- 无标题文档
查看论文信息

题名:

 无人机组对地面辐射源的 无源定位技术研究    

作者:

 宋宇飞    

学号:

 20021211245    

保密级别:

 公开    

语种:

 chi    

学科代码:

 085401    

学科:

 工学 - 电子信息 - 新一代电子信息技术(含量子技术等)    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 电子信息    

研究方向:

 电子与通信工程    

导师姓名:

 罗明    导师信息

导师单位:

 西安电子科技大学    

第二导师姓名:

 保谦    

完成日期:

 2023-06-15    

答辩日期:

 2023-05-29    

外文题名:

 Passive Location of Ground Radiation Source by Unmanned Aerial Vehicles    

关键词:

 无人机组 ; 到达时间差 ; 多普勒频率差 ; 无源定位    

外文关键词:

 UAVs ; time difference of arrival ; frequency difference of arrival ; passive location    

摘要:

       随着电子信息技术的不断发展以及硬件制造水平的持续提高,采用无人机组进行无源定位在民用和军事领域受到广泛关注,尤其是在边防监控、军事侦察和目标检测等方向,无源定位技术具有不可代替的作用。深入研究无源定位在不同定位场景下的应用,有益于丰富和完善日常生活中的定位需求,也有益于提高国家在电子对抗方面的军事实力,具有重大的现实意义。

       本文围绕无人机组无源定位技术的应用,在前人的基础上对TDOA 和FDOA无源定位技术中的四站定位技术的解决方法进行了研究,理论情况下,三维空间中四台无人机获取的三组时差定位方程或六组时频差联合的定位方程即可估计辐射源的位置或位置与速度,然而定位方程中存在与辐射源位置和速度的相关项,造成待估计参数增多,从而导致采用加权最小二乘类方法直接求解定位方程时,至少需要五台无人机接收站,因此,本在对实际问题进行建模并详细推导求解过程,对采用四台无人机的无源定位方法进行了研究,提出了四台无人机定位时模糊解问题的解决方法。本文的主要研究成果如下:

       第一,针对四台无人机定位地面辐射源遇到的模糊解问题,本文改进了基于双迭代思想的加权最小二乘算法,首先从时差定位模型出发,得到关于辐射源到参考站的距离的二次方程,再根据时频差联合定位模型以及二次方程的解得到含模糊解的辐射源位置和速度的估计结果。随后,从估计结果中选出高度分量绝对值最低的解作为最优初始估计值。最后构建并求解关于辐射源参数误差的方程,对最优初始估计值进行误差补偿,得到定位结果。仿真实验表明,采用四台无人机进行定位时,高度筛选方式可以筛选出真实解,提高了定位结果的可靠性,保证了最优初始估计值为接近真实辐射源参数的解。

       第二,针对四站定位时,待估计参数增多的问题,本文通过连续的多个时刻的TDOA观测信息,建立多时刻时差定位模型,避免了方程伪线性化操作,多时刻方案不会增加无人机接收站数目,而是以匀速运动模型将各时刻的观测量联系起来,扩充了定位方程个数,实现了方程线性化。同时研究了多时刻TDOA观测信息的定位方法,引入定位误差修正的思想对TSWLS算法进行改进,降低了测量误差对TSWLS算法的影响,提高了算法的定位精度,实现了对多站TDOA测量序列定位问题的解析求解。仿真实验表明,改进的TSWLS算法定位方法在四台无人机定位的情况下,定位精度得到了有效提升。

外摘要要:

        With the continuous development of electronic information technology and the continuous improvement of hardware manufacturing level, the use of unmanned aerial units for passive positioning has received widespread attention in both civil and military fields, especially in border monitoring, military reconnaissance, and target detection. Passive positioning technology plays an irreplaceable role. Deeply studying the application of passive positioning in different positioning scenarios is beneficial for enriching and improving the positioning requirements in daily life, and also for improving the military strength of the country in electronic countermeasures, which has significant practical significance.

        This thesis focuses on the application of passive positioning technology for unmanned aerial vehicles, and studies the solution methods of four station positioning technology in TDOA and FDOA passive positioning technology based on previous research. In theory, three sets of time difference positioning equations or six sets of time frequency difference joint positioning equations obtained by four unmanned aerial vehicles in three-dimensional space can estimate the position or position and velocity of the radiation source, However, there are related terms related to the position and velocity of the radiation source in the positioning equation, resulting in an increase in the number of parameters to be estimated. This leads to the need for at least five drone receiving stations when using weighted least squares methods to directly solve the positioning equation. Therefore, in this study, we modeled the actual problem and derived the solution process in detail, and studied the passive positioning method using four drones, A solution to the fuzzy solution problem during the positioning of four unmanned aerial vehicles has been proposed. The main research results of this thesis are as follows:

 

        Firstly, in response to the fuzzy solution problem encountered by four unmanned aerial vehicles in locating ground radiation sources, this thesis improves the weighted least squares algorithm based on the double iteration idea. Firstly, starting from the time difference positioning model, a quadratic equation is obtained for the distance from the radiation source to the reference station. Then, based on the time frequency difference joint positioning model and the solution of the quadratic equation, the estimation results of the radiation source position and velocity containing the fuzzy solution are obtained. Subsequently, the solution with the lowest absolute value of the height component is selected from the estimation results as the optimal initial estimation value. Finally, an equation about the parameter error of the radiation source is constructed and solved, and error compensation is performed on the optimal initial estimation value to obtain the positioning result. Simulation experiments have shown that when using four unmanned aerial vehicles for positioning, the height screening method can filter out true solutions, improve the reliability of positioning results, and ensure that the optimal initial estimation value is a solution close to the true radiation source parameters.

        Secondly, in response to the problem of increasing the number of parameters to be estimated during four station positioning, this thesis establishes a multi time time difference positioning model by continuously observing TDOA information at multiple times. Unlike equation pseudolinearization, the multi time scheme does not increase the number of drone receiving stations, but instead uses a uniform motion model to connect the observations at each time, expanding the number of positioning equations, and achieving equation linearization. At the same time, the positioning method for multi time TDOA observation information was studied, and the idea of positioning error correction was introduced to improve the TSWLS algorithm. This reduced the impact of measurement errors on the TSWLS algorithm, improved the positioning accuracy of the algorithm, and achieved analytical solutions for the positioning problem of multi station TDOA measurement sequences. The simulation experiment shows that the improved TSWLS algorithm positioning method effectively improves the positioning accuracy in the case of four unmanned aerial vehicles positioning.

参考文献:
[1] 杨小牛. 从软件无线电到认知无线电, 走向终极无线电——无线通信发展展望[J]. 中国电子科学研究院学报, 2008(01): 1-7.
[2] 林志远, 刘刚. 雷达-电子战-通信的一体化[J]. 上海航天, 2004(06): 55-58.
[3] 单月晖, 孙仲康, 皇甫堪. 不断发展的无源定位技术[J]. 航天电子对抗, 2002(01): 36-42.
[4] 张正明. 辐射源无源定位研究[D]. 西安电子科技大学, 2000.
[5] 徐佳伟. 基于搜救信号的TDOA/FDOA定位技术研究[D]. 南京邮电大学, 2022
[6] 孙霆. 运动多站动目标无源定位算法研究[D]. 西安电子科技大学, 2021
[7] Ali Noroozi, Amir Hosein Oveis, Seyed MohammadReza Hosseini, et al. Improved Algebraic Solution for Source Localization From TDOA and FDOA Measurements.[J]. IEEE Wireless Commun. Letters,2018,7(3).
[8] 王瀚. 机载多平台时差无源定位系统若干关键技术研究[D]. 长沙: 国防科学技术大学研生院, 2006.
[9] 郁春来, 张元发, 万方. 无源定位技术体制及装备的现状与发展趋势[J]. 空军雷达学院学报, 2012, 26(02): 79-85.
[10] 王本才, 张国毅, 侯慧群. 无源定位技术研究[J]. 舰船电子对抗, 2006(06): 20-26.
[11] 许聪, 张杨, 赵旦峰. 非合作无源探测的发展综述[J]. 中国雷达, 2008, 12(2): 5-7.
[12] Jingmin Cao, Qun Wan, Xinxin Ouyang, et al. Multidimensional scaling-based passive emitter localisation from time difference of arrival measurements with sensor position uncertainties[J]. IET Signal Processing,2017,11(1).
[13] Wang Yunlong, Wu Ying. An Efficient Semidefinite Relaxation Algorithm for Moving Source Localization Using TDOA and FDOA Measurements[J]. IEEE Communications Letters, 2017, 21(1).
[14] Tingrong Li, Xuan Liu, Shuyu Shao, et al. Bearings only passive location of UAV in formation flight based on computer simulation[J]. Automation and Machine Learning, 2022, 3(3).
[15] Zhu Jing, Song Binbin, Zhang Han, et al. Positioning accuracy and formation analysis of multi-UAV passive positioning system[J]. Journal of Physics: Conference Series, 2021, 1856(1).
[16] Li Qian, Chen Baixiao, Yang Minglei. Time Difference of Arrival Passive Localization Sensor Selection Method Based on Tabu Search.[J]. Sensors (Basel, Switzerland), 2020, 20(22).
[17] Miao Sheng, Dong Liang, Wang Xiaorui. A Multi-Target Passive Location Method Based on GDOP Value and Beam Resolution[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(08).
[18] WADE H. FOY. Position-Location Solutions by Taylor-Series Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, AES-12(2).
[19] Kehu Yang, Gang Wang, Zhi-Quan Luo. Efficient Convex Relaxation Methods for Robust Target Localization by a Sensor Network Using Time Differences of Arrivals[J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 2009, 57(7).
[20] Le Yang, K. C. Ho. An approximately efficient TDOA localization algorithm in closed-form for locating multiple disjoint sources with erroneous sensor positions. [J]. IEEE Trans. Signal Processing, 2009, 57(12).
[21] 朱国辉. 基于时差频差的多站无源定位与跟踪算法研究[D]. 西安电子科技大学, 2015.
[22] Xiaomei Qu, Lihua Xie. An efficient convex constrained weighted least squares source localization algorithm based on TDOA measurements[J]. Signal Processing, 2016, 119.
[23] Wang, Gang, So, et al. Robust Convex Approximation Methods for TDOA-Based Localization Under NLOS Conditions[J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society,2016,64(13).
[24] Liu Yang, Guo Fucheng, Yang Le, et al. An Improved Algebraic Solution for TDOA Localization With Sensor Position Errors[J]. IEEE Communications Letters,2015,19(12).
[25] Wang. A Semidefinite Relaxation Method for Source Localization Using TDOA and FDOA Measurements[J]. IEEE Transactions on Vehicular Technology,2013,62(2).
[26] Smith J., Abel J.. Closed-form least-squares source location estimation from range-difference measurements[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(12).
[27] Chan Y.T., Ho K.C.. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing: A publication of the IEEE Signal Processing Society, 1994, 42(8).
[28] Dominic K. C. Ho, Wenwei Xu. An accurate algebraic solution for moving source location using TDOA and FDOA measurements. [J]. IEEE Trans. Signal Processing, 2004, 52(9).
[29] Ma W-K, Chan YT, Cheung KW, So HC. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality[J]. EURASIP Journal on Advances in Signal Processing, 2006, 2006(1).
[30] Yiu-Tong Chan, H. Yau Chin Hang, Pak-Chung Ching. Exact and approximate maximum likelihood localization algorithms. [J]. IEEE Trans. Vehicular Technology, 2006, 55(1).
[31] Ho K.C., Chan Y.T.. Solution and performance analysis of geolocation by TDOA[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(4).
[32] Yi Shang, Wheeler Ruml, Ying Zhang, et al. Localization from Connectivity in Sensor Networks. [J]. IEEE Trans. Parallel Distrib. Syst.,2004, 15(11).
[33] 陈玲, 李少洪. 无源测向测时差定位算法研究[J]. 电子与信息学报, 2003(06): 771-776.
[34] Wu Tianxiao, Wen Maoxing, Wang Yueming. Research on monostation passive location technology based on infrared tracking system[P]. Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China, 2022.
[35] 曹景敏. 多维标度无源定位方法研究[D]. 成都: 电子科技大学2017.
[36] 孙隆和. 网络瞄准及相关技术—瞄准和打击活动目标[J]. 电光与控制, 2005, 12(3): 1-5.
[37] 环球展望军事网. 中国破隐形利器: YLC-20双站无源探向和定位雷达. http:// www.armsky.com.
[38] 网易. 反隐身哨兵: 中国研发DWL002被动探测雷达. http:// news.163.com /topnews.
[39] 贾兴江. 运动多站无源定位关键技术研究[D]. 国防科学技术大学, 2011.
[40] 中国人民解放军陆军工程大学. 一种基于无人机平台的声源定位系统:CN202211707600.2[P]. 2023-03-21.
[41] 檀立刚,骆明伟,李捷,等. 无人机光电设备对地目标单站无源定位方法[J]. 应用光学,2022,43(4):599-610. DOI:10.5768/JAO202243.0401003.
[42] 王钊,王华兵,朱明威,等. 基于并行粒子群的无人机蜂群定位布站优化[J]. 计算机仿真,2023,40(3):64-70,251. DOI:10.3969/j.issn.1006-9348.2023.03.013.
[43] 何胜阳,杜杰朋,赵雅琴,等. 基于TDOA的无人机集群协同单目标定位[J]. 系统工程与电子技术,2023,45(1):1-8. DOI:10.12305/j.issn.1001-506X.2023.01.01.
[44] 于振海. 多普勒无源定位[D]. 西安电子科技大学, 2007.
[45] Ming Sun, K. C. Ho. An Asymptotically Efficient Estimator for TDOA and FDOA Positioning of Multiple Disjoint Sources in the Presence of Sensor Location Uncertainties. [J]. IEEE Trans. Signal Processing, 2011, 59(7).
[46] 徐海源, 苏成晓, 刘亚奇. 运动多站无源定位中的时差及其变化率估计方法[J]. 电子信息对抗技术, 2022, 37(03): 26-30.
[47] 国强, 李文韬. 基于正则化约束总体最小二乘的TDOA/FDOA无源定位方法[J]. 哈尔滨工业大学学报, 2022, 54(05): 81-87.
[48] 张辉, 崔勇强. 基于无人机平台的运动多站无源定位技术研究[J]. 湖北大学学报(自然科学版): 1-5.
[49] 付天一, 丁根宏, 田王达等. 基于解析几何的无人机编队定位与调整策略[J]. 西安理工大学学报:1-12.
[50] 周心雯. 基于纯方位的无人机遂行编队飞行中的无源定位问题[J]. 中国新技术新产品, 2022, (24): 34-37.
[51] Wang Zewen, Hu Dexiu, Zhao Yongjun, et al. Real-Time Passive Localization of TDOA via Neural Networks[J]. IEEE COMMUNICATIONS LETTERS, 2021, 25(10).
[52] Ai Lingyu, Pang Min, Shan Changxu, Sun Chao, Kim Youngok, Zhou Biao. A Novel Joint TDOA/FDOA Passive Localization Scheme Using Interval Intersection Algorithm[J]. Information, 2021, 12(9).
[53] Enyang Xu, Zhi Ding, Soura Dasgupta. Reduced Complexity Semidefinite Relaxation Algorithms for Source Localization Based on Time Difference of Arrival. [J]. IEEE Trans. Mob. Comput., 2011, 10(9).
[54] 江翔. 无源时差定位技术及应用研究[D]. 电子科技大学, 2008.
[55] Jinzhou LI, Fucheng GUO, Wenli JIANG. A Linear-correction Least-squares Approach for Geolocation Using FDOA Measurements Only[J]. Chinese Journal of Aeronautics, 2012, 25(5).
[56] 张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 2002.
[57] 赵树杰, 赵建励. 信号检测与估计理论[M]. 北京: 清华大学出版社, 2005.
[58] Zhou Yan, Li Jianxun, Wang Dongli. Posterior CramrRao Lower Bounds for Target Tracking in Sensor Networks With Quantized Range-Only Measurements[J]. IEEE SIGNAL PROCESSING LETTERS, 2010, 17(2).
[59] KAY S M. Fundamentals of Statistical Signal Process., Estimation theroy[M]. New Jersey:Prentice-Hall, 1993.
[60] Sorenson .H. W. Parameter Estimation: Principles and Problems[M]. New York, NY, USA: Marcel Dekker, 1980
中图分类号:

 TN97    

馆藏号:

 60088    

开放日期:

 2024-09-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式