- 无标题文档
查看论文信息

中文题名:

 高性能AIE纳米诊疗剂用于乳腺癌精准治疗的研究    

姓名:

 孙芳    

学号:

 20121213199    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0831    

学科名称:

 工学 - 生物医学工程(可授工学、理学、医学学位)    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 生物医学工程    

研究方向:

 生物材料与细胞工程    

第一导师姓名:

 王忠良    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-06-16    

答辩日期:

 2023-05-27    

外文题名:

 High Performance AIE Nanotheranostic Agents and Their Application in Precise Treatment of Breast Cancer    

中文关键词:

 诊疗一体化 ; 光热制剂 ; 聚集诱导发光 ; 近红外二区荧光成像 ; 光声成像    

外文关键词:

 Theranostics ; Photothermal agents ; Aggregation-induced emission ; Near infrared second-region fluorescence imaging ; Photoacoustic imaging     

中文摘要:

 

       乳腺癌是威胁女性健康的杀手。作为微创疗法的光热治疗具有高特异性、低侵袭性和时空可控的优点,已有针对乳腺癌治疗开展的临床前研究。目前开发的有机光热制剂(Photothermal Agents,PTA)因π-π堆积存在光稳定性差和在高浓度中易聚集导致荧光减弱等不足,因此亟待开发性能优异且发光稳定的聚集诱导发光(Aggregation Induced Emission,AIE)性质的有机PTA。近红外二区(Near-Infrared-II,NIR-II)荧光成像具有最小的组织自身荧光水平、高灵敏度和更好的空间分辨率的特性,光声成像(Photoacoustic Imaging,PAI)可提供更深入的组织穿透,具有多模成像性能的PTA为复杂的肿瘤微环境提供更多可能。因此,迫切需要开发高性能AIE纳米诊疗剂用于乳腺癌精准治疗。

       本论文通过调控能量在辐射跃迁与非辐射跃迁中的流动,利用不同策略进行分子修饰,从而提高有机PTA的光热性能,构建稳定优异的AIE型纳米诊疗剂,具体内容如下:

(1)通过氟化策略修饰非富勒烯受体Y5-2BO,将苯环扩展为萘环,延长π共轭结构,引入“无障碍”转子三氟甲基,设计合成AIE性质的Y5-2BO-2BTF,增强相邻分子间的静电相互作用,促进吸收波长红移。Y5-2BO-2BTF的非平面构象有限阻止了π-π堆积,在高浓度下荧光不断增强。经聚合物F127包裹形成带负电的球形的Y5-2BO-2BTF NPs,并且在808 nm(0.8 W cm−2)激光照射下具有82.94%的高光热转换效率,是Y5-2BO NPs光热转换效率的1.5倍,较ICG有更好的光稳定性。动物实验结果表明,Y5-2BO-2BTF NPs在小鼠乳腺原位瘤模型中光热治疗效果良好,且具有良好的生物安全性。

(2)通过延长侧链调控分子间作用力改变CIPC-2EH共轭基团和改变CIPC-3C8 侧链基团修饰合成CIPC-3EH,期待提高摩尔消光系数,CIPC-3EH的摩尔消光系数高达8.0 × 104 cm1M1,使其共轭聚合物具有AIE性质,避免完全的平面结构限制其非辐射跃迁。CIPC-3EH是“A-D-A”型结构,紫外吸收证明具有宽的吸收光谱,并且发光可到NIR-II区。经F127包裹CIPC-3EH形成带负电的球形的CIPC-3EH NPs,有利于在体长循环。体外实验证明波长的红移和光热性能的增强,在808 nm(0.8 W cm−2)激光照射10 min下,CIPC-3EH NPs最高温度可达60 ℃以上;CIPC-3EH NPs在小鼠乳腺原位瘤模型中实现肿瘤处被动富集,尤其是在脑胶质瘤原位模型中显现出NIR-II LP1500 nm优异的成像效果;在细胞水平,CIPC-3EH NPs在808 nm(0.8 W cm−2)激光照射下,在100 μM下可达到约90%的杀伤且在体具有良好的肿瘤杀伤效果,在体安全性良好。

      综上所述,本论文通过两种不同策略构建了高性能的AIE纳米诊疗剂,在乳腺癌精准治疗中取得了良好进展,进一步推进AIE型探针在乳腺癌精准诊断与治疗方面的应用。

外文摘要:

Breast cancer is a killer that threatens women's health. As a minimally invasive therapy, photothermal therapy has the advantages of high specificity, low invasiveness and spatio temporal controllability, and preclinical studies have been carried out for the treatment of breast cancer. Currently developed photothermal agents (PTA) have shortcomings such as poor photostability due to π-π deposition and weak fluorescence due to easy aggregation at high concentrations. Therefore, it is urgent to develop organic PTA with excellent performance and stable luminescence with aggregation-induced emission properties. Near-Infrared II (NIR-II) fluorescence imaging has the characteristics of minimum tissue self-fluorescence level, high sensitivity and better spatial resolution, photoacoustic imaging (PAI) can provide deeper tissue penetration. PTAs with multimodal imaging properties offer more possibilities for complex tumor microenvironments. Therefore, there is an urgent need to develop high-performance AIE nanotheranostic agents for the precision treatment of breast cancer.

 

In this paper, by regulating the flow of energy in radiative and non-radiative transitions, molecular modifications were carried out using different strategies, so as to improve the photothermal properties of organic PTA and construct stable and excellent AIE nanotheranostic agents. The specific contents are as follows:

 

(1) The non-fullerene receptor Y5-2BO was modified by fluorination strategy, the benzene ring was extended to naphthalene ring, the π-π conjugated structure was extended, the "barrier-free" rotor trifluoromethyl was introduced, and Y5-2BO-2BTF with AIE properties was designed and synthesized, which enhanced the electrostatic interaction between adjacent molecules and promoted the absorption wavelength redshift. The non-planar conformation of Y5-2BO-2BTF prevents π-π accumulation, and the fluorescence of Y5-2BO-2BTF is enhanced at high concentrations. The negatively charged spherical Y5-2BO-2BTF NPs was formed by polymer F127, and had a high photothermal conversion efficiency of 82.94% under 808 nm (0.8 W cm−2) laser irradiation, which was 1.5 times that of Y5-2BO NPs, and had better photostability than ICG. The results of animal experiments show that Y5-2BO-2BTF NPs has good photothermal treatment effect and good biosafety in the mouse model of breast cancer in situ.

(2) The modification of CIPC-3EH by changing the CIPC-2EH conjugated groups and changing the CIPC-3C8 side chain groups is expected to improve the molar extinction coefficient. The molar extinction coefficient of CIPC-3EH is as high as 8.0 × 104 cm1M1, which makes the conjugated polymer with AIE properties. Avoiding a completely flat structure limits its non-radiative transitions. CIPC-3EH is an "A-D-A" type structure with a wide absorption spectrum demonstrated by UV absorption and luminescence up to the NIR-II region. CIPC-3EH is wrapped by F127 to form a negatively charged spherical CIPC-3EH NPs, which is conducive to circulation in the body length. In vitro experiments show that the wavelength redshift and photothermal properties are enhanced. Under 808 nm (0.8 W cm−2) laser irradiation for 10 min, the maximum temperature of CIPC-3EH NPs can reach more than 60 ℃. CIPC-3EH NPs can achieve passive enrichment of tumor in mouse breast cancer in situ model, especially in brain glioma in situ model, showing excellent imaging effect of NIR-II LP1500 nm. At the cellular level, CIPC-3EH NPs can achieve about 90% kill at 100 μM under 808 nm (0.8 W cm−2) laser irradiation, and has good tumor killing effect in vivo, and with good safety in vivo.

参考文献:
[1]Hanahan D. Hallmarks of Cancer: New Dimensions [J]. Cancer Discovery, 2022, 12(1): 31-46.
[2]Siegel R L, Miller K D, Wagle N S, et al. Cancer Statistics, 2023 [J]. CA: A Cancer Journal for Clinicians, 2023, 73(1): 17-48.
[3]Sung H, Ferlay J, Siegel R L, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries [J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.
[4]Xia C, Dong X, Li H, et al. Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants [J]. Chinese Medical Journal, 2022, 135(5): 584-590.
[5]Burstein H J, Curigliano G, Thurlimann B, et al. Customizing Local and Systemic Therapies for Women with Early Breast Cancer: the St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021 [J]. Annals of Oncology, 2021, 32(10): 1216-1235.
[6]Von Felbert V, Bauerschlag D, Maass N, et al. A Specific Photoimmunotheranostics Agent to Detect and Eliminate Skin Cancer Cells Expressing EGFR [J]. Journal of Cancer Research and Clinical Oncology, 2016, 142(5): 1003-1011.
[7]Zhang S, Sun K, Zheng R, et al. Cancer Incidence and Mortality in China, 2015 [J]. Journal of the National Cancer Center, 2021, 1(1): 2-11.
[8]Sher G, Salman N A, Khan A Q, et al. Epigenetic and Breast Cancer Therapy: Promising Diagnostic and Therapeutic Applications [J]. Seminars in Cancer Biology, 2022, 83: 152-165.
[9]Mcdonald E S, Clark A S, Tchou J, et al. Clinical Diagnosis and Management of Breast Cancer [J]. Journal of Nuclear Medicine, 2016, 57 Suppl 1: 9S-16S.
[10]Mirza Z, Karim S. Nanoparticles-Based Drug Delivery and Gene Therapy for Breast Cancer: Recent Advancements and Future Challenges [J]. Seminars in Cancer Biology, 2021, 69: 226-237.
[11]Alamdari S G, Amini M, Jalilzadeh N, et al. Recent Advances in Nanoparticle-Based Photothermal Therapy for Breast Cancer [J]. Journal of Controlled Release, 2022, 349: 269-303.
[12]Pan W L, Tan Y, Meng W, et al. Microenvironment-Driven Sequential Ferroptosis, Photodynamic Therapy, and Chemotherapy for Targeted Breast Cancer Therapy by a Aancer-Cell-Membrane-Coated Nanoscale Metal-Organic Framework [J]. Biomaterials, 2022, 283: 121449.
[13]Zhu Y, Zhu X, Tang C, et al. Progress and Challenges of Immunotherapy in Triple-Negative Breast Cancer [J]. Biochimica et Biophysica Acta-Reviews on Cancer, 2021, 1876(2): 188593.
[14]Zhi D, Yang T, O'hagan J, et al. Photothermal Therapy [J]. Journal of Controlled Release, 2020, 325: 52-71.
[15]Yang Y, Zhu W, Dong Z, et al. 1D Coordination Polymer Nanofibers for Low-Temperature Photothermal Therapy [J]. Advanced Materials, 2017, 29(40).
[16]Chu Y, Xu X Q, Wang Y. Ultradeep Photothermal Therapy Strategies [J]. Journal of Physical Chemistry, 2022, 13(41): 9564-9572.
[17]Kamya E, Lu Z, Cao Y, et al. Effective Design of Organic Luminogens for Near-Infrared-II Fluorescence Imaging and Photo-Mediated Therapy [J]. Journal of Materials Chemistry B, 2022, 10(47): 9770-9788.
[18]Chen G, Cao Y, Tang Y, et al. Advanced Near-Infrared Light for Monitoring and Modulating the Spatiotemporal Dynamics of Cell Functions in Living Systems [J]. Advanced Science, 2020, 7(8): 1903783.
[19]Tang L, Xiao Q, Yin Y, et al. An Enzyme-Responsive and NIR-Triggered Lipid-Polymer Hybrid Nanoplatform for Synergistic Photothermal/Chemo Cancer Therapy [J]. Biomaterials Science, 2022, 10(9): 2370-2383.
[20]Wang W, Li Z, Nie X, et al. pH-Sensitive and Charge-Reversal Polymeric Nanoplatform Enhanced Photothermal/Photodynamic Synergistic Therapy for Breast Cancer [J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 836468.
[21]Kwon N, Kim K H, Park S, et al. Hexa-BODIPY-Cyclotriphosphazene Based Nanoparticle for NIR Fluorescence/Photoacoustic Dual-Modal Imaging and Photothermal Cancer Therapy [J]. Biosensors and Bioelectronics, 2022, 216: 114612.
[22]Lv S, Liu Y, Zhao Y, et al. Rational Design of a Small Organic Photosensitizer for NIR-I Imaging-Guided Synergistic Photodynamic and Photothermal Therapy [J]. Biomaterials Science, 2022, 10(17): 4785-4795.
[23]Zhu S, Tian R, Antaris A L, et al. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery [J]. Advanced Materials, 2019, 31(24): e1900321.
[24]Lyu Y, Li J, Pu K. Second Near-Infrared Absorbing Agents for Photoacoustic Imaging and Photothermal Therapy [J]. Small Methods, 2019, 3(11).
[25]Zhang J, Zhen X, Upputuri P K, et al. Activatable Photoacoustic Nanoprobes for In Vivo Ratiometric Imaging of Peroxynitrite [J]. Advanced Materials, 2017, 29(6).
[26]Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics [J]. Advanced Materials, 2018, 30(49): e1801778.
[27]Liu N, O'connor P, Gujrati V, et al. Facile Synthesis of a Croconaine-Based Nanoformulation for Optoacoustic Imaging and Photothermal Therapy [J]. Advanced Healthcare Materials, 2021, 10(9): e2002115.
[28]Yang Y, Hu D, Lu Y, et al. Tumor-Targeted/Reduction-Triggered Composite Multifunctional Nanoparticles for Breast Cancer Chemo-Photothermal Combinational Therapy [J]. Acta Pharmaceutica Sinica B, 2022, 12(6): 2710-2730.
[29]Wen G, Li X, Zhang Y, et al. Effective Phototheranostics of Brain Tumor Assisted by Near-Infrared-II Light-Responsive Semiconducting Polymer Nanoparticles [J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33492-33499.
[30]Yan D, Wang M, Wu Q, et al. Multimodal Imaging-Guided Photothermal Immunotherapy Based on a Versatile NIR-II Aggregation-Induced Emission Luminogen [J]. Angewandte Chemie International Edtion. in English, 2022, 61(27): e202202614.
[31]Fowler A M, Strigel R M. Clinical Advances in PET-MRI for Breast Cancer [J]. Lancet Oncol, 2022, 23(1): e32-e43.
[32]Zhou Z, Lu Z R. Gadolinium-Based Contrast Agents for Magnetic Resonance Cancer Imaging [J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology, 2013, 5(1): 1-18.
[33]Jia M, Yang X, Chen Y, et al. Grafting of Gd-DTPA onto MOF-808 to Enhance MRI Performance for Guiding Photothermal Therapy [J]. Journal of Materials Chemistry B, 2021, 9(41): 8631-8638.
[34]Hu X, Chen Z, Jin A J, et al. Rational Design of All-Organic Nanoplatform for Highly Efficient MR/NIR-II Imaging-Guided Cancer Phototheranostics [J]. Small, 2021, 17(12): e2007566.
[35]Luo J, Xie Z, Lam J W, et al. Aggregation-Induced Emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J]. Chemical Communications, 2001, (18): 1740-1741.
[36]Wu W, Li Z. Nanoprobes with Aggregation-Induced Emission for Theranostics [J]. Materials Chemistry Frontiers, 2021, 5(2): 603-626.
[37]Ji B, Wei M, Yang B. Recent Advances in Nanomedicines for Photodynamic Therapy (PDT)-Driven Cancer Immunotherapy [J]. Theranostics, 2022, 12(1): 434-458.
[38]Tan Y, Liu P, Li D, et al. NIR-II Aggregation-Induced Emission Luminogens for Tumor Phototheranostics [J]. Biosensors-Basel, 2022, 12(1):46.
[39]Ma G, Liu Z, Zhu C, et al. H(2) O(2) -Responsive NIR-II AIE Nanobomb for Carbon Monoxide Boosting Low-Temperature Photothermal Therapy [J]. Angewandte Chemie International Edtion. in English, 2022, 61(36): e202207213.
[40]Song N, Zhang Z, Liu P, et al. Nanomaterials with Supramolecular Assembly Based on AIE Luminogens for Theranostic Applications [J]. Advanced Materials, 2020, 32(49): e2004208.
[41] Zhu C, Kwok R T K, Lam J W Y, et al. Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine [J]. ACS Applied Materials & Interfaces, 2018, 1(6): 1768-1786.
[42]Kang M, Gu X, Kwok R T, et al. A Near-Infrared AIEgen for Specific Imaging of Lipid Droplets [J]. Chemical Communications, 2016, 52(35): 5957-5960.
[43]Kang M, Zhang Z, Song N, et al. Aggregation-Enhanced Theranostics: AIE Sparkles in Biomedical Field [J]. Aggregate, 2020, 1(1): 80-106.
[44]Feng G, Liu B. Multifunctional AIEgens for Future Theranostics [J]. Small, 2016, 12(47): 6528-6535.
[45]Zeng S T, Shao W, Yu Z Y, et al. Construction of a TICT-AIE-Integrated Unimolecular Platform for Imaging Lipid Droplet-Mitochondrion Interactions in Live Cells and In Vivo [J]. ACS Sensors, 2023, 8(1): 40-50.
[46]Mei J, Hong Y, Lam J W, et al. Aggregation-Induced Emission: the Whole is More Brilliant than the Parts [J]. Advanced Materials, 2014, 26(31): 5429-5479.
[47]Zhao Z, Zhang H, Lam J W Y, et al. Aggregation-Induced Emission: New Vistas at the Aggregate Level [J]. Angewandte Chemie International Edtion. in English, 2020, 59(25): 9888-9907.
[48]Zhang H, Zhao Z, Mcgonigal P R, et al. Clusterization-Triggered Emission: Uncommon Luminescence from Common Materials [J]. Materials Today, 2020, 32: 275-292.
[49]A. S, M. M, Ea. J, et al. Blue-Fluorescent Antibodies. [J]. Science, 2000, 290(5490): 307-313.
[50]Wang J, Mei J, Hu R, et al. Click Synthesis, Aggregation-Induced Emission, E/Z Isomerization, Self-Organization, and Multiple Chromisms of Pure Stereoisomers of a Tetraphenylethene-Cored Luminogen [J]. Journal of the American Chemical Society, 2012, 134(24): 9956-9966.
[51]Qin A, Lam J W, Tang B Z. Click Polymerization [J]. Chemical Society Reviews, 2010, 39(7): 2522-2544.
[52]Xue J, Liang Q, Wang R, et al. Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer [J]. Advanced Materials, 2019, 31(28): e1808242.
[53]Guo X, Yang J, Li M, et al. Unique Double Intramolecular and Intermolecular Exciton Coupling in Ethene-Bridged Aza-BODIPY Dimers for High-Efficiency Near-Infrared Photothermal Conversion and Therapy [J]. Angewandte Chemie International Edtion. in English, 2022, 61(44): e202211081.
[54]Gao M, Tang B Z. Fluorescent Sensors Based on Aggregation-Induced Emission: Recent Advances and Perspectives [J]. ACS Sensors, 2017, 2(10): 1382-1399.
[55]Hu W, Prasad P N, Huang W. Manipulating the Dynamics of Dark Excited States in Organic Materials for Phototheranostics [J]. Accounts of Chemical Research, 2021, 54(3): 697-706.
[56]Liu S, Zhou X, Zhang H, et al. Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics [J]. Journal of The American Chemical Society, 2019, 141(13): 5359-5368.
[57]Cai X, Liu B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications [J]. Angewandte Chemie International Edtion. in English, 2020, 59(25): 9868-9886.
[58]Zhan R, Pan Y, Manghnani P N, et al. AIE Polymers: Synthesis, Properties, and Biological Applications [J]. Macromolecular Bioscience, 2017, 17(5): 1600433.
[59]Qian G, Wang Z Y. Near-Infrared Organic Compounds and Emerging Applications [J]. Chemistry-an Asian Journal, 2010, 5(5): 1006-1029.
[60]Feng G, Zhang G Q, Ding D. Design of Superior Phototheranostic Agents Guided by Jablonski Diagrams [J]. Chemical Society Reviews, 2020, 49(22): 8179-8234.
[61]Li Y, Zha M, Yang G, et al. NIR-II Fluorescent Brightness Promoted by "Ring Fusion" for the Detection of Intestinal Inflammation [J]. Chemistry, 2021, 27(51): 13085-13091.
[62]Shao W, Wei Q, Wang S, et al. Molecular Engineering of D–A–D Conjugated Small Molecule Nanoparticles for High Performance NIR-II Photothermal Therapy [J]. Materials Horizons, 2020, 7(5): 1379-1386.
[63]Xu W, Zhang Z, Kang M, et al. Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AIEgens) [J]. ACS Materials Letters, 2020, 2(8): 1033-1040.
[64]Li C, Jiang G, Yu J, et al. Fluorination Enhances NIR-II Emission and Photothermal Conversion Efficiency of Phototheranostic Agents for Imaging-Guided Cancer Therapy [J]. Advanced Materials, 2023, 35(3): e2208229.
[65]Wan X, Li C, Zhang M, et al. Acceptor-Donor-Acceptor Type Molecules for High Performance Organic Photovoltaics-Chemistry and Mechanism [J]. Chemical Society Reviews, 2020, 49(9): 2828-2842.
[66]Antaris A L, Chen H, Cheng K, et al. A Small-Molecule Dye for NIR-II Imaging [J]. Nature Materials, 2016, 15(2): 235-242.
[67]Xu P, Kang F, Yang W, et al. Molecular Engineering of a High Quantum Yield NIR-II Molecular Fluorophore with Aggregation-Induced Emission (AIE) Characteristics for in Vivo Imaging [J]. Nanoscale, 2020, 12(8): 5084-5090.
[68]Wu W, Yang Y, Yang Y, et al. Molecular Engineering of an Organic NIR-II Fluorophore with Aggregation-Induced Emission Characteristics for in Vivo Imaging [J]. Small, 2019, 15(20): e1805549.
[69]Li Y, Tang Y, Hu W, et al. Incorporation of Robust NIR-II Fluorescence Brightness and Photothermal Performance in a Single Large pi-Conjugated Molecule for Phototheranostics [J]. Advanced Science, 2023, 10(3): e2204695.
[70]Li J, Kang M, Zhang Z, et al. Synchronously Manipulating Absorption and Extinction Coefficient of Semiconducting Polymers via Precise Dual-Acceptor Engineering for NIR-II Excited Photothermal Theranostics [J]. Angewandte Chemie International Edtion. in English, 2023: e202301617.
[71]Li J, Wang J, Li H, et al. Supramolecular Materials Based on AIE Luminogens (AIEgens): Construction and Applications [J]. Chemical Society Reviews, 2020, 49(4): 1144-1172.
[72]Sun P, Wu Q, Sun X, et al. J-Aggregate Squaraine Nanoparticles with Bright NIR-II Fluorescence for Imaging Guided Photothermal Therapy [J]. Chemical Communications, 2018, 54(95): 13395-13398.
[73]Zhang Q, Yu P, Fan Y, et al. Bright and Stable NIR-II J-Aggregated AIE Dibodipy-Based Fluorescent Probe for Dynamic in Vivo Bioimaging [J]. Angewandte Chemie International Edtion. in English, 2021, 60(8): 3967-3973.
[74]Ren W, Yan Y, Zeng L, et al. A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy [J]. Advanced Healthcare Materials, 2015, 4(10): 1526-1536.
[75]Xu W, Wang D, Tang B Z. NIR-II AIEgens: A Win-Win Integration towards Bioapplications [J]. Angewandte Chemie International Edtion. in English, 2021, 60(14): 7476-7487.
[76]Xu W, Lee M M S, Nie J J, et al. Three-Pronged Attack by Homologous Far-red/NIR AIEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy [J]. Angewandte Chemie International Edtion. in English, 2020, 59(24): 9610-9616.
[77]Lou H, Ji A, Qu C, et al. A Small-Molecule Based Organic Nanoparticle for Photothermal Therapy and Near-Infrared-IIb Imaging [J]. ACS Applied Materials & Interfaces, 2022, 14(31): 35454-35465.
[78]Jiang Z, Zhang C, Wang X, et al. A Borondifluoride-Complex-Based Photothermal Agent with an 80 % Photothermal Conversion Efficiency for Photothermal Therapy in the NIR-II Window [J]. Angewandte Chemie International Edtion. in English, 2021, 60(41): 22376-22384.
[79]Yang K, Long F, Liu W, et al. A-DA'D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy [J]. ACS Applied Materials & Interfaces, 2022, 14(16): 18043-18052.
[80]Sun P, Jiang X, Sun B, et al. Electron-Acceptor Density Adjustments for Preparation Conjugated Polymers with NIR-II Absorption and Brighter NIR-II Fluorescence and 1064 nm Active Photothermal/Gas Therapy [J]. Biomaterials, 2022, 280: 121319.
中图分类号:

 R31    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式