- 无标题文档
查看论文信息

中文题名:

 基于鲁棒深度表征学习的路面裂缝检测    

姓名:

 Mahenge Shadrack Fred    

学号:

 181711100006L    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0812    

学科名称:

 工学 - 计算机科学与技术(可授工学、理学学位)    

学生类型:

 博士    

学位:

 工程博士    

学校:

 西安电子科技大学    

院系:

 人工智能学院    

专业:

 计算机科学与技术    

研究方向:

 Artificial Intelligence    

第一导师姓名:

 Licheng    

第一导师单位:

 Computer Science and Technology    

第二导师姓名:

 Jiao    

完成日期:

 2022-12-27    

答辩日期:

 2022-12-03    

外文题名:

 Robust Deep Representation Learning for Road Surfaces Crack Detection    

中文关键词:

 道路裂缝检测 ; 卷积神经网络 ; 生成对抗网络 ; 贝叶斯优化 ; 深度学习 ; U-Net架构 ; 计算机视觉    

外文关键词:

 Road Crack Detection ; Convolutional Neural Networks ; Generative Adversarial Networks ; Bayesian Optimization ; Deep Learning ; U-Net Architecture ; Computer Vision.    

中文摘要:

对于道路、桥梁和人行道等民用建筑的健康和安全监测任务,确定感兴趣区是图像
高层次语义分析的基本要求。混凝土和沥青结构的主要问题之一是裂缝,它首先损
害了建筑的视觉效果,并进一步可能导致建筑毁坏。因此,提前识别裂缝对于保持
民用和交通基础设施的使用寿命至关重要。传统的视觉检查通常是通过人类的视觉
系统进行的,存在昂贵、耗时且容易出错的问题,因为它取决于人的主观判断。最
近,基于计算机视觉检测算法的重新兴起引起了较大的关注,并逐渐取代了一般在
现场进行的传统视觉检测,从而大大改善了传统检测方法的弱点并减少了其带来的
挑战。基于此,本论文提出了高效、稳健和准确的计算机视觉算法,用于有效的道
路裂缝检测。这些算法建立在循环进化神经网络(RCNN)、生成对抗网络(GAN)和
改进型u-net架构的混合结构上。这些算法是本论文的主要内容,具体解释如下。

本论文首先提出了一种强大的深度表征学习算法,用于高效的道路裂缝检测。裂缝
检测的算法,得益于多通道并行神经网络的混合结构。它利用并行处理单元来准确地
进行图像处理和分析。注意力机制的进一步引入,使模型训练专注于小而关键的数
据,从而提高模型的性能。贝叶斯优化算法(BOA)被用来优化多通道并行卷积神经
网络的训练,用尽可能少的神经网络层数来实现更高的准确性,同时提高了处理效
率,减少了处理时间。实验结果表明,所提出的算法在路面裂缝检测任务中可以达到
95%左右的准确率,足以取代现场进行的传统人工检测。

此外,本论文提出了一种增强的深度学习(DL)方法RCNN-GAN,用于检测道路裂
缝。它结合了RCNN和GAN两种有效的技术,并减少了层数,以提高道路裂缝的检测精
度。RCNN是一种物体检测模型,它使用多个卷积层自下而上地提出候选区域,以便对
物体进行定位和分割。网络通过选择性搜索来检测候选区域,通过定义兴趣区(ROI)
的边界来检测任意输入图像中的目标物体。然后从每个区域独立提取特征进行分
类。GAN部署了无监督的机器学习方法,自动挖掘和学习输入数据中的规律或模式,
从而使模型可以用来生成新的例子,并且这些例子可以从原始数据集中提取。通过实
验,我们发现RCNN和GAN的组合为模型提供了更好的性能。

此外,本论文提出了一种改进的u-net结构,用于路面裂缝检测。该架构由于
"U"型结构而得名。它由三个部分组成:收缩、瓶颈和扩展部分。收缩部分由许多收
缩块组成。每个区块接受一个输入,应用两个3X3卷积层,最后连接一个2X2最大池化
层。每个区块后的卷积核或特征图的数量翻倍,这样架构可以有效地学习复杂结构。
最底层在收缩层和扩展层之间进行调解。它使用两个3X3 卷积层,然后连接一个2X2
解卷积层。所提出的u-net架构通过对道路图像的检测和分类来检测道路表面的裂
缝,从而确定某一特定图像是否代表裂缝。

本论文的工作表明,在图像数据集复杂的动态模式下,计算机视觉算法可以在很
大程度上提高路面裂缝检测的性能,并有强大的理论保证,以满足现代计算机视觉应
用的要求。具体来说,算法的有效性、可扩展性、鲁棒性和效率,以及图像数据集多
样性都是需要考虑的问题。本论文的工作通过对大规模真实世界的图像数据集进行广
泛的实验和严格的评估,从理论上证明并验证了所提出的计算机视觉算法的有效性。
不同任务和数据集的实验表明,在道路裂缝检测任务中,与最先进的方法相比,所提
出的深度学习框架具有广泛的适用性、强大的泛化能力以及准确和卓越的性能。

外文摘要:

For Health and safety monitoring in civil constructions such as roads, bridges and culvets, identifying the region of interest is the fundamental requirement for image analysis at high-level semantic. One of the major structual problems in concrete and asphat structures is cracks which starts with harming the visual aspect of the construction and further lead to failure of the construction. Therefore, early identification of cracks is vital to maintain the service life of civil and transportation infrastuctures. Traditional visual inspection of road cracks which is ussually conducted through human visualization is expensive, time consuming and prone to errors as it depends on human judgements. The recent resurgence of Computer Vision (CV) based inspection has attracted a considerable
attention and is progressively replacing traditional visual inspection which is normally conducted on-site, thereby handling considerable weakness and reducing challenges posed by traditional inspection methods. In view of that, the work in this dissertation proposes
various efficient, robust and accurate CV algorithms for effective road cracks detection built on hybrid structures of Recurrent-Convolutional Neural Networks (RCNN), generative adversarial networks (GAN) and modified u-net architectures. These algorithms represents the main focus of this dissertation as explained in the following;

The dissertation firstly proposes a robust deep representation learning algorithm for efficient road crack detection, benefiting from hybrid structures of multichannel parallel Convolutional Neural Networks (CNN). A unique hybrid framework is introduced, which utilizes low processing units to accurately perform image processing and analysis. Attention mechanism is further introduced allowing the model training to focus on small but important dataset with increased performance of the model. Bayesian Optimization Algorithm (BOA) were used to optimize the multichannel parallel Convolutional neural networks training with the fewest possible neural network layers to achieve maximum accuracy, improved efficiency and minimum processing time. Experimental results shows that, the proposed algorithm can achieve high accuracy around 95% in road surface cracks detection task which is good enough to replace traditional human inspection.

Furthermore, this dissertation proposes RCNN-GAN which is an enhanced deep learning (DL) approach towards the detection of road crack. RCNN-GAN is deep learning based crack detection which combines two effective techniques RCNN and GAN with reduced
layers to improve road cracks detection accuracy. RCNN is an object detection model that uses high-capacity CNNs to bottom-up region proposals to localize and segment objects. It deploy a selective search to detect the regional proposal network to detect object in any input
image by defining boundaries to the Region of Interest (ROI) and then extracts features from each region independently for classification. GAN deploys unsupervised machine learning approach, that involves automatically discovering and learning the regularities or patterns in
input data in such a way that the model can be used to generate new examples that plausibly could have been drawn from the original dataset. Through experiments, It has been found out that the combination of RCNN and GAN provides improved performance of the model.

Additionally, this dissertation proposes a modified u-net architecture for road surface cracks detection, The architecture looks like a‘U’which justifies its name. This architecture consists of three sections: The contraction, The bottleneck, and the expansion section. The contraction section is made of many contraction blocks. Each block takes an input applies two 3×3 convolution layers followed by a 2×2 max pooling. The number of kernels or feature maps after each block doubles so that architecture can learn the complex structures effectively. The bottom most layer mediates between the contraction layer and the expansion
layer. It uses two 3×3 CNN layers followed by 2×2 up convolution layer. The proposed u-net architecture detects cracks on the road surfaces by detection and classification of the road images thereby determining whether a particular image represents cracks or not.

The work in this dissertation shows that computer vision algorithms can improve the performance of road surface cracks detection considerably with strong theoretical guarantees under complex dynamic patterns and variabilities in image datasets to meet the requirements of modern computer vision applications. Specifically, fundamental characteristic features such as effectiveness, scalability, robustness and efficiency against modern dataset and handling various image dataset. The dissertation demonstrates and validates empirically the effectiveness of the proposed computer vision algorithms via extensive experimental and
rigorous evaluation on massive large-scale real-world image dataset. Experiments across different tasks and dataset show applicability, robust generalization, accurancy and superior performance of proposed DL frameworks compared to the well-known state-of-the-art methods in road crack detection tasks.

 

参考文献:
[1] JIAO LICHENG, ZHANG RUOHAN, FANG LIU, SHUYUAN YANG, et al. New Generation
Deep Learning for Video Object Detection: A Survey [J]. IEEE Transactions on Neural Networks and
Learning Systems, 2022: 3195-3215.
[2] JIAO LICHENG, ZHANG RUOHAN, FANG LIU and SHUYUAN YANG, et al. Deep
Learning in Visual Tracking [J]. IEEE Transactions on Neural Networks and Learning Systems, 2021.
[3] ZHANG R, JIAO L, LI L, et al. Evolutionary Dual - Stream Transformer [J]. IEEE
Transactions on Cybernetics, 2022.
[4] LIU X, LI L, LIU F et al. GAFNET: Group attention fusion network for PAN and MS image
high- resolution classification [J]. IEEE Transactions on Cybernetics,2021: 10556-10569.
[5] LIU X, JIAO L, LI L, et al. Deep Multiview Union Learning Network for Multisource Image
Classification [J]. IEEE Transactions on Cybernetics, 2022: 4534-4546.
[6] GOPALAKRISHNAN K, GHOLAMI H, VIDYADHARAN A, et al. Crack Damage
Detection in Unmanned Aerial Vehicle Images of Civil Infrastructure using Pre trained Deep
Learning Model [C]. IEEE Access 2020, 6: 16750 - 16761.
[7] LEI ZHANG, FAN Y, et al. Road Crack Detection Using Deep Convolutional Neural
Network [C]. IEEE International Conference on Image Processing (ICIP), 2016: 3708-3712.
[8] FERRAZ C T, GONZAGA A. Object Classification Using a Local Texture Descriptor and a
Support Vector Machine[J], 2017: 114-119.
[9] LIU Y, TANG F, ZHOU D, et al. Flower classification via convolutional neural network [C]
2016 : 110 – 116.
[10] ZHAO B, WU X, FENG J, et al. Diversified Visual Attention Networks for Fine-Grained
Object Classification[J]. IEEE Transactions on Multimedia, 2017, 19(6) : 1245 – 1256.
[11] BAZZANI L, BERGAMO A, ANGUELOV D, et al. Self-taught object localization with
deep networks[C]. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).
2016 : 1 – 9.
[12] ZHANG D, HAN J, CHENG G, et al. Weakly Supervised Object Localization and Detection: A
Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021 : 1 – 12.
[13] CAICEDO J C, LAZEBNIK S. Active Object Localization with Deep Reinforcement
Learning[C] . IEEE International Conference on Computer Vision (ICCV). 2015 : 2488 – 2496.
[14] TALOKAR S A, NARDE G, CHAUDHARI M. Analysis of Object Classification and Detection
Methods to Mitigate Power Utilization [C]. 2019 2nd International Conference on Intelligent
Communication and Computational Techniques (ICCT). 2019 : 170 – 173.
[15] WANG Q, ZHANG L, ZOU W, et al. Salient video object detection using a virtual border
and guided filter[J]. Pattern Recognition, 2020, 97 : 106998.
[16] LIANG J, ZHOU J, TONG L, et al. Material based salient object detection from hyperspectral
images[J]. Pattern Recognition, 2018, 76 : 476 – 490.
[17] EDUARDO A, OMAR A-J, MEHRDAD D, et al. A Survey on 3D Object Detection Methods for
Autonomous Driving Applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2019.
20(10) : 3782 – 3795.
[18] FENG H, CHANG-HUA L, CHUN L, et al. A Traffic Surveillance Multi-Scale Vehicle
Detection Object Method Base on Encoder-Decoder [J]. IEEE Access, 2020, 8 : 47664 – 47674.
[19] WEN L, DU D, CAI Z, et al. UA-DETRAC: A new benchmark and protocol for multi-object
detection and tracking[J]. Computer Vision and Image Understanding, 2020, 193 : 102907.
[20] SUSMITA S, HIMADRI S, DIBYA J B. Image Segmentation and its Different Techniques:
An In-Depth Analysis[C] // 2018 International Conference on Research in Intelligent and Computing
in Engineering (RICE). 2018 : 1 – 7.
[21] CHAOBEN D, SHESHENG G. Image Segmentation-Based Multi-Focus Image Fusion Through
Multi-Scale Convolutional Neural Network[J]. IEEE Access, 2017, 5 : 15750 – 15761.
[22] AN Y, LONG J, MABU S. A segmentation network with multiattention and its application to SAR
image analysis[J], 2020, vol 15, pg 570 - 576
[23] GUO-QUAN J, CUI-JUN Z, YONG-SHENG S. A machine vision based crop rows
detection for agricultural robots[C] // 2010 International Conference on Wavelet Analysis and Pattern
Recognition. 2010 : 114 – 118.
[24] PRIYANKA I, ARCHANAA R, THAI B, et al. Hyperspectral image analysis techniques on
remote sensing[C]. Third International Conference on Sensing, Signal Processing and Security
(ICSSS). 2017 : 392 – 396.
[25] YUHENG S, HAO Y. Image Segmentation Techniques Overview[C]. 2017 Asia Modelling
Symposium (AMS). 2017 : 103 – 107.
[26] JACK S. Image Segmentation and Feature Extraction[J]. IEEE Transactions on Systems, Man,
and Cybernetics, 1978, 8(4) : 237 – 247.
[27] YANWEI L, HENGSHUANG Z, XIAOJUAN Q, et al. Fully Convolutional Networks for
Panoptic Segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 2021 : 214 – 223.

[28] GUYON I, GUNN S R, NIKRAVESH M, et al. Feature Extraction - Foundations and
Applications[C] Feature Extraction. 2006.
[29] OLALEKAN S A, SHRUTI J. Feature Extraction: A Survey of the Types, Techniques,
Applications[C] // 2019 International Conference on Signal Processing and Communication
(ICSC). 2019 : 158 – 164.
[30] HENRIQUE O, LOBATO C P. Automatic Road Crack Detection and Characterization[J]. IEEE
Transactions on Intelligent Transportation Systems, 2013, 14(1) : 155 – 168.
[31] HERBERT B, TUYTELAARS, TINNE, et al. SURF: Speeded Up Robust Features[C]. Computer
Vision – ECCV 2006. 2006 : 404 – 417.
[32] YUAN H, LI J, LAI L L, et al. Low-rank matrix regression for image feature extraction and feature
selection[J]. Information Sciences, 2020, 522 : 214 – 226.
[33] XU Y, LEI Q, GUORONG L, et al. An efficient occlusion detection method to improve object
trackers[C]. IEEE International Conference on Image Processing. 2013 : 2445 – 2449.
[34] MING Y, JIAN-WU W, GEN-LIN J. Random sampling LDA incorporating feature selection for
face recognition[C] // 2010 International Conference on Wavelet Analysis and Pattern Recognition.
2010 : 180 – 185.
[35] LUOFENG X, MING Y, XIANGYUN Y, et al. Low-Rank Sparse Preserving Projections for
Dimensionality Reduction[J]. IEEE Transactions on Image Processing, 2018, 27(11) : 5261 – 5274.
[36] HENRIQUE O, LOBATO C P. Automatic Road Crack Detection and Characterization[J]. IEEE
Transactions on Intelligent Transportation Systems, 2013, 14(1) : 155 – 168.
[37] S B, S N, M G. Road crack detection using convolutional neural network[J]. Indian Journal of
Science and Technology, 2021, 14 : 881 – 891.
[38] GAURAV K, KUMAR B P. A Detailed Review of Feature Extraction in Image Processing
Systems[C]. Fourth International Conference on Advanced Computing Communication
Technologies. 2014 : 5 – 12.
[39] XUDONG J. Feature extraction for image recognition and computer vision[C] // 2009 2nd IEEE
International Conference on Computer Science and Information Technology. 2009 : 1 – 15.
[40] WEI Z, XIANGYANG X, ZICHEN S, et al. Efficient Feature Extraction for Image
Classification[C].2007 IEEE 11th International Conference on Computer Vision. 2007 : 1 – 8.[41]
BAHADDIN E. Development of UAV-based pavement crack identification system using artificial
intelligence[J], 2016.
[42] QURAISHI I, J P C, MALLIKA D. Image recognition and processing using Artificial Neural
Network[C]. 1st International Conference on Recent Advances in Information Technology
(RAIT). 2012 : 95 – 100.

[43] YOUHUI T. Artificial Intelligence Image Recognition Method Based on Convolutional Neural
Network Algorithm[J]. IEEE Access, 2020, 8 : 125731 – 125744.
[44] SHEENA A, SACHIN A. Machine learning and its applications: A review[C]. International
Conference on Big Data Analytics and Computational Intelligence (ICBDAC). 2017 : 57 – 60.
[45] SUSMITA R. A Quick Review of Machine Learning Algorithms[C]. 2019 International
Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). 2019 :
35 – 39.
[46] VISHAL M, LAN U, YAW A. Automated Road Crack Detection Using Deep Convolutional Neural
Networks[C] // 2018 IEEE International Conference on Big Data (Big Data). 2018 : 5212 – 5215.
[47] LEI Z, FAN Y, YIMIN D Z, et al. Road crack detection using deep convolutional neural network[C]
IEEE International Conference on Image Processing (ICIP). 2016 : 3708 – 3712.
[48] YI H, SHIYU S, XIUSHENG D, et al. A study on Deep Neural Networks framework[C]. 2016
IEEE Advanced Information Management, Communicates, Electronic and Automation Control
Conference (IMCEC). 2016 : 1519 – 1522.
[49] SAAD A, ABED M T, SAAD A-Z. Understanding of a convolutional neural network[C] // 2017
International Conference on Engineering and Technology (ICET). 2017 : 1 – 6.
[50] ETHEM A. Neural Networks and Deep Learning[M]. Machine Learning: The New AI. 2016.
[51] R U, et al. Introduction to artificial neural networks[C]. Proceedings of IECON 21st Annual
Conference on IEEE Industrial Electronics : 1995. Vol 1: 33 – 37 vol.1.
[52] K J, MAO J, M M. Artificial neural networks: a tutorial[J]. Computer, 1996, 29(3) : 31 – 44.
[53] J D, A D. Artificial neural networks[J]. IEEE Potentials, 1991, 10(2) : 33 – 36.
[54] RAHUL C, KUMAR G K, R J. Convolutional Neural Network (CNN) for Image Detection
and Recognition[C]. First International Conference on Secure Cyber Computing and
Communication (ICSCCC). 2018 : 278 – 282.
[55] JIUDONG Y, JIANPING L. Application of deep convolution neural network[C]. 14th
International Computer Conference on Wavelet Active Media Technology and Information
Processing (ICCWAMTIP). 2017 : 229 – 232.
[56] AROHAN A, KOUSTAV A, ABHISHEK S. A Review of Convolutional Neural Networks[C].
International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE). 2020 : 1 – 5.
[57] AZEDDINE E, FLORENTIN S. Trends in deep convolutional neural Networks architectures:
a review[C]. International Conference of Computer Science and Renewable Energies
(ICCSRE). 2019 : 1 – 8.
[58] HOO-CHANG S, R R H, MINGCHEN G, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning[J].
IEEE Transactions on Medical Imaging, 2016, 35(5) : 1285 – 1298.
[59] YANWEI P, MANLI S, XIAOHENG J, et al. Convolution in Convolution for Network in
Network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(5) : 1587 –
1597.
[60] JAWAD N, FREDERICK D, GIANNI D. Max-pooling convolutional neural networks for visionbased
hand gesture recognition[C]. IEEE International Conference on Signal and Image
Processing Applications (ICSIPA). 2011 : 342 – 347.
[61] EMRE A C, MICHAL K. Condensed U-Net (Cu-Net): An Improved U-Net Architecture for Cell
Segmentation Powered by 4x4 Max-Pooling Layers[C]. IEEE 17th International Symposium on
Biomedical Imaging (ISBI). 2020 : 446 – 450.
[62] ZHIHAO W, TAO L, YANDUO Z, et al. Crack Detecting by Recursive Attention U-Net[C] // 2020
3rd International Conference on Robotics, Control and Automation Engineering (RCAE). 2020 :
103 – 107.
[63] ARTHUR C T, DAVID J M, INSA I M, et al. Road crack detection using a single stage detector
based deep neural network[C] // 2018 IEEE Workshop on Environmental, Energy, and Structural
Monitoring Systems (EESMS). 2018 : 1 – 5.
[64] WEIQIN Y, JUNHUI L, YU W, et al. U-Net with Dense Encoder, Residual Decoder and Depthwise
Skip Connections[C] // 2020 International Joint Conference on Neural Networks (IJCNN).
2020 : 1 – 6.
[65] M. K H, A L C. U-NetPlus: A Modified Encoder-Decoder U-Net Architecture for Semantic and
Instance Segmentation of Surgical Instruments from Laparoscopic Images[C]. 41st Annual
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
2019 : 7205 – 7211.
[66] QUN Y, DEJIAN S, WENCAI D, et al. A Deep Learning-Based Framework for Damage Detection
With Time Series[J]. IEEE Access, 2021, 9 : 66570 – 66586.
[67] AAQUIB J, SAYEM M M, TAKBIR A M, et al. Pothole Detection System Using Region-Based
Convolutional Neural Network[C]. IEEE 4th International Conference on Computer and
Communication Engineering Technology (CCET). 2021 : 6 – 11.
[68] ILKER B, AYDıN A. Fisher-selective search for object detection[C]. IEEE International
Conference on Image Processing (ICIP). 2016 : 3633 – 3637.
[69] KOSUKE Y, KATSUHIKO T. Warping approach for rearview pedestrian detection with fish eye
cameras[C] // 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES).
2017 : 121 – 126.
[70] QIFENG L, JIANHUI Z, QIANQIAN T, et al. Cropping Region Proposal Network Based
Framework for Efficient Object Detection on Large Scale Remote Sensing Images[C] // 2019 IEEE
International Conference on Multimedia and Expo (ICME). 2019 : 1534 – 1539.
[71] MYEONGAH C, TAE-YOUNG C, HYEONGMIN L, et al. N-RPN: Hard Example Learning For
Region Proposal Networks[C] // 2019 IEEE International Conference on Image Processing (ICIP).
2019 : 3955 – 3959.
[72] LIANG G, YIMIN Z. A Review: Generative Adversarial Networks[C] // 2019 14th IEEE
Conference on Industrial Electronics and Applications (ICIEA). 2019 : 505 – 510.
[73] MING-YU L, XUN H, JIAHUI Y, et al. Generative Adversarial Networks for Image and Video
Synthesis: Algorithms and Applications[J]. Proceedings of the IEEE, 2021, 109(5) : 839 – 862.
[74] ANTONIA C, ANTHONY B. Inverting the Generator of a Generative Adversarial Network[J].
IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(7) : 1967 – 1974.
[75] EDGAR S, BERNT S, ANNA K. A U-Net Based Discriminator for Generative Adversarial
Networks[C] // 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2020 : 8204 – 8213.
[76] SHAILJA G, MANPREET K, SACHIN L, et al. Application-based Attention Mechanisms in
Deep Learning[C] // 2020 8th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO). 2020 : 363 – 366.
[77] RAHMAN M, KAMA K. Use of a Self-Organizing Map for Crack Detection in Highly Textured
Pavement Images[J]. Infrastructure Systems, 2015, 21.
[78] FAN Z, WU Y, LU J, et al. Automatic Pavement Crack Detection Based on Structured Prediction
with the Convolutional Neural Network[J]. ArXiv, 2018, abs/1802.02208.
[79] SELVATHI D, PAVITHRA P, PREETHI T. Intelligent transportation system for accident
prevention and detection[C] // IEEE Proceedings of the 2017 International Conference on
Intelligent Computing and Control Systems. : 442 – 446.
[80] SUN L, KAMALIARDAKANI M, ZHANG Y. Weighted Neighborhood Pixels Segmentation
Method for Automated Detection of Cracks on Pavement Surface Images[J]. Journal of Computing
in Civil Engineering, 2016, 30 : 04015021.
[81] AYENU-PRAH A Y, ATTOH-OKINE N O. Evaluating Pavement Cracks with Bidimensional
Empirical Mode Decomposition[J]. EURASIP Journal on Advances in Signal Processing, 2008:
4046 - 4049.
[82] SUBIRATS P, DUMOULIN J, LEGEAY V, et al. Automation of Pavement Surface Crack
Detection using the Continuous Wavelet Transform[J]. 2006 International Conference on Image
Processing, 2006 : 3037 – 3040.

[83] LI H, ZONG J, NIE J, et al. Pavement crack detection algorithm based on densely connected and
deeply supervised network[J]. IEEE Access, 2017.
[84] LIANG S, SUN B. Using Wavelet Technology for Pavement Crack Detection[C] // ICLEM 2010:
Logistics for Sustained Economic Development: Infrastructure, Information, Integration. 2010 :
2479 – 2484.
[85] ZOU Q, CAO Y, LI Q, et al. CrackTree: Automatic crack detection from pavement images[J].
Pattern Recognit. Lett., 2012, 33 : 227 – 238.
[86] KOUZEHGAR M, TAMILSELVAM Y K, HEREDIA M V, et al. Self-reconfigurable façadecleaning
robot equipped with deep-learning-based crack detection based on convolutional neural
networks[J]. Automation in Construction, 2019, 108 : 102959.
[87] XU P, SHIDA K. Eddy current sensor with a novel probe for crack position detection[J]. 2008
IEEE International Conference on Industrial Technology, 2008 : 1 – 6.
[88] SADLER D J, AHN C H. On-chip eddy current sensor for proximity sensing and crack detection[J].
Sensors and Actuators A-physical, 2001, 91 : 340 – 345.
[89] LIU P, JANG J, YANG S, et al. Fatigue crack detection using dual laser induced nonlinear
ultrasonic modulation[J]. Optics and Lasers in Engineering, 2018, 110 : 420 – 430.
[90] CULJAT M O, SINGH R S, BROWN E R, et al. Ultrasound crack detection in a simulated human
tooth.[J]. Dento maxillo facial radiology, 2005, 34 2 : 80 – 5.
[91] MOHAN A P, POOBAL S. Crack detection using image processing: A critical review and
analysis[J]. alexandria engineering journal, 2017, 57 : 787 – 798.
[92] KOCH C, GEORGIEVA K, KASIREDDY V, et al. A review on computer vision based defect
detection and condition assessment of concrete and asphalt civil infrastructure[J]. Adv. Eng.
Informatics, 2015, 29 : 196 – 210.
[93] CHA Y-J, CHOI W, BÜYÜKÖZTÜRK O. Deep Learning-Based Crack Damage Detection Using
Convolutional Neural Networks[J]. Comput. Aided Civ. Infrastructure Eng., 2017, 32 : 361 – 378.
[94] GOPALAKRISHNAN K. Deep Learning in Data-Driven Pavement Image Analysis and Automated
Distress Detection: A Review[J]. Data, 2018, 3 : 28.
[95] ZHANG L, YANG F, ZHANG Y D, et al. Road crack detection using deep convolutional neural
network[J]. 2016 IEEE International Conference on Image Processing (ICIP), 2016 : 3708 – 3712.
[96] CHA Y-J, CHOI W, BÜYÜKÖZTÜRK O. Deep Learning-Based Crack Damage Detection Using
Convolutional Neural Networks[J]. Comput. Aided Civ. Infrastructure Eng., 2017, 32 : 361 – 378.
[97] ZHANG A, WANG K C P, LI B, et al. Automated Pixel-Level Pavement Crack Detection on
3D Asphalt Surfaces Using a Deep-Learning Network[J]. Comput. Aided Civ. Infrastructure Eng.,
2017, 32 : 805 – 819.
[98] GOPALAKRISHNAN K, KHAITAN S K, CHOUDHARY A N, et al. Deep Convolutional
Neural Networks with transfer learning for computer vision-based data-driven pavement distress
detection[J]. Construction and Building Materials, 2017, 157 : 322 – 330.
[99] YU W, YANG K, BAI Y, et al. Visualizing and Comparing AlexNet and VGG using
Deconvolutional Layers[C] // Proceedings of the 33rd International Conference on Machine
Learning : Vol 48. 2016.
[100] WAMBURA S, LI H. Deep and confident image analysis for disease detection[C] // VSIP’2020.
Jakarta, Indonesia : Association for Computing Machinery, 2020 : 91 – 99.
[101] WAMBURA S, HUANG J, LI H. Robust Anomaly Detection in Feature-evolving Time series[J].
Oxf. Comjnl, 2020.
[102] HINTON G, KRIZHEVSKY A, WANG S. ImageNet: Classification with Deep Convolutional
Neural Networks[C] // Neural Information Processing Systems. 2012.
[103] WAMBURA S, LI H, NIGGUSIE E. Fast-memory Efficient Extreme Events Prediction in Complex
Time series[C] // ICRSA 2020. Chengdu, China : Association for Computing Machinery, 2020 :
60 – 69.
[104] WAMBURA S, HUANG J, LI H. Long-range forecasting in feature-evolving data streams[J].
Knowl.-Based Syst, 2020, 206.
[105] NAPIERALA1 K, STEFANOWSKI1 J. Types of minority class examples and their influence on
learning classifiers from imbalanced data[J]. Intelligent Information Systems, 2016, 46 : 563 – 597.
[106] et AL. R F. Road crack detection using deep convolutional neural network and adaptive
thresholding[J]. IEEE Intelligent Vehicles Symposium, 2019 : 474 – 479.
[107] ZHANG K, ZHANG Y, CHENG H. CrackGAN: Pavement crack detection using partially
accurate ground truths based on generative adversarial learning[J]. IEEE Transactions on Intelligent
Transportation Systems, 2020, 22(2) : 1306 – 1319.
[108] ALI L, ALNAJJAR F, JASSMI H A, et al. Performance Evaluation of Deep CNN-Based Crack
Detection and Localization Techniques for Concrete Structures[J]. Sensors, 2021, 21(5).
[109] SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image
Recognition[J]. CoRR, 2015, abs/1409.1556.
[110] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single Shot multibox detector[C] // European
conference on computer vision 2016, vol 7, pg 56 -59.
[111] HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[J]. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016 : 770 – 778.
[112] REN S, HE K, GIRSHICK R B, et al. Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39 : 1137 – 1149.
[113] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You Only Look Once: Unified, Real-Time
Object Detection[J]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016 : 779 – 788.
[114] YANG C, CHEN J, LI Z, et al. Structural Crack Detection and Recognition Based on Deep
Learning[J]. Applied sciences, 2021, 11(6).
[115] HU G, HU B L, YANG Z, et al. Pavement Crack Detection Method Based on Deep Learning
Models[J]. Wireless Communications and Mobile Computing, 2021.
[116] YANG X, LI H, YU Y, et al. Automatic Pixel-Level Crack Detection and Measurement Using Fully
Convolutional Network[J]. Comput. Aided Civ. Infrastructure Eng., 2018, 33 : 1090 – 1109.
[117] SONG W, JIA G, ZHU H, et al. Automated pavement crack damage detection using deep multiscale
convolutional features[J]. Journal of Advanced Transportation, 2020.
[118] KANTZ H, ALTMANN E G, HALLERBERG S, et al. Dynamical Interpretation of Extreme
Events: Predictability and Predictions[M]. [S.l.] : Springer, 2006 : 69 – 93.
[119] GAL Y. Uncertainty in Deep Learning: PhD Thesis[J]. University of Cambridge, 2016.
[120] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning[C] // ICML : Vol 48. New York, NY-USA : Associatin for Computing
Machinery, 2016 : 1050 – 1059.
[121] KENDALL A, GAL Y. What Uncertainties Do We Need in Bayesian Deep Learning for Computer
Vision?[C] // NIPS’17. Long Beach, CA : Association for Computing Machinery, 2017 : 5580 –
5590.
[122] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Drpout: A simple way to prevent neural
networks from Overfitting[J]. JMLR, 2014, 15(1) : 1929 – 1958.
[123] ZHU L, LAPTEV N. Deep and Confident Prediction for Time Series at Uber[C] // 2017 IEEE
International Conference on Data Mining Workshops (ICDMW). New Orleans, LA, USA : IEEE
Xplore, 2017 : 103 – 110.
[124] ERDOLAN S, GüLHAN O T. Alternative Confidence Interval Methods Used in the Diagnostic
Accuracy Studies[J]. Computational and Mathematical Methods in Medicine, 2016, 2016.
[125] LEIBIG C, ALLKEN V, AYHAN M S, et al. Leveraging uncertainty information from deep neural
networks for disease detection[J]. nature research, 2017.
[126] POOSTCHI M, SILAMUT K, MAUDE R, et al. Image analysis and machine learning for detecting
malaria[J]. Laboratory and Clinical Medicine, 2018, 194 : 36 – 55.
[127] DEMSAR J. Statistical Comparisons of Classifiers over Multiple Data Sets[J]. J. Mach. Learn.
Res., 2006, 7 : 1 – 30.

[128] FAN R, LIU Y, YANG X, et al. Real-Time Stereo Vision for Road Surface 3-D Reconstruction[J].
2018 IEEE International Conference on Imaging Systems and Techniques (IST), 2018 : 1 – 6.
[129] FAN R, AI X, DAHNOUN N. Road Surface 3D Reconstruction Based on Dense Subpixel Disparity
Map Estimation[J]. IEEE Transactions on Image Processing, 2018, 27 : 3025 – 3035.
[130] YANG F, ZHANG L, YU S, et al. Feature Pyramid and Hierarchical Boosting Network for
Pavement Crack Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 :
1525 – 1535.
[131] BHAT S, NAIK S, GAONKAR M, et al. A Survey On Road Crack Detection Techniques[C] // 2020
International Conference on Emerging Trends in Information Technology and Engineering (ic-
ETITE). 2020 : 1 – 6.
[132] MEI Q, GUL M, AZIM M R. Densely connected deep neural network considering connectivity of
pixels for automatic crack detection[J]. Automation in Construction, 2020, 110 : 103018.
[133] MANDAL V, UONG L, ADU-GYAMFI Y. Automated Road Crack Detection Using Deep
Convolutional Neural Networks[C] // 2018 IEEE International Conference on Big Data (Big Data).
2018 : 5212 – 5215.
[134] DAI G, JIANBIN H, MANKO W S, et al. A Balanced Assignment Mechanism for Online Taxi
Recommendation[C] // 2017 18th IEEE International Conference on Mobile Data Management
(MDM). 2017 : 102 – 111.
[135] MAHENGE S, WAMBURA S, JIAO L. Robust Deep Representation Learning for Road Crack
Detection[C] // International conference on Video and Image Processing, ICVIP 2021. 2021 : 117 –
125.
[136] MAHENGE S F, ALSANABANI A. A novel approach for detection and classification of reentrant
crack using modified CNNetwork[J]. International Journal of Pervasive Computing and
Communications, 2021.
[137] SPENCER B F, HOSKERE V, NARAZAKI Y. Advances in Computer Vision-Based Civil
Infrastructure Inspection and Monitoring[J]. Engineering, 2019.
[138] LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully
convolutional networks[J]. Automation in Construction, 2019.
[139] GOPALAKRISHNAN K, KHAITAN S K, CHOUDHARY A N, et al. Deep Convolutional
Neural Networks with transfer learning for computer vision-based data-driven pavement distress
detection[J]. Construction and Building Materials, 2017, 157 : 322 – 330.
[140] ALESSANDRO Z. Vision-Based Vibration Monitoring of Structures and Infrastructures: An
Overview of Recent Applications[J]. Infrastructures, 2021, 6(1).
[141] ORTIZ A, BONNIN-PASCUAL F, GARCIA-FIDALGO E, et al. Vision-Based Corrosion Detection Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application[J]. Sensors, 2016,
16(12).

[142] AHUJA S K, SHUKLA M K. A Survey of Computer Vision Based Corrosion Detection
Approaches[G] // . 2017.
[143] DAWOOD T, ZHU Z, ZAYED T M. Machine vision-based model for spalling detection and
quantification in subway networks[J]. Automation in Construction, 2017, 81 : 149 – 160.
[144] JINCHAO G, YANG X, LING D, et al. Automated pixel-level pavement distress detection based
on stereo vision and deep learning[J]. Automation in Construction, 2021, 129 : 103788.
[145] YUAN C, XIONG B, LI X, et al. A novel intelligent inspection robot with deep stereo vision for
three-dimensional concrete damage detection and quantification[J]. Structural Health Monitoringan
International Journal, 2021.
[146] KIM B, CHO S. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep
Learning Technique[J]. Sensors, 2018, 18(10).
[147] YOUNG T, HAZARIKA D, PORIA S, et al. Recent Trends in Deep Learning Based Natural
Language Processing[J]. IEEE Computational Intelligence Magazine, 2018, 13(3) : 55 – 75.
[148] JIAO L, ZHAO J. A Survey on the New Generation of Deep Learning in Image Processing[J].
IEEE Access, 2019, 7 : 172231 – 172263.
[149] QI Y, GUO Y, WANG Y. Image Quality Enhancement Using a Deep Neural Network for Plane
Wave Medical Ultrasound Imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, 2021, 68(4) : 926 – 934.
[150] XINYI Z, WEI G, WENLONG F, et al. Application of deep learning in object detection[C] // 2017
IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). 2017 :
631 – 634.
[151] PATHAK A R, PANDEY M, RAUTARAY S S. Application of Deep Learning for Object
Detection[J]. Procedia Computer Science, 2018, 132 : 1706 – 1717.
[152] WIDED H, METZLI R-M, PHILIPPE B, et al. Deep Learning-Based Real-Time Object Detection
in Inland Navigation[C] // 2019 IEEE Global Communications Conference (GLOBECOM). Hawaii
- USA : IEEExplore, 2019 : 1 – 6.
[153] ZHOU Y, HUANG J, SUN H, et al. Recurrent Meta-Structure for Robust Similarity Measure in
Heterogeneous Information Networks[J]. ACM Trans. Knowl. Discov. Data, 2019, 13(6).
[154] MENEGAZZO J, von WANGENHEIM A. Multi-Contextual and Multi-Aspect Analysis for Road
Surface Type Classification Through Inertial Sensors and Deep Learning[C] // 2020 X Brazilian
Symposium on Computing Systems Engineering (SBESC). 2020 : 1 – 8.
[155] ARYA D M, MAEDA H, GHOSH S K, et al. Deep learning-based road damage detection and classification for multiple countries[J]. Automation in Construction, 2021.

[156] AGRAWAL R, CHHADVA Y, ADDAGARLA S, et al. Road Surface Classification and
Subsequent Pothole Detection Using Deep Learning[J]. 2021 2nd International Conference for
Emerging Technology (INCET), 2021 : 1 – 6.
[157] HU Y, ZHAO C. A novel LBP based methods for pavement crack detections[J]. Pattern recognition
research, 2010, 14(4) : 5 – 12.
[158] ZALAMA E, GóMEZ-GARCíA-BERMEJO J, MEDINA R, et al. Road Crack Detection Using
Visual Features Extracted by Gabor Filters: Road crack detection[J]. Computer-Aided Civil and
Infrastructure Engineering, 2013.
[159] ZOU Q, CAO Y, LI Q, et al. CrackTree: Automatic crack detection from pavement images[J].
Pattern Recognition Letters, 2012, 33(3) : 227 – 238.
[160] SHI Y, CUI L, QI Z, et al. Automatic Road Crack Detection Using Random Structured Forests[J].
IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12) : 3434 – 3445.
[161] K H, B. B. Concrete Road Crack Detection Using Deep Learning-Based Faster R-CNN Method[J].
Iran J Sci Technol Trans Civ Eng, 2021.
[162] M Y, K. O, Z H, et al. Autonomous concrete crack detection using deep fully convolutional neural
network[J]. Automation in Construction, 2019, 99 : 52 – 58.
[163] ARUNISH K, AMIT K, KUMAR J, et al. Crack Detection of Structures using Deep Learning
Framework[C] // 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS).
2020 : 526 – 533.
[164] JINHYUNG P, YI-CHUN C, YU-JHE L, et al. Crack Detection and Refinement Via Deep
Reinforcement Learning[C] // 2021 IEEE International Conference on Image Processing (ICIP).
2021 : 529 – 533.
[165] SHIM S, KIM J, LEE S, et al. Road surface damage detection based on hierarchical architecture
using lightweight auto-encoder network[J]. Automation in Construction, 2021, 130 : 103833.
[166] SHIN K, TAKUMI I. An Embedded System for Image-based Crack Detection by using Fine-
Tuning model of Adaptive Structural Learning of Deep Belief Network[C] // 2020 IEEE REGION
10 CONFERENCE (TENCON). 2020 : 1203 – 1208.
[167] PARIS S. A gentle introduction to bilateral filtering and its applications[C] // SIGGRAPH Courses.
2007.
[168] HUANG W, HUANG M, ZHANG Y. Detection of Traffic Signs Based on Combination of GAN
and Faster-RCNN[J]. Journal of Physics: Conference Series, 2018.
[169] FRED M S, ALA A. A novel approach for detection and classification of re-entrant crack using
modified CNNetwork[J]. International Journal of Pervasive Computing and Communications,2021.
[170] STEPHEN W, JIANBIN H, HE L. Robust Anomaly Detection in Feature-Evolving Time Series[J].
The Computer Journal, 2020.
[171] ALESSANDRO Z. Vision-Based Vibration Monitoring of Structures and Infrastructures: An
Overview of Recent Applications[J]. Infrastructures, 2021, 6.
[172] MAHENGE S F, WAMBURA S, JIAO L. RCNN-GAN: An Enhanced Deep Learning Approach
Towards Detection of Road Cracks[C] // The 6th International Conference on Compute and Data
Analysis, ICCDA’22.2022 : 91 – 99.
[173] HUANG W, HUANG M, ZHANG Y. Detection of Traffic Signs Based on Combination of GAN
and Faster-RCNN[J]. Journal of Physics, 2018.
[174] SPENCER B F, HOSKERE V, NARAZAKI Y. Advances in Computer Vision-Based Civil
Infrastructure Inspection and Monitoring[J]. Engineering, 2019, 5(2) : 199 – 222.
[175] VU D C, OTHERS. Autonomous concrete crack detection using deep fully convolutional neural
network[J]. Automation in Construction, 2019, 99 : 52 – 58.
[176] ZHANG L, SHEN J, ZHU B. A research on an improved Unet-based concrete crack detection
algorithm[J]. Structural Health Monitoring, 2021, 20(4) : 1864 – 1879.
[177] JEFERSON M, von WANGENHEIM ALDO. Multi-Contextual and Multi-Aspect Analysis for
Road Surface Type Classification Through Inertial Sensors and Deep Learning[C] // 2020 X
Brazilian Symposium on Computing Systems Engineering (SBESC). 2020.
[178] RAVI A, YASH C, SANJANA A, et al. Road Surface Classification and Subsequent Pothole
Detection Using Deep Learning[C] // 2021 2nd International Conference for Emerging Technology
(INCET). 2021 : 1 – 6.
[179] SHARMAD B, SAISH N, MANDAR G, et al. A Survey On Road Crack Detection Techniques[C]
// 2020 International Conference on Emerging Trends in Information Technology and Engineering
(ic-ETITE). 2020 : 1 – 6.
[180] VISHAL M, LAN U, YAW A-G. Automated Road Crack Detection Using Deep Convolutional
Neural Networks[C] // 2018 IEEE International Conference on Big Data (Big Data). 2018.
[181] GOPALAKRISHNAN K, KHAITAN S K, CHOUDHARY A, et al. Deep Convolutional
Neural Networks with transfer learning for computer vision-based data-driven pavement distress
detection[J]. Construction and Building Materials, 2017, 157 : 322 – 330.
[182] LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully
convolutional networks[J]. Automation in Construction, 2019, 104 : 129 – 139.
[183] TIAN Y, ZHANG J, YU S. Vision-based structural scaling factor and flexibility identification
through mobile impact testing[J]. Mechanical Systems and Signal Processing, 2019, 122 : 387 – 402.
[184] et AL S W. Deep and Confident Image Analysis for Disease Detection[C] // . 2020.
[185] ALBERTO O, FRANCISCO B-P, GARCIA-FIDALGO E, et al. Vision-Based Corrosion Detection
Assisted by a Micro-Aerial Vehicle in a Vessel Inspection Application[J]. Sensors, 2016, 16(12).
[186] GERMAN S, BRILAKIS I, DESROCHES R. Rapid entropy-based detection and properties
measurement of concrete spalling with machine vision for post-earthquake safety assessments[J].
Advanced Engineering Informatics, 2012, 26(4) : 846 – 858.
[187] XINYI Z, WEI G, WENLONG F, et al. Application of deep learning in object detection[C] // 2017
IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS). 2017.
[188] JUNG H K, PARK G. Rapid and non-invasive surface crack detection for pressed-panel products
based on online image processing[J]. Structural Health Monitoring, 2019, 18(5-6) : 1928 – 1942.
[189] BYUNGHYUN K, SOOJIN C. Automated Vision-Based Detection of Cracks on Concrete Surfaces
Using a Deep Learning Technique[J]. Sensors, 2018, 18.
[190] LICHENG J, JIN Z. A Survey on the New Generation of Deep Learning in Image Processing[J].
IEEE Access, 2019.
[191] YANXING Q, YI G, YUANYUAN W. Image Quality Enhancement Using a Deep Neural Network
for Plane Wave Medical Ultrasound Imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, 2021, 68(4) : 926 – 934.
[192] PATHAK A R, PANDEY M, RAUTARAY S. Application of Deep Learning for Object
Detection[J]. Procedia Computer Science, 2018, 132 : 1706 – 1717.
[193] WIDED H, METZLI R-M, PHILIPPE B, et al. Deep Learning-Based Real-Time Object Detection
in Inland Navigation[C] // 2019 IEEE Global Communications Conference (GLOBECOM). 2019.
[194] Y. H, X. Z C. A novel LBP based methods for pavement crack detection[J]. Image Processing and
Communications, 2009, 14 : 5 – 12.
[195] ZHENG T, JIE G, ZHENQIANG H, et al. Recognition of asphalt pavement crack length using deep
convolutional neural networks[J]. Road Materials and Pavement Design, 2018, 19(6) : 1334 – 1349.
[196] R R H, LE L, JIAMIN L, et al. Improving computer-aided detection using convolutional neural
networks and random view aggregation[J]. IEEE transactions on medical imaging, 2015, 35(5) :
1170 – 1181.
[197] NAM Y, KHUSAIRI O M, Z H, et al. Automated asphalt pavement crack detection and
classification using deep convolution neural network[C] // 2019 9th IEEE International Conference on
Control System, Computing and Engineering (ICCSCE). 2019 : 215 – 220.
[198] EDUARDO Z, JAIME G-G-B, ROBERTO M, et al. Road crack detection using visual features
extracted by Gabor filters[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(5) : 342 – 358.

[199] KEMAL H, BASRI B H. Concrete Road Crack Detection Using Deep Learning-Based Faster RCNN
Method[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering,
2021 : 1 – 13.
[200] YONG S, LIMENG C, ZHIQUAN Q, et al. Automatic road crack detection using random
structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12) :
3434 – 3445.
[201] DAWOOD T, ZHU Z, ZAYED T. Machine vision-based model for spalling detection and
quantification in subway networks[J]. Automation in Construction, 2017, 81 : 149 – 160.
[202] GUAN J, YANG X, DING L, et al. Automated pixel-level pavement distress detection based on
stereo vision and deep learning[J]. Automation in Construction, 2021, 129 : 103788.
[203] ZOU Q, CAO Y, LI Q, et al. CrackTree: Automatic crack detection from pavement images[J].
Pattern Recognition Letters, 2012.
[204] GUANG D, JIANBIN H, WAMBURA S, et al. A Balanced Assignment Mechanism for Online Taxi
Recommendation[C] // 2017 18th IEEE International Conference on Mobile Data Management
(MDM). 2017.
[205] HIEP D T, P H Q, M L H. Computer vision-based method for concrete crack detection[C] // 2016
14th International Conference on Control, Automation, Robotics and Vision (ICARCV). 2016 :
1 – 6.
[206] ARUNISH K, AMIT K, KUMAR J A, et al. Crack Detection of Structures using Deep Learning
Framework[C]. 3rd International Conference on Intelligent Sustainable Systems (ICISS).
2020 : 526 – 533.
[207] LEI Z, FAN Y, DANIEL Z Y, et al. Road crack detection using deep convolutional neural
network[C]. IEEE international conference on image processing (ICIP). 2016 : 3708 – 3712.
[208] OZAN O, MATHEW C, JO S, et al. Attention U-Net: Learning Where to Look for the Pancreas[J]
CoRR, 2018, abs/1804.03999..
[209] LONG J, SHELHAMER E, DARREL T, et al. Fully convolutional networks for semantic
segmentation[C]. IEEE international conference on computer vision and pattern recognition (CVPR).
2015 : 3431 – 3440.
101
[210] SEKAR, ARAVINDKUMAR et al. Automatic road crack detection and classification using multitasking
faster RCNN [J]. Intell. Fuzzy Syst. 41 (2021): 6615
[211] A. ALSHAMI, R. ALFLIH, R. et al. An Automatic Road Crack Detection System [C]. 2022 2nd
International Conference on Computing and Information Technology (ICCIT), 2022, pp. 175-179.






中图分类号:

 G    

馆藏号:

 55842    

开放日期:

 2023-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式