confinement[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2):589-592.
[61] Minseok Han and Jaehoon Choi. Multiband MIMO antenna using orthogonally polarized dipole elements for mobile communications[J]. Microwave and Optical Technology Letters, 2011, 53(9):2043-2048.
[62] H. Li, J. Xiong and S. He. Compact and low profile co-located MIMO antenna structure with polarization diversity and high port isolation[J]. IET Electronics Letters, 2010, 46(2):108-110.
[63] J. Xiong, M.Y. Zhao, H. Li, Z. Ying, et al. Collocated electric and magnetic dipoles as a reference antenna for polarization diversity MIMO applications[J]. IEEE Antennas Wireless Propagation Letters, 2012, 11:423-426.
[64] Hui Li, Buon Kiong Lau, Zhinong Ying, et al. Decoupling of multiple antennas in terminals with chassis excitation using polarization diversity, angle diversity and current control[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(12):5947-5957.
[65] H. Li, Y. Tan, B. K. Lau, et al. Characteristic mode based tradeoff analysis of antenna-chassis interactions for multiple antenna terminals[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(2):490-502.
[66] Zachary Miers, Hui Li, and Buon Kiong Lau. Design of bandwidth-enhanced and multiband MIMO antennas using characteristic Modes[J]. IEEE Antennas Wireless Propagation Letters, 2013, 12:1696-1699.
[67] K. K. Kishor, S. V. Hum. A reconfigurable chassis-mode MIMO antenna[J]. European Conference on Antennas and Propagation, 2013, 1992-1996.
[68] Neil L. Scott, Miles O. Leonard-Taylor, Rodney G. Vaughan. Diversity gain from a single-port adaptive antenna using switched parasitic elements illustrated with a wire and monopole prototype[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(6):1066-1070.
[69] Yu Zhou, Raviraj S. Adve, and Sean V. Hum. Design and evaluation of pattern reconfigurable antennas for MIMO applications[J]. IEEE Transactions on Antennas and Propagation, 2012, 62(3):1084-1092.
[70] M. L. Lee, Y. S. Wang, and S. J. Chung. Pattern reconfigurable strip monopole with eight switched printed parasitic elements[C]. IEEE Antennas and Propagation Society International Symposium, 2007, 3177-3180.
[71] Noman Murtaza, Matthias A. Hein, and Evgenia Zameshaeva. Reconfigurable decoupling and matching network for a cognitive antenna[C]. Proceedings of the 41st European Microwave Conference, 2011, 874-877.
[72] Youssef Tawk, Joseph Costantine, and Christos G. Christodoulou. Reconfigurable filtennas and MIMO in cognitive radio applications[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(3):1074-1083.
[73] Rifaqat Hussain, and Mohammad S. Sharawi. A cognitive radio reconfigurable MIMO and sensing antenna system[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 10.
[74] Dinh Thanh Le, and Karasawa Y. A simple broadband antenna for MIMO applications in cognitive radio[C]. IEEE International Symposium on Antennas and Propagation, 2011, 806-809.
[75] G.J. Foschini and M.J. Gans. On limits of wireless communications in a fading environment when using multiple antennas[J]. Wireless Personal Communications, 1998, 6: 311–335.
[76] Da-Shan Shiu, Gerard J. Foschini, Michael J. Gans, et al. Fading correlation and its effect on the capacity of multielement antenna systems[J]. IEEE Transactions on Communications, 2000, 48(3):502-513.
[77] Arogyaswami J. Paulraj, Dhananjay A. Gore, Rohit U. Nabar, et al. An overview of MIMO communications—A key to gigabit wireless[J]. Proceedings of the IEEE, 2004, 92(2):198-218.
[78] David Gesbert, Mansoor Shafi, Da-shan Shiu, et al. From theory to practice: an overview of MIMO space–time coded wireless systems[J]. IEEE Journal on Selected Areas in Communications, 2003, 21(3):281-302.
[79] H. J. Song, D. K. Kim, M. J. Kim, et al. A study of the interference measurement analysis between SDMB system and UWB wireless communication system[C]. The 7th International Conference on Advanced Communication Technology, 2005, 2:1117-1120.
[80] F. Maehara, R. Kaneko, A. Yamakita, et al. Coverage performance of MB-OFDM UWB in-car wireless communication[C]. International Symposium on Communication Systems Networks and Digital Signal Processing, 2010, 417-421.
[81] Yuhong Li, Youzheng Wang, and Jianhua Lu. Performance analysis of multi-user UWB wireless communication systems[C]. International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systwms Technology, 2009, 152-155.
[82] S. Ghauri, and Dong Feng. Analysis of UWB coexistence with 2G/3G/4G wireless communication systems[C]. Proceedings of International Conference on Modeling, Identification & Control, 2012, 1028-1033.
[83] A. Trindade, Quang Hieu Dang, van der Veen, et al. Signal processing model for a transmit-reference UWB wireless communication system[C]. IEEE Conference on Ultra-wideband Systems and Technologies, 2003, 270-274.
[84] G. Adamiuk, T. Zwick, W. Wiesbeck. UWB antennas for communication system[J]. Proceedings of the IEEE, 2012, 100(7):2308-2321.
[85] Jarrod Cook, and Nathan Gove. Ultra-wideband research and implementation[R]. Senior Capstone Project, 2007.
[86] John D. Kraus, Ronald J. Marhefka. Antennas: For All Applications (Third Edition)[M]. The McGraw-Hill Companies, Inc. 2002, 300-318.
[87] Amnoiy Ruengwaree, Abhijit Ghose, and Günter Kompa. A novel UWB rugby-ball antenna for near-range microwave radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(6): 2774-2779.
[88] M. Abedian, S. K. A. Rahim, and M. Khalily. Two-segments compact dielectric resonator antenna for UWB application[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11: 1533-1536.
[89] Terence S. P. See and Zhi Ning Chen. An electromagnetically coupled UWB plate antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(5): 1476-1479.
[90] Xue Ni Low, Zhi Ning Chen, and Wee Kian Toh. Ultrawideband suspended plate antenna with enhanced impedance and radiation performance[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8): 2490-2495.
[91] Hyeonhyeong Choe and Sungjoon Lim. Ultrawideband compact U-shaped antenna with inserted narrow strip and inverted T-shaped slot[J]. Microwave and Optical Technology Letters, 2014, 56(10): 2265-2269.
[92] Anil Kr Gautam, Swati Yadav, and Binod Kr Kanaujia. A CPW-fed compact UWB microstrip antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 151-154.
[93] Ali Foudazi, Hamid Reza Hassani, and Sajad Mohammad ali nezhad. Small UWB planar monopole antenna with added GPS/GSM/WLAN bands[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2987-2992.
[94] Mehdi Mahdavi, Zahra Atlasbaf, and Keyvan Forooraghi. A very compact CPW-fed ultra-wideband circular monopole antenna[J]. Microwave and Optical Technology Letters, 2012, 54(7): 1665-1668.
[95] R. A. Sadeghzadeh, Y. Zehforoosh, and N. Mirmotahhary. Ultra-wideband monopole antenna with modified triangular patch[J]. Microwave and Optical Technology Letters, 2011, 53(8): 1752-1756.
[96] Guofeng Lu, Stefan von der Mark, Ilya Korisch, et al. Diamond and rounded diamond antennas for ultrawide-band communications[J]. IEEE Antennas and Wireless Propagation Letters, 2004, 3: 249-252.
[97] Xue Ni Low, Zhi Ning Chen, and Terence S. P. See. A UWB dipole antenna with enhanced impedance and gain performance[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 2959-2966.
[98] Tzyh-Ghuang Ma, and Shyh-Kang Jeng. Planar miniature tapered-slot-fed annular slot antennas for ultrawide-band radios[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(3): 1194-1202.
[99] Y. Sung. Triple band-notched UWB planar monopole antenna using a modified H-shaped resonator[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2):953-957.
[100] Young Jun Cho, Ki Hak Kim, Dong Hyuk Choi, et al. A Miniature UWB Planar Monopole Antenna With 5-GHz Band-Rejection Filter and the Time-Domain Characteristics[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(5): 1453-1460.
[101] M. T. Islam, R. Azim, and A. T. Mobashsher. Triple band notched planar UWB antenna using parasitic strips[J]. Progress In Electromagnetics Research, 2012, 129: 161-179.
[102] R. Fallahi. A novel UWB elliptical slot antenna with band-notched characteristics[J]. Progress In Electromagnetics Research, 2008, 82: 127–136.
[103] N. Ojaroudi, N. Ghadimi, Y. Ojaroudi, et al. A novel design of microstrip antenna with reconfigurable band rejection for cognitive radio applications[J]. Microwave and Optical Technology Letters, 2014, 56(12):2998-3003.
[104] Yi-Cheng Lin, and Kuan-Jung Hung. Compact ultrawideband rectangular aperture antenna and band-notched designs[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(11): 3075-3081.
[105] Xudong Chen, Tomasz M. Grzegorczyk, Bae-Ian Wu, et al. Robust method to retrieve the constitutive effective parameters of metamaterials[J]. Physical Review E, 2004, 70: 1-7.
[106] MKafesaki, Th Koschny, R S Penciu, et al. Left-handed metamaterials: detailed numerical studies of the transmission properties[J]. Journal of Optics A: Pure and Applied Optics, 2005, 12-22.
[107] Dimitrios I. Karatzidis, Traianos V. Yioultsis, and Emmanouil E. Kriezis. Fast analysis of photonic crystal structures with mixed-order prism macroelements[J]. Journal of Lightwave Technology, 2008, 26(13):2002-2009.
[108] D. R. Smith, D. C. Vier, Th. Koschny, et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials[J]. Physical Review E, 2005, 71, 1-11.
[109] Yunchuan Guo, George Goussetis, Alexandros P. Feresidis, et al. efficient modeling of novel uniplanar left-handed metamaterials[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1462-1468.
[110] D. R. Smith, Willie J. Padilla, D. C. Vier, et al. Composite medium with simultaneously negative permeability and permittivity[J]. Physical Review Letters, 2000, 84(18): 4184-4187.
[111] R. R. A. Syms, E. Shamonina, V. Kalinin, et al. A theory of metamaterials based on periodically loaded transmission lines: Interaction between magnetoinductive and electromagnetic waves[J]. Journal of Applied Physics, 2005, 97, 1-6.
[112] J.-Y. Kim, B.-C. Oh, N. Kim, et al. Triple band-notched UWB antenna based on complementary meander line SRR[J]. Electronics Letters, 2012, 48(15):896-897.
[113] C.-C. Lin, C.-Y. Huang, J.-Y. Su. Ultra-wideband quasi-self-complementary antenna with band-rejection capability[J]. IET Microwaves, Antennas & Propagation, 2011, 5(13): 1613–1618.
[114] Chia-Ching Lin, Peng Jin, and Richard W. Ziolkowski. Single, dual and tri-band-notched ultrawideband (UWB) antennas using capacitively loaded loop (CLL) resonators[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(1): 102-109.
[115] Vlentine J., Zhang S., Zentgraf T., et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 455(7211): 376-379.
[116] E. Yablonovitch, T. J. Gmitter, K. M. Leung, et al. Photonic band structure: the face-centered-cubic case empolying nonspherical atoms[J]. Physical Review Letters, 67(17): 2295-2298.
[117] Lalithendra Kurra, Mahesh P Abegaonkar, Ananjan Basu, et al. A Band-notched UWB Antenna Using Uni-Planar EBG Structure[C]. European Conference on Antennas and Propagation (EuCAP), 2013, 2466-2469.
[118] Gaurav K. Pandey, Hari S. Singh, Pradutt K. Bharti, et al. Design of stepped monopole UWB antenna with WLAN band notched using modified mushroom type EBG structure[C]. IEEE CONECCT, 2013, 1-6.
[119] Jung N. Lee, Jin H. Yoo, Ji H. Kim, et al. The design of UWB bandpass filter-combined ultra-wide band antenna[C]. IEEE Vehicular Technology Conference, 2008, 1-5.
[120] Chao-Tang Chuang, Ting-Ju Lin, and Shyh-Jong Chung. A band-notched UWB monopole antenna with high notch-band-edge selectivity[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(10): 4492-4499.
[121] Symeon Nikolaou, Nickolas D. Kingsley, George E. Ponchak, et al. UWB elliptical monopoles with a reconfigurable band notch using MEMS switches actuated without bias lines[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(8): 2242-2251.
[122] A. Valizade, Ch. Ghobadi, J. Nourinia, et al. A novel design of reconfigurable slot antenna with switchable band notch and multiresonance functions for UWB applications[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1166-1169.
[123] Eunman Joo, Kyeol Kwon, and Jaehoon Choi. Design of a folded UWB MIMO antenna for an on-body application[J]. Microwave and Optical Technology Letters, 2014 56(10): 2351-2357.
[124] Terence S. P. See and Zhi Ning Chen. An ultrawideband diversity antenna[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(6):1597-1605.
[125] Tzu-Chun Tang, and Ken-Huang Lin. An ultrawideband MIMO antenna with dual band-notched function[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1076-1079.
[126] Seokjin Hong, Kyungho Chung, Jaewon Lee, et al. Design of a diversity antenna with stubs for UWB applications[J]. Microwave and Optical Technology Letters, 2008, 50(5): 1352-1356.
[127] Ali Al-Rawi, Ahmed Hussain, Jian Yang. A new compact wideband MIMO antenna—the double-sided tapered self-grounded monopole array[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(6): 3365-3369.
[128] Kin-Lu Wong, Saou-Wen Su, and Yen-Liang Kuo. A printed ultra-wideband diversity monopole antenna[J]. Microwave and Optical Technology Letters, 2003, 38(4): 257-259.
[129] M. Jusoh, M. F. Jamlos, M. R. Kamarudin, et al. A MIMO antenna design challenges for UWB application[J]. Progress In Electromagnetics Research B, 2012, 36, 357-371.
[130] 李迎松,杨晓冬,刘乘源等. 共面波导馈电的超宽带天线研究木[J]. 电子测量与仪器学报, 2010, 24(9): 819-823.
[131] 吕文俊,程勇,程崇虎等. 共面波导馈电小型平面超宽带天线的设计与研究[J]. 微波学报, 2006, 22(4): 19-23.
[132] 吴毅强,邓淼,廖昆明等. 共面波导馈电超宽带天线研究[J]. 电子元件与材料, 2012, 31(6): 67-70.
[133] 张文梅,陈雪,韩国瑞等. 平面超宽带天线的设计与研究[J]. 电波科学学报, 2008, 23(2): 335-339.
[134] Wen-jun Lu, Yong Cheng and Hong-bo Zhu. Design concept of a novel balanced ultra-wideband (UWB) antenna[C]. Proceedings of IEEE International Conference on Ultra-wideband, 2010.
[135] SaiWai Wong, Tian Gui Huang, ChunXu Mao, et al. Planar filtering ultra-wideband (UWB) antenna with shorting pins[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(2): 948-953.
[136] 杨国敏,金荣洪,耿军平等. 基于开环谐振结构的超宽带天线设计[J]. 电波科学学报, 2008, 23(2): 239-251.
[137] Guo-Ping Gao, Bin Hu, and Jin-Sheng Zhang. Design of a miniaturization printed circular-slot UWB antenna by the half-cutting method[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 567-570.
[138] Peng Fei, Yong-Chang Jiao, Yang Zhu, et al. Compact CPW-fed monopole antenna and miniaturized ACS-fed half monopole antenna for UWB applications[J]. Microwave and Optical Technology Letters, 2012, 54(7): 1605-1609.
[139] Zheng Guo, Huiping Tian, Xudong Wang, et al. Bandwidth Enhancement of Monopole UWB Antenna With New Slots and EBG Structures[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1550-1553.
[140] Hans Gregoiy Schantz, lenn Wolenec, Edward Mickel Myszka. Frequency notched UWB antennas[C]. IEEE Conference on Ultra-Wideband Systems and Technologies, 2003, 214-218.
[141] 邓辉,钟海斌. 一种新颖可控陷波特性的超宽带天线[J]. 太赫兹科学与电子信息学报, 2014, 12(3): 425-427.
[142] Y.-S. Hu, M. Li, G.-P. Gao, et al. A double printed trapezoidal patch dipole antenna for UWB applications with band-notched characteristic [J]. Progress in Electromagnetics Research, PIER 2010, 103, 259-269.
[143] C.-Y. Huang, S.-A. Huang and C.-F. Yang. Band-notched ultra-wideband circular slot antenna with inverted C-shaped parasitic strip[J]. Electronics Letters, 2008, 44(15).
[144] X.-J. Liao, H.-C. Yang, N. Han, et al. Aperture UWB antenna with triple band-notched characteristics[J]. Electronics Letters, 2011, 47(2).
[145] Q.-X. Chu and T.-G. Huang. Compact UWB antenna with sharp band-notched characteristics for lower WLAN band[J]. Electronics Letters, 2011, 47(15)..
[146] Qing-Xin Chu, Chun-Xu Mao, and He Zhu. A compact notched band UWB slot antenna with sharp selectivity and controllable bandwidth[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 3961-3966.
[147] Lin Peng and Cheng-Li Ruan. UWB band-notched monopole antenna design using electromagnetic-bandgap structures[J]. IEEE Transactions on Microwave Theory and Techniques, 2011, 59(4): 1074-1081.
[148] T. Li, H.-Q. Zhai, G.-H. Li, et al. Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures[J]. Electronics Letters, 2012, 48(11).
[149] B. B. Mandelbrot. The fractional geometry of nature [M]. New York, W. H. Freeman, 1983.
[150] W. J. Lui, C. H. Cheng, and H. B. Zhu. Compact frequency notched ultra-wideband fractal printed slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2006, 16(4): 224-226.
[151] W.J. Lui, C.H. Cheng, Y. Cheng, et al. Frequency notched ultra-wideband microstrip slot antenna with fractal tuning stub[J]. Electronics Letters, 2005, 41(6).
[152] M. Ding, R. Jin, J. Geng, et al. Auto-design of band-notched UWB antennas using mixed model of 2D GA and FDTD[J]. Electronics Letters, 2008, 44(4).
[153] Shuai Zhang, Zhinong Ying, Jiang Xiong, et al. Ultrawideband MIMO/diversity antennas with a tree-like structure ti enhance wideband isolation[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8:1279-1282.
[154] Jian-Feng Li, Qing-Xin Chu, Zhi-Hui Li, et al. Compact dual band-notched UWB MIMO antenna with high isolation[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(9): 4759-4766.
[155] Shuai Zhang, Buon Kiong Lau, Anders Sunesson, et al. Closely-packed UWB MIMO/diversity antenna with different patterns and polarizations for USB dongle applications[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(9):4372-4380.
[156] Chun-Xu Mao and Qing-Xin Chu. Compact coradiator UWB-MIMO antenna with dual polarization[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4474-4480.
[157] Lamensdorf, D. ; Susman, L. Baseband-pulse-antenna techniques[J]. IEEE Antennas and Propagation Magazine, 1994, 36(1): 20-30.
[158] C. E. Shannon. A Mathematical Theory of Communication[J]. Bell System Technical Journal, 1948, 27, 623-656.
[159] Anand S.K., Keyoor G., Sandeep H.K.. Increasing wireless channel capacity through MIMO systems employing co-located antennas [J]. IEEE Transations on Microwave Theory, 2006,53(6):1837-1844.
[160] Britton T.Q., Michael A.J.. Optimal antenna radiation characteristics for diversity and MIMO systems [J]. EEE Transactions on Antennas Propagation, 2009, 57(11):3474–3481.
[161] Jon W.W., Rashid M..On the accuracy of equivalent circuit models for multi-antenna systems [J]. IEEE Transactions on Antennas Propagation, 2012, 60(2):540–547.
[162] V. Plicanic, Characterization and enhancement of antenna system performance in compact MIMO terminals[D]. a thesis of Lund University for the degree of Doctor of Philosophy, 2011.
[163] Manos P.K., Vasileios C.P., George F T, et al. Integrating compact printed antennas onto small diversity/MIMO terminals [J]. IEEE Transactions on Antennas and Propagation, 2008, 56(7): 2067-2078.
[164] Ding Y., Du Z.W, Gong K.. A novel dual-band printed diversity antenna for mobile terminals [J]. IEEE Transactions on Antennas Propagation, 2007, 55 (7): 2088-2096.
[165] Paul H.. The significance of radiation efficiencies when using S-parameterss to calculate the received signal correlation from two antennas [J]. IEEE Antenna and Wireless Propagation Letters, 2005, 4: 97-99.
[166] Stein S. On cross coupling in multiple-beam antennas [J]. IRE Transactions on Antennas and Propagation, 1962, 10(5) : 548–557.
[167] Salonen I., Vainikainen P.. Estimation of signal correlation in antenna arrays [C]. Proceedings of 12 th International Symposium on Antenna, 2002, 2:383–386.
[168] Blanch S.N. Romeu J.. Exact representation of antenna system diversity performance from input parameter description [J]. Electronics Letters, 2003, 39(9): 705–707.
[169] Taga T.. Analysis of correlation characteristics of antenna diversity in land mobile radio environments [J]. Electronica Communnication, 1991, 74(8):101–116.
[170] Vaughan R.G., Andersen J.B.. Antenna diversity in mobile communications [J]. IEEE Transactions on Vehicular Technology, 1987, 36(4):149–172.
[171] Kevin B. Radiation patterns and correlation of closely spaced linear antennas [J]. IEEE Transactions on Antennas Propagation, 2002, 50(8): 1162-1165.
[172] Samuel C.K.K. and Ross D.M.. Compact integrated diversity antenna for wireless communications [J]. IEEE Transactions on Antennas Propagation, 2001, 49(6): 954-960.
[173] Pedersen G.F., Andersen J.B..Handset antennas for mobile communications: integration, diversity and performance [J]. Review of Radio Scinece 1996-1999, 1999: 119–137.
[174] Azremi A.A., Toivanen H.J., Laitinen T.. On diversity performance of two-element coupling element based antenna structure for mobile terminal [C]. European conference on Antenna and propagation, 2010:1-5.
[175] Yue G., Xiao D.C., Zhi N.Y.. Design and performance investigation of a dual-element PIFA array at 2.5 GHz for MIMO terminal [J]. IEEE Transactions on Antennas and Propagation.2007, 55 (12):3433-3440.
[176] Kildal P.S., Rosengran K.. Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their Aantennas: simulations and measurements in a reverberation chamber [J]. IEEE Communications Magazine, 2004, 42(12):102-112.
[177] Ozdemir M.K., Arvas E., Arslan H.. Dynamics of spatial correlation and implications on MIMO systems [M], IEEE Communications Magazine, 2004,42(6): 14-19.
[178] Schantz Hans. The art and science of ultrawideband antennas[M]. Artech House, 2005.
[179] Yasuto Mushiake. Self-complementary antennas[J]. IEEE Antennas and Propagation Magazine, 1992, 34(6): 23-29.
中图分类号:

 11    

馆藏号:

 11-30221    

开放日期:

 2015-12-05    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式