- 无标题文档
查看论文信息

中文题名:

 HRE-LUC报告基因细胞表达体系的构建及其对非小细胞肺癌的乏氧监测    

姓名:

 王庆雅    

学号:

 20121213212    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085409    

学科名称:

 工学 - 电子信息 - 生物医学工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 生物医学工程    

研究方向:

 生物医学工程    

第一导师姓名:

 陈丹    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 詹文华    

完成日期:

 2023-05-24    

答辩日期:

 2023-05-24    

外文题名:

 Construction of HRE-LUC reporter gene expression system and monitoring of hypoxia in non-small cell lung cancer    

中文关键词:

 乏氧诱导因子 ; 乏氧响应元件 ; 荧光素酶报告基因 ; 瞬转和稳转细胞体系 ; 小鼠肿瘤模型    

外文关键词:

 Hypoxic inducible factor ; hypoxia response element ; luciferase reporter gene ; transient and stable cell system ; mouse tumor model    

中文摘要:

肺癌是最常见的癌症和致死率最高的癌症之一,肺癌患者的死亡人数约占所有癌症死亡人数的四分之一。近年来,肺癌的发病率呈上升趋势,其中非小细胞肺癌(Non-small cell lung cancer, NSCLC)的发病率占80%~ 85%。由于早期症状不明显,约70%的NSCLC患者确诊时已为肺癌晚期,5年生存率仅为19%。因此,对NSCLC发生发展机制和治疗策略的研究十分重要。大量研究证据显示,乏氧微环境(Tumor microenvironment, TME)对肿瘤发展进程和抗肿瘤治疗效果具有深远的影响。乏氧是实体瘤的常见特征,瘤体组织氧浓度通常低于2%。与正常细胞在乏氧条件下进入凋亡不同,乏氧肿瘤细胞往往通过激活乏氧诱导因子-1(Hypoxic inducible factor-1, HIF-1)途径逃脱细胞死亡,该途径与血管生成、代谢、免疫逃逸以及肿瘤细胞生存和增殖有关。因此,乏氧被认为是肿瘤存活和进展的重要刺激物。而HIF-1通路的激活也被认为是导致癌细胞许多侵袭性生物学行为和患者临床预后差的原因之一。在这样的研究背景下,建立一套可实时监测NSCLC进程中组织乏氧状态,并可以有效评价抗肿瘤药物对肿瘤组织乏氧状态影响的系统就显得很有意义。 大量研究表明,HRE(Hypoxia response elements,HRE)作为HIF-1靶向的乏氧反应基因增强子调控元件,可以提供与HIF-1α亚基相互作用的DNA结合位点,进而促进乏氧反应基因启动子区域的转录起始复合物形成,启动靶基因转录,参与介导细胞对乏氧的反应。利用这一原理,将HRE与光学报告基因启动子相结合构建的载体在共转染细胞后,可以利用报告基因表达的变化监测细胞HIF-1乏氧响应活性的变化。

鉴于此,本项目以非小细胞肺癌为研究对象,选择乏氧响应元件可诱导的荧光素酶报告基因载体HRE-LUC,建立乏氧响应型A549细胞体系,可视化追踪非小细胞肺癌A549细胞和小鼠肿瘤模型中HIF-1α表达活性的改变,以及乏氧抑制剂和抗肿瘤药物对肿瘤乏氧的影响,为活体动物水平监测非小细胞肺癌的乏氧状态,评价乏氧相关抗肿瘤治疗效果提供有效思路。主要研究结果如下:

1. 构建了pGL2-HRE-Luc质粒与pGL3-RLuc质粒共转染的双荧光素酶报告基因瞬转体系(简称为HRE-LUC/RLUC-A549细胞系),并进行了细胞水平和分子水平实验验证,实验结果显示该体系可以用于监测A549细胞HIF-1α表达活性的变化。结果证明A549细胞中HRE-LUC可在乏氧诱导下表达,细胞中HIF-1α和VEGFa 的mRNA表达水平和蛋白表达水平同样受到乏氧诱导。这些实验结果显示HRE-LUC可以用于监测A549细胞中乏氧诱导下HIF-1α信号通路的响应变化。

2. 利用HRE-LUC/RLUC-A549双荧光素酶报告基因瞬转体系监测了HIF-1α抑制剂(PX-478和LW6)和抗肿瘤药物(褪黑素和芹菜素)对乏氧环境中A549细胞HIF-1α活化水平的影响,随后进行了分子细胞水平的验证实验。结果表明褪黑素与PX-478在非小细胞肺癌A549细胞系中可以抑制乏氧条件下HIF-1α和VEGFa的转录和翻译,能够显著的抑制肿瘤乏氧通路从而抑制肿瘤生长进程。

3. 建立了A549-HRE- LUC稳定转染细胞系,在此基础上建立非小细胞肺癌皮下A549-HRE-LUC肿瘤模型,并对褪黑素抗肿瘤治疗过程中的肿瘤乏氧微环境的变化进行了在体成像和连续监测。治疗过程中可以监测到肿瘤部位荧光信号逐渐低于对照组,治疗结束后给药组肿瘤体积均小于对照组,说明褪黑素不仅能够抑制肿瘤的生长进程,还可以抑制肿瘤的乏氧。

外文摘要:

Accounting for about a quarter of all cancer deaths, lung cancer is one of the most deadly types of cancer. In recent years, the incidence of lung cancer has been on the rise, especially non-small cell lung cancer (NSCLC) which accounts for 80% to 85%. Because early symptoms are not obvious, about 70% of patients with NSCLC have advanced lung cancer when diagnosed, and the 5-year survival rate is only 19%. Therefore, it is very important to study the pathogenesis and treatment strategies of NSCLC. A large number of studies have shown that the tumor microenvironment (TME) has a profound impact on the tumor development process and the efficacy of anti-tumor therapy. Hypoxia is a common feature of solid tumors, and the tissue oxygen concentration is usually less than 2%. Unlike normal cells, which enter apoptosis under hypoxic conditions, hypoxic tumor cells often escape cell death by activating the hypoxic inducible factor-1 (HIF-1) pathway, which is associated with angiogenesis, metabolism, immune escape, and tumor cell survival and proliferation. Therefore, hypoxia is considered to be an important stimulus for tumor survival and progression. Activation of HIF-1 pathway is also thought to be one of the reasons for many aggressive biological behaviors of cancer cells and poor clinical outcomes of patients. Under such a research background, it is of great significance to establish a system that can monitor and evaluate the effect of anti-tumor drugs on tumor tissue hypoxia status in real time. A large number of studies have shown that hypoxia response elements (HRE), as a regulatory element of the enhancer of hypoxia response gene targeted by HIF-1, can provide a DNA binding site to interact with the HIF-1α subunit, thereby promoting the formation of transcription initiation complex in the promoter region of hypoxia response gene. Based on this principle, the vector constructed by combining HRE and optical reporter gene promoter can be used to monitor the change of HIF-1 hypoxia response activity.

 

In view of this, this project took NSCLC as the research object, selected the luciferase reporter gene vector HRE-LUC to established a hypoxia responsive A549 cell system, and tracked the changes of HIF-1α expression activity visually in A549 cells and mouse tumor models. So that can providing an effective way to monitor the effects of hypoxia inhibitors and antitumor drugs on tumor hypoxia at the level of living animals. The main findings are as follows:

 

1. Constructed a double luciferase reporter gene transient system co-transfected with pGL2-HRE-Luc plasmid and pGL3-RLuc plasmid and verified by cellular and molecular experiments. The results showed that the system could be used to monitor the change of HIF-1α expression activity in A549 cells. The results showed that the expression of HRE-LUC in A549 cells could be induced by hypoxia, the mRNA and protein expression levels of HIF-1α and VEGFa in A549 cells were also induced by hypoxia. These results suggest that HRE-LUC can be used to monitor changes in the response of HIF-1α signaling pathway in A549 cells induced by hypoxia.

 

2. Monitored the effects of HIF-1α inhibitors (PX-478 and LW6) and anti-tumor drugs (melatonin and apigenin) on HIF-1α activation in A549 cells in hypoxia environment by using the HRE-LUC/ RLUC-A549 double luciferase reporter gene transient system. The results showed that melatonin and PX-478 can inhibit the transcription and translation of HIF-1α and VEGFa in A549 cell line under hypoxia conditions.

 

3. Established a stable transfection cell line of A549-HRE-LUC to establish a subcutaneous A549-HRE-LUC tumor model, and monitored the changes of hypoxia microenvironment during melatonin anti-tumor therapy. In the course of treatment, the fluorescence signal at the tumor site was gradually lower than that in the control group, and the tumor volume in the administration group was smaller than that in the control group after treatment, indicating that melatonin could not only inhibit the growth process of the tumor, but also inhibit the hypoxia of the tumor.

参考文献:
[1] LI M, LI J, GUO X, et al.Absence of HTATIP2 expression in A549 lung adenocarcinoma cells promotes tumor plasticity in response to hypoxic stress [J]. Cancers, 2020, 12 (6): 1538.
[2] LEE K, ZHANG H, QIAN D Z, et al.Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization [J]. Proceedings of the National Academy of Sciences, 2009, 106 (42): 17910-17915.
[3] Advanced technologies for protein complex production and characterization [M]. Cham: Springer International Publishing, 2016; 896: 50-52.
[4] TERZUOLI E, PUPPO M, RAPISARDA A, et al.Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1α expression in an ahr-independent fashion [J]. Cancer Research, 2010, 70 (17): 6837-6848.
[5] LI J, HAN R, LI J, et al.Analysis of molecular mechanism of yiqichutan formula regulating DLL4-notch signaling to inhibit angiogenesis in lung cancer [J]. BioMed Research International, 2021, 2021: 1-10.
[6] PANG Y, YANG C, SCHOVANEK J, et al.Anthracyclines suppress pheochromocytoma cell characteristics, including metastasis, through inhibition of the hypoxia signaling pathway [J]. Oncotarget, 2017, 8 (14): 22313-22324.
[7] ROMERO Y, CASTILLEJOS-LÓPEZ M, ROMERO-GARCÍA S, et al.Antitumor therapy under hypoxic microenvironment by the combination of 2-methoxyestradiol and sodium dichloroacetate on human non-small-cell lung cancer [J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 1-12.
[8] LIU L Z, FANG J, ZHOU Q, et al.Apigenin inhibits expression of vascular endothelial growth factor and angiogenesis in human lung cancer cells: implication of chemoprevention of lung cancer [J]. Molecular Pharmacology, 2005, 68 (3): 635-643.
[9] FANG J, ZHOU Q, LIU L Z, et al.Apigenin inhibits tumor angiogenesis through decreasing HIF-1 and VEGF expression [J]. Carcinogenesis, 2006, 28 (4): 858-864.
[10] SYED A J, ANDERSON J C.Applications of bioluminescence in biotechnology and beyond [J]. Chemical Society Reviews, 2021, 50 (9): 5668-5705.
[11] DRAKE J M, GABRIEL C L, henry M D.Assessing tumor growth and distribution in a model of prostate cancer metastasis using bioluminescence imaging [J]. Clinical & Experimental Metastasis, 2005, 22 (8): 674-684.
[12] LIM W, KIM B, JO G, et al.Bioluminescence and near-infrared fluorescence imaging for detection of metastatic bone tumors [J]. Lasers in Medical Science, 2020, 35 (1): 115-120.
[13] ALSAWAFTAH N, FAROOQ A, DHOU S, et al.Bioluminescence imaging applications in cancer: a comprehensive review [J]. IEEE Reviews in Biomedical Engineering, 2021, 14: 307-326.
[14] JI X, ADAMS S T, MILLER S C. Bioluminescence imaging in mice with synthetic luciferin analogues,methods in enzymology. Elsevier, 2020: 165-183.
[15] BADR C E, TANNOUS B A.. Bioluminescence imaging: progress and applications [J]. Trends in Biotechnology, 2011, 29 (12): 624-633.
[16] PALEY M A, PRESCheR J A.Bioluminescence: a versatile technique for imaging cellular and molecular features [J]. MedChemComm, 2014, 5 (3): 255-267.
[17] RATHBUN C M, PRESCheR J A. Bioluminescent probes for imaging biology beyond the culture dish [J]. Biochemistry, 2017, 56 (39): 5178-5184.
[18] HARA-MIYAUCHI C, TSUJI O, HANYU A, et al.Bioluminescent system for dynamic imaging of cell and animal behavior [J]. Biochemical and Biophysical Research Communications, 2012, 419 (2): 188-193.
[19] GKOTINAKOU I-M, KECHAGIA E, PAZAITOU-PANAYIOTOU K, et al.Calcitriol suppresses HIF-1 and HIF-2 transcriptional activity by reducing hif-1/2α protein levels via a VDR-independent mechanism [J]. Cells, 2020, 9 (11): 2440.
[20] INFANTINO V, SANTARSIERO A, CONVERTINI P, et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target [J]. International Journal of Molecular Sciences, 2021, 22 (11): 5703.
[21] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA: A cancer journal for clinicians, 2022, 72 (1): 7-33.
[22] LEE P, CHANDEL N S, SIMON M C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond [J]. Nature Reviews Molecular Cell Biology, 2020, 21 (5): 268-283.
[23] IMAYOSHI N, YOSHIOKA M, CHAUHAN J, et al. CG13250, a novel bromodomain inhibitor, suppresses proliferation of multiple myeloma cells in an orthotopic mouse model [J]. Biochemical and Biophysical Research Communications, 2017, 484 (2): 262-268.
[24] XIONG G, STEWART R L, CheN J, et al. Collagen prolyl 4-hydroxylase 1 is essential for HIF-1α stabilization and TNBC chemoresistance [J]. Nature Communications, 2018, 9 (1): 4456.
[25] YAN W, XIAO D, YAO K. Combined bioluminescence and fluorescence imaging visualizing orthotopic lung adenocarcinoma xenograft in vivo [J]. Acta Biochimica et Biophysica Sinica, 2011, 43 (8): 595-600.
[26] MOCANU J D, MORIYAMA E H, CHIA M C. Combined in vivo bioluminescence and fluorescence imaging for cancer gene therapy [J], 2004, 3(4): 4.
[27] COOK Z T, BROCKWAY N L, TOBIAS Z J C, et al. Combining near-infrared fluorescence with Brainbow to visualize expression of specific genes within a multicolor context [J]. Molecular Biology of the Cell, 2019, 30 (4): 491-505.
[28] YANG X, QIN X, JI H, et al. Constructing firefly luciferin bioluminescence probes for in vivo imaging [J]. Organic & Biomolecular Chemistry, 2022, 20 (7): 1360-1372.
[29] BADER S B, DEWHIRST M W, HAMMOND E M. Cyclic hypoxia: an update on its characteristics, methods to measure it and biological implications in cancer [J]. Cancers, 2020, 13 (1): 23.
[30] GE Y, YOON S-H, JANG H, et al. Decursin promotes HIF-1α proteasomal degradation and immune responses in hypoxic tumour microenvironment [J]. Phytomedicine, 2020, 78: 153318.
[31] SUFFNER J, HOCHWELLER K, KÜHNLE M-C, et al. Dendritic cells support homeostatic expansion of Foxp3 regulatory T cells in Foxp3.lucidtr mice [J]. The Journal of Immunology, 2010, 184 (4): 1810-1820.
[32] DAYAN F, MAZURE N M, BRAHIMI-HORN M C, et al. A dialogue between the hypoxia-inducible factor and the tumor microenvironment [J]. Cancer Microenvironment, 2008, 1 (1): 53-68.
[33] ZHANG H, QIAN D Z, TAN Y S, et al. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth [J]. Medical Sciences: 8.
[34] HU L, CUI R, LIU H, et al. Emodin and rhein decrease levels of hypoxia-inducible factor-1α in human pancreatic cancer cells and attenuate cancer cachexia in athymic mice carrying these cells [J]. Oncotarget, 2017, 8 (50): 88008-88020.
[35] HWANG S J, JUNG Y, SONG Y S, et al. Enhanced anti-angiogenic activity of novel melatonin-like agents [J]. Journal of Pineal Research, 2021, 71(1): e12739.
[36] ZHU C, MA H, he A, et al. Exercise in cancer prevention and anticancer therapy: Efficacy, molecular mechanisms and clinical information [J]. Cancer Letters, 2022, 544: 215814.
[37] XIONG R, DRULLION C, VERSTRAELEN P, et al. Fast spatial-selective delivery into live cells [J]. Journal of Controlled Release, 2017, 266: 198-204.
[38] THUREAU S, PITON N, GOUEL P, et al. First comparison between [18F]-FMISO and [18F]-faza for preoperative pet imaging of hypoxia in lung cancer [J]. Cancers, 2021, 13 (16): 4101.
[39] WOO Y, CHAURASIYA S, O’LEARY M, et al. Fluorescent imaging for cancer therapy and cancer gene therapy [J]. Molecular Therapy Oncolytics, 2021, 23: 231-238.
[40] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA: A Cancer Journal for Clinicians, 2021, 71 (3): 209-249.
[41] UCARYILMAZ METIN C, OZCAN G. The HIF-1α as a potent inducer of the hallmarks in gastric cancer [J]. Cancers, 2022, 14 (11): 2711.
[42] SIRONVAL V, PALMAI-PALLAG M, VANBEVER R, et al. HIF-1α is a key mediator of the lung inflammatory potential of lithium-ion battery particles [J]. Particle and Fibre Toxicology, 2019, 16 (1): 35.
[43] HUANG Y, CheN Z, LU T, et al. HIF-1α switches the functionality of TGF-β signaling via changing the partners of smads to drive gLucose metabolic reprogramming in non-small cell lung cancer [J]. Journal of Experimental & Clinical Cancer Research, 2021, 40 (1): 398.
[44] SALMAN S, MEYERS D J, WICKS E E, et al. HIF inhibitor 32-134D eradicates murine hepatocellular carcinoma in combination with anti-PD1 therapy [J]. Journal of Clinical Investigation, 2022, 132 (9): e156774.
[45] JACKSON A L, ZHOU B, KIM W Y. HIF, hypoxia and the role of angiogenesis in non-small cell lung cancer [J]. Expert Opinion on Therapeutic Targets, 2010, 14 (10): 1047-1057.
[46] DE heER E C, JALVING M, HARRIS A L. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer [J]. Journal of Clinical Investigation, 2020, 130 (10): 5074-5087.
[47] MA Z, LIU D, DI S, et al. Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment [J]. Journal of Pineal Research, 2019, 67(2): e12587.
[48] WANG M, YAN J, CAO X, et al. Hydrogen sulfide modulates epithelial-mesenchymal transition and angiogenesis in non-small cell lung cancer via HIF-1α activation [J]. Biochemical Pharmacology, 2020, 172: 113775.
[49] LI Y, ZHAO L, LI X F. Hypoxia and the tumor microenvironment [J]. Technology in Cancer Research & Treatment, 2021, 20: 153303382110363.
[50] ANCEL J, PEROTIN J-M, DEWOLF M, et al. Hypoxia in lung cancer management: a translational approach [J]. Cancers, 2021, 13 (14): 3421.
[51] LEE Y-W, CheRNG Y-G, YANG S-T, et al. Hypoxia induced by cobalt chloride triggers autophagic apoptosis of human and mouse drug-resistant glioblastoma cells through targeting the PI3K-AKT-mTOR signaling pathway [J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 1-16.
[52] XU K, ZHAN Y, YUAN Z, et al. Hypoxia induces drug resistance in colorectal cancer through the HIF-1α/miR-338-5p/IL-6 feedback loop [J]. Molecular Therapy, 2019, 27 (10): 1810-1824.
[53] MA S, ZHAO Y, LEE W C, et al. Hypoxia induces HIF 1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy [J]. Nature Communications, 2022, 13 (1): 4118.
[54] SEBESTYÉN A, KOPPER L, DANKÓ T, et al. Hypoxia signaling in cancer: from basics to clinical practice [J]. Pathology and Oncology Research, 2021, 27: 1609802.
[55] TIRPE A A, GULEI D, CIORTEA S M, et al. Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF genes [J]. International Journal of Molecular Sciences, 2019, 20 (24): 6140.
[56] BAI R, LI Y, JIAN L, et al. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: mechanisms and clinical treatment strategies [J]. Molecular Cancer, 2022, 21 (1): 177.
[57] KROCK B L, SKULI N, SIMON M C. Hypoxia-induced angiogenesis: good and evil [J]. Genes & Cancer, 2011, 2 (12): 1117-1133.
[58] HUA Q, MI B, XU F, et al. Hypoxia-induced lncRNA-AC020978 promotes proliferation and glycolytic metabolism of non-small cell lung cancer by regulating PKM2/HIF-1α axis [J]. Theranostics, 2020, 10 (11): 4762-4778.
[59] SHRESTHA P, DAVIS D A, VEERANNA R P, et al. Hypoxia-inducible factor-1 alpha as a therapeutic target for primary effusion lymphoma [J]. Public Library of Science Pathogens, 2017, 13 (9): e1006628.
[60] KIM L C, SIMON M C.Hypoxia-inducible factors in cancer [J]. Cancer Research, 2022, 82 (2): 195-196.
[61] C. GAERTNER F, SOUVATZOGLOU M, BRIX G, et al. Imaging of hypoxia using PET and MRI [J]. Current Pharmaceutical Biotechnology, 2012, 13 (4): 552-570.
[62] GOTTWALD J, HAN K, MILOSEVIC M, et al. Impact of PET scanner non-linearity on the estimation of hypoxic fraction in cervical cancer patients [J]. Physica Medica, 2022, 93: 1-7.
[63] STEWART M P, SHAREI A, DING X, et al. In vitro and ex vivo strategies for intracellular delivery [J]. Nature, 2016, 538 (7624): 183-192.
[64] IMAMURA T, SAITOU T, KAWAKAMI R. In vivo optical imaging of cancer cell function and tumor microenvironment [J]. Cancer Science, 2018, 109 (4): 912-918.
[65] MU L, LIU L, NIU R, et al. Indoor air pollution and risk of lung cancer among chinese female non-smokers [J]. Cancer Causes & Control, 2013, 24 (3): 439-450.
[66] SheRGILL U, DAS A, LANGER D, et al. Inhibition of VEGF- and NO-dependent angiogenesis does not impair liver regeneration [J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2010, 298 (5): R1279-R1287.
[67] ABOU KHOUZAM R, GOUTHAM H V, ZAAROUR R F, et al. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy [J]. Seminars in Cancer Biology, 2020, 65: 140-154.
[68] DO H T T, Cho J.Involvement of the ERK/HIF-1α/EMT pathway in XCL1-induced migration of MDA-MB-231 and SK-BR-3 breast cancer cells [J]. International Journal of Molecular Sciences, 2020, 22 (1): 89.
[69] KUCHIMARU T, IWANO S, KIYAMA M, et al. A Luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging [J]. Nature Communications, 2016, 7 (1): 11856.
[70] FIDLER‐BENAOUDIA M M, TORRE L A, BRAY F, et al. Lung cancer incidence in young women vs young men: a systematic analysis in 40 countries [J]. International Journal of Cancer, 2020, 147 (3): 811-819.
[71] KIM T K, EBERWINE J H. Mammalian cell transfection: the present and the future [J]. Analytical and Bioanalytical Chemistry, 2010, 397 (8): 3173-3178.
[72] DOMENE C, JORGENSEN C, SCHOFIELD C J. Mechanism of molecular oxygen diffusion in a hypoxia-sensing prolyl hydroxylase using multiscale simulation [J]. Journal of the American Chemical Society, 2020, 142 (5): 2253-2263.
[73] BASTANI S, AKBARZADEH M, RASTGAR REZAEI Y, et al. Melatonin as a therapeutic agent for the inhibition of hypoxia-induced tumor progression: a description of possible mechanisms involved [J]. International Journal of Molecular Sciences, 2021, 22 (19): 10874.
[74] CheN X, HAO B, LI D, et al. Melatonin inhibits lung cancer development by reversing the Warburg effect via stimulating the SIRT3/PDH axis [J]. Journal of Pineal Research, 2021, 71.
[75] WANG X, WANG B, ZHAN W, et al. Melatonin inhibits lung metastasis of gastric cancer in vivo [J]. Biomedicine & Pharmacotherapy, 2019, 117: 109018.
[76] AMMAR O A, EL-MISSIRY M A, OTHMAN A I, et al. Melatonin is a potential oncostatic agent to inhibit hepG2 cell proliferation through multiple pathways [J]. heliyon, 2022, 8 (1): e08837.
[77] CHAO C-C, CheN P-C, CHIOU P-C, et al. Melatonin suppresses lung cancer metastasis by inhibition of epithelial–mesenchymal transition through targeting to Twist [J]. Clinical Science, 2019, 133 (5): 709-722.
[78] JIN Y, WANG H, ZHU Y, et al. MiR-199a-5p is involved in doxorubicin resistance of non-small cell lung cancer (NSCLC) cells [J]. European Journal of Pharmacology, 2020, 878: 173105.
[79] LIANG L, YUE Z, DU W, et al. Molecular imaging of inducible VEGF expression and tumor progression in a breast cancer model [J]. Cellular Physiology and Biochemistry, 2017, 42 (1): 407-415.
[80] KOH M Y, SPIVAK-KROIZMAN T, VENTURINI S, et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1α [J]. Molecular Cancer Therapeutics, 2008, 7 (1): 90-100.
[81] LAPPANO R, TODD L A, STANIC M, et al. Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment [J]. Cancers, 2022, 14 (3): 539.
[82] ENGLAND C G, EHLERDING E B, CAI W. NanoLuc: a small luciferase is brightening up the field of bioluminescence [J]. Bioconjugate Chemistry, 2016, 27 (5): 1175-1187.
[83] ZAMBITO G, MEZZANOTTE L. Near-infrared bioluminescence imaging of two cell populations in living mice [J]. STAR Protocols, 2021, 2 (3): 100662.
[84] STOWE C L, BURLEY T A, ALLAN H, et al. Near-infrared dual bioluminescence imaging in mouse models of cancer using infraLuciferin [J]. Elife, 2019, 8: e45801.
[85] SHCheRBAKOVA D M, VERKHUSHA V V. Near-infrared fluorescent proteins for multicolor in vivo imaging [J]. Nature Methods, 2013, 10 (8): 751-754.
[86] CheN P, LIU Y, WEN Y, et al. Non-small cell lung cancer in China [J]. Cancer Communications, 2022, 42 (10): 937-970.
[87] SATO M, HIROSE K, ICHISE K, et al. Not Only Hypoxia but radiation-induced epithelial mesenchymal transition is modulated by hypoxia-inducible factor 1 in A549 lung cancer [J] Cells, 67: 8.
[88] TIE H C, MAHAJAN D, CheN B, et al. A novel imaging method for quantitative Golgi localization reveals differential intra-Golgi trafficking of secretory cargoes [J]. Molecular Biology of the Cell, 2016, 27 (5): 848-861.
[89] HU C J, SATAUR A, WANG L, et al. The n-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1α and HIF-2α [J]. Molecular Biology of the Cell, 2007, 18: 15.
[90] GAMAL-ELDEEN A M, ALREHAILI A A, ALHARTHI A, et al. Perftoran® inhibits hypoxia-associated resistance in lung cancer cells to carboplatin [J]. Frontiers in Pharmacology, 2022, 13: 860898.
[91] LI J, MA A, LAN W, et al. Platycodon d-induced A549 cell apoptosis through rrm1-regulated p53/VEGF/MMP2 pathway [J]. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22 (13): 2458-2467.
[92] INDRACCOLO S, MUELLER-KLIESER W. Potential of induced metabolic bioluminescence imaging to uncover metabolic effects of antiangiogenic therapy in tumors [J]. Frontiers in Oncology, 2016, 6: 15.
[93] NGAI Z N, CHOK K C, NG K Y, et al. Potential role of melatonin in prevention and treatment of lung cancer [J]. Hormone Molecular Biology and Clinical Investigation, 2022, 43(4): 485-503.
[94] FUKUMURA D, GOHONGI T, KADAMBI A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability [J]. Proceedings of the National Academy of Sciences, 2001, 98 (5): 2604-2609.
[95] CHAIKIND B, BESSEN J L, THOMPSON D B, et al. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells [J]. Nucleic Acids Research, 2016, 44(20): 9758-9770.
[96] KOMOR A C, KIM Y B, PACKER M S, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533 (7603): 420-424.
[97] SINHA D, PIETERSE Z, KAUR P. Qualitative in vivo bioluminescence imaging [J]. Bio-protocol, 2018, 8(18): e3020.
[98] RATHBUN C M, IONKINA A A, YAO Z, et al. Rapid multicomponent bioluminescence imaging substrate unmixing [J]. American Chemical Society, 2021, 16 (4): 682-690.
[99] PENG N, LU M, KANG M, et al. Recombinant human IL-11 promotes lung adenocarcinoma A549 cell growth and EMT through activating STAT3/HIF-1α/EMT signaling pathway [J]. Anti-Cancer Agents in Medicinal Chemistry, 2021, 21 (15): 1996-2003.
[100] ZHU J, WANG H, ZHANG X, et al. Regulation of angiogenic behaviors by oxytocin receptor through Gli1-indcued transcription of HIF-1α in human umbilical vein endothelial cells [J]. Biomedicine & Pharmacotherapy, 2017, 90: 928-934.
[101] SALNIKOW K, APRELIKOVA O, IVANOV S, et al. Regulation of hypoxia-inducible genes by ETS1 transcription factor [J]. Carcinogenesis, 2008, 29 (8): 1493-1499.
[102] COWMAN S J, KOH M Y. Revisiting the HIF switch in the tumor and its immune microenvironment [J]. Trends in Cancer, 2022, 8 (1): 28-42.
[103] LV X, LI J, ZHANG C, et al. The role of hypoxia-inducible factors in tumor angiogenesis and cell metabolism [J]. Genes & Diseases, 2017, 4 (1): 19-24.
[104] GALLEZ B.The role of imaging biomarkers to guide pharmacological interventions targeting tumor hypoxia [J]. Frontiers in Pharmacology, 2022, 13: 853568.
[105] HUANG B, ZHOU Z, LIU J, et al. The role of monoamine oxidase A in HPV-16 E7-induced epithelial-mesenchymal transition and HIF-1α protein accumulation in non-small cell lung cancer cells [J]. International Journal of Biological Sciences, 2020, 16 (14): 2692-2703.
[106] WANG Y, HUO J, LI S, et al. Self-rectifiable and hypoxia-assisted chemo-photodynamic nanoinhibitor for synergistic cancer therapy [J]. ACS Applied Materials & Interfaces, 2022, 14 (8): 10092-10101.
[107] MATLASHOV M E, SHCheRBAKOVA D M, ALVELID J, et al. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales [J]. Nature Communications, 2020, 11 (1): 239.
[108] ZHU H, KAUFFMAN M, TRUSH M, et al. A simple bioluminescence imaging method for studying cancer cell growth and metastasis after subcutaneous injection of lewis lung carcinoma cells in syngeneic C57BL/6 mice [J]. Reactive Oxygen Species, 2018, 5(14): 118-125.
[109] KUNG A L, ZABLUDOFF S D, FRANCE D S, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway [J]. Cancer Cell, 2004, 6 (1): 33-43.
[110] MYLONIS I, CHACHAMI G, SIMOS G. Specific inhibition of hif activity: can peptides lead the way? [J]. Cancers, 2021, 13 (3): 410.
[111] JAHANGIRI A, DADMANESH M, GHORBAN K. Suppression of STAT3 by S31-201 to reduce the production of immunoinhibitory cytokines in a HIF1-α-dependent manner: a study on the MCF-7 cell line [J]. In Vitro Cellular & Developmental Biology-Animal, 2018, 54 (10): 743-748.
[112] MA Z, XIANG X, LI S, et al. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds [J]. Seminars in Cancer Biology, 2022, 80: 379-390.
中图分类号:

 R31    

开放日期:

 2023-12-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式