- 无标题文档
查看论文信息

中文题名:

 群体智能多无人机路径规划研究    

姓名:

 王海林    

学号:

 20181213875    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085401    

学科名称:

 新一代电子信息技术(含量子技术等)    

学生类型:

 硕士    

学位:

 电子信息硕士    

学校:

 西安电子科技大学    

院系:

 广州研究院    

专业:

 电子信息    

研究方向:

 无人机路径规划    

第一导师姓名:

 姬红兵    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 常超    

完成日期:

 2023-04-12    

答辩日期:

 2023-05-30    

外文题名:

 Study of swarm intelligent based multi-UAV path planning    

中文关键词:

 人工蜂群算法 ; 动态窗口算法 ; 融合算法 ; 任务分配 ; 路径规划    

外文关键词:

 Artificial bee colony algorithm ; dynamic window algorithm ; fusion algorithm ; task allocation ; path planning    

中文摘要:

随着飞行任务的难度、危险性和强度的不断增加,无人机以其灵活性、便携性和较强的隐蔽性得到了广泛的应用,并发挥着越来越重要的作用。无人机完成任务的前提是要规划一条从起点到终点的路径,既要能够避开禁飞区和其他威胁源,又要满足飞机的动力学约束和其他约束。多无人机协同任务已经成为无人机发展的必然趋势,把复杂的任务分解成多个小任务,并分配给多架无人机执行,可以提高效率,增强任务执行能力。多无人机路径规划是一个多目标优化问题,既要满足可飞行性、避碰性的要求,又要保证协同任务的完成。群体智能算法是近年来兴起解决组合优化问题的有效方法,本文围绕群体智能多无人机路径规划展开研究,针对不同场景下路径规划面临的实际问题,从全局路径规划、局部路径规划及任务分配进行深入研究。主要研究内容和成果如下:

(1)静态环境中,针对应用人工蜂群算法解决全局路径规划时容易陷入局部最优、收敛速度慢的问题,提出一种改进的人工蜂群算法。该算法对标准算法进行了两点改进:首先,考虑到混沌的遍历性和随机性,提出一种改进的初始化策略,利用Tent混沌映射方法初始化种群以避免陷入局部最优;其次,通过应用全局最优解指导雇佣蜂阶段新候选解的搜索,实现对全局的有导向粗搜索,应用Logistic混沌映射指导旁观蜂阶段新候选解的搜索,实现局部的精搜索,从而提高收敛速度。此外,为了符合无人机的运动学模型,对规划出的路径点进行平滑处理。

(2)动态环境中,针对应用动态窗口算法解决局部路径规划时存在的全局规划路径能力差、规划过程拐角尖峰多以及不能应对密集障碍物环境等问题,提出一种融合算法。首先,利用全局路径规划的关键点作为动态窗口算法的子目标点,通过优化航行过程的位姿以及自适应调整评价函数权重来改进动态窗口算法,可有效提高全局路径规划能力。然后,通过融合改进人工蜂群算法和改进动态窗口算法实现实时路径规划,提高路径跟踪精度,提高时效性,可有效应对密集障碍物环境。

(3)针对任务数和无人机不匹配情况下的任务分配问题,设计了一种任务分配模型,分别应用典型群体智能算法中的遗传算法、蚁群算法以及粒子群算法求解,并从奖励值和运行时间两个方面对比评估相关算法的性能,选用性能较优的遗传算法实现任务分配。最后,实验验证了多无人机在不同场景的路径规划的合理性和有效性。

本文提出的改进方法,有效提升了不同场景下多无人机路径规划的综合性能,对今后多无人机路径规划研究提供参考。

外文摘要:

With the increasing difficulty, danger and intensity of flight missions, unmanned aerial vehicles (UAVs) have been widely used due to their flexibility, portability and strong concealment, and are playing an increasingly important role. The premise for a UAV to complete a mission is to plan a path from the start point to the end point, which must be able to avoid no-fly zones and other threats, but also satisfy the dynamic constraints and other constraints of the aircraft. Multi-UAV collaborative tasks have become an inevitable trend in the development of UAVs. Decomposing complex tasks into multiple small tasks and assigning them to multiple UAVs can improve efficiency and enhance task execution capabilities. Multi-UAV path planning is a multi-objective optimization problem, which must not only meet the requirements of flightability and collision avoidance, but also ensure the completion of collaborative tasks. Swarm intelligence algorithm is an effective method to solve combinatorial optimization problems in recent years. This paper focuses on the research of swarm intelligent multi-UAV path planning. Aiming at the actual problems faced by path planning in different scenarios, the global path planning, local path planning and task assignment Do in-depth research. The main research contents and results are as follows:

 

(1) In the static environment, aiming at the problem that the artificial bee colony algorithm is easy to fall into the local optimum and the convergence speed is slow when solving the global path planning, an improved artificial bee colony algorithm is proposed. This algorithm has made two improvements to the standard algorithm: first, considering the ergodicity and randomness of chaos, an improved initialization strategy is proposed, using the Tent chaotic mapping method to initialize the population to avoid falling into local optimum; second, by applying the global The optimal solution guides the search of new candidate solutions in the hired bee stage to achieve a global oriented coarse search, and the Logistic chaotic map is used to guide the search for new candidate solutions in the bystander bee stage to achieve local fine search, thereby improving the convergence speed. In addition, in order to conform to the kinematic model of the UAV, the planned waypoints are smoothed.

 

(2) In the dynamic environment, a fusion algorithm is proposed to solve the problems of poor global planning path ability, many corner peaks in the planning process, and inability to deal with dense obstacle environments when the dynamic window algorithm is used to solve the local path planning. First, the key points of the global path planning are used as the sub-target points of the dynamic window algorithm, and the dynamic window algorithm is improved by optimizing the pose of the navigation process and adaptively adjusting the weight of the evaluation function, which can effectively improve the global path planning ability. Then, by integrating the improved artificial bee colony algorithm and the improved dynamic window algorithm to realize real-time path planning, improve path tracking accuracy, improve timeliness, and effectively deal with dense obstacle environments.

 

(3) Aiming at the problem of task allocation when the number of tasks does not match the UAV, a task allocation model is designed, which is solved by applying the genetic algorithm, ant colony algorithm and particle swarm algorithm in typical swarm intelligence algorithms respectively, and from the reward The performance of related algorithms is compared and evaluated in terms of value and running time, and the genetic algorithm with better performance is selected to realize task allocation. Finally, experiments verify the rationality and effectiveness of path planning for multiple UAVs in different scenarios.

 

The improved method proposed in this paper effectively improves the comprehensive performance of multi-UAV path planning in different scenarios, and provides a reference for future research on multi-UAV path planning.

参考文献:
[1] Holland J H. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[M]. MIT press, 1992.
[2] Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341.
[3] Ishibuchi H, Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining[J]. Fuzzy sets and systems, 2004, 141(1): 59-88.
[4] Syswerda G. Uniform crossover in genetic algorithms[C]//ICGA. 1989, 3: 2-9.
[5] Kumar R. Blending roulette wheel selection & rank selection in genetic algorithms[J]. International Journal of Machine Learning and Computing, 2012, 2(4): 365-370.
[6] Potvin J Y. Genetic algorithms for the traveling salesman problem[J].Annals of Operations Research,1996,63:337-370.
[7] Hu X B, Di Paolo E. An efficient genetic algorithm with uniform crossover for the multi-objective airport gate assignment problem[J]. Multi-objective memetic algorithms, 2009: 71-89.
[8] Semenkin E, Semenkina M. Self-configuring Genetic Algorithm with Modified Uniform Crossover Operator[C]//ICSI (1). 2012: 414-421.
[9] Mauldin M L. Maintaining Diversity in Genetic Search[C]//AAAI. 1984: 247-250.
[10] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary computation, 2002, 6(2): 182-197.
[11] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints[J]. IEEE transactions on evolutionary computation, 2013, 18(4): 577-601.
[12] ]Han K H, Kim J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE transactions on evolutionary computation, 2002, 6(6): 580-593.
[13] 张光卫,何锐,刘禹,等. 基于云模型的进化算法[J]. 计算机学报,2008,31(7):1082-1091.
[14] Li J Y, Zhan Z H, Tan K C, et al. A meta-knowledge transfer-based differential evolution for multitask optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 26(4): 719-734.
[15] Opara K R, Arabas J. Differential Evolution: A survey of theoretical analyses[J]. Swarm and evolutionary computation, 2019, 44: 546-558.
[16] Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE transactions on evolutionary computation, 2006, 10(6): 646-657.
[17] Fan Q, Wang W, Yan X. Differential evolution algorithm with strategy adaptation and knowledge-based control parameters[J]. Artificial Intelligence Review, 2019, 51: 219-253.
[18] Zhao F, Zhao L, Wang L, et al. An ensemble discrete differential evolution for the distributed blocking flowshop scheduling with minimizing makespan criterion[J]. Expert Systems with Applications, 2020, 160: 113678.
[19] Meng Z, Pan J S, Tseng K K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation schemes for numerical optimization[J]. Knowledge-Based Systems, 2019, 168: 80-99.
[20] Guo S M, Yang C C. Enhancing differential evolution utilizing eigenvector-based crossover operator[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(1): 31-49.
[21] Wang Y, Cai Z, Zhang Q. Enhancing the search ability of differential evolution through orthogonal crossover[J]. Information Sciences, 2012, 185(1): 153-177.
[22] Gong W, Cai Z. Differential evolution with ranking-based mutation operators[J]. IEEE Transactions on Cybernetics, 2013, 43(6): 2066-2081.
[23] Das S, Abraham A, Chakraborty U K, et al. Differential evolution using a neighborhood-based mutation operator[J]. IEEE transactions on evolutionary computation, 2009, 13(3): 526-553.
[24] Sarker R A, Elsayed S M, Ray T. Differential evolution with dynamic parameters selection for optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2013, 18(5): 689-707.
[25] Liu X F, Zhan Z H, Lin Y, et al. Historical and heuristic-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(12): 2623-2635.
[26] Zhan Z H, Wang Z J, Jin H, et al. Adaptive distributed differential evolution[J]. IEEE transactions on cybernetics, 2019, 50(11): 4633-4647.
[27] Chen Z G, Zhan Z H, Wang H, et al. Distributed individuals for multiple peaks: A novel differential evolution for multimodal optimization problems[J]. IEEE transactions on evolutionary computation, 2019, 24(4): 708-719.
[28] Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]//Proceedings of the first European conference on artificial life. 1991, 142: 134-142.
[29] Kennedy J, Eberhart R. Particle swarm optimization[C]//Proceedings of ICNN'95-international conference on neural networks. IEEE, 1995, 4: 1942-1948.
[30] Zhang X L, Chen X F, He Z J. An ACO-based algorithm for parameter optimization of support vector machines[J]. Expert systems with applications, 2010, 37(9): 6618-6628.
[31] Lu L C, Yue T W. Mission-oriented ant-team ACO for min–max MTSP[J]. Applied Soft Computing, 2019, 76: 436-444.
[32] Shi L, Zhan Z H, Liang D, et al. Memory-based ant colony system approach for multi-source data associated dynamic electric vehicle dispatch optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 17491-17505.
[33] Javed S, Ishaque K, Siddiqui S A, et al. A simple yet fully adaptive PSO algorithm for global peak tracking of photovoltaic array under partial shading conditions[J]. IEEE Transactions on Industrial Electronics, 2021, 69(6): 5922-5930.
[34] Deng W, Xu J, Zhao H, et al. A novel gate resource allocation method using improved PSO-based QEA[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(3): 1737-1745.
[35] Tanweer M R, Suresh S, Sundararajan N. Self regulating particle swarm optimization algorithm[J]. Information Sciences, 2015, 294: 182-202.
[36] Cheng R, Jin Y. A social learning particle swarm optimization algorithm for scalable optimization[J]. Information Sciences, 2015, 291: 43-60.
[37] Xia X, Gui L, Yu F, et al. Triple archives particle swarm optimization[J]. IEEE transactions on cybernetics, 2019, 50(12): 4862-4875.
[38] Li J Y, Zhan Z H, Liu R D, et al. Generation-level parallelism for evolutionary computation: A pipeline-based parallel particle swarm optimization[J]. IEEE Transactions on Cybernetics, 2020, 51(10): 4848-4859.
[39] Blackwell T, Kennedy J. Impact of communication topology in particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2018, 23(4): 689-702.
[40] Lin A, Sun W, Yu H, et al. Global genetic learning particle swarm optimization with diversity enhancement by ring topology[J]. Swarm and evolutionary computation, 2019, 44: 571-583.
[41] Jian J R, Chen Z G, Zhan Z H, et al. Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(4): 779-793.
[42] Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, 2005.
[43] Yang X S. A new metaheuristic bat-inspired algorithm[J]. Nature inspired cooperative strategies for optimization (NICSO 2010), 2010: 65-74.
[44] Pan W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74.
[45] Duan H, Qiao P. Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning[J]. International journal of intelligent computing and cybernetics, 2014, 7(1): 24-37.
[46] Xu C, Duan H, Liu F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning[J]. Aerospace science and technology, 2010, 14(8): 535-541.
[47] Li B, Gong L, Yang W. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle pathplanning[J]. The Scientific World Journal, 2014, 2014.
[48] Kang F, Li J, Ma Z. Rosenbrock artificial bee colony algorithm for accurate global optimization of numerical functions[J]. Information Sciences, 2011, 181(16): 3508-3531.
[49] Ding H, Feng Q. Artificial bee colony algorithm based on Boltzmann selection policy[J]. Computer engineering and Applications, 2009, 45(31): 53-55.
[50] Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied mathematics and computation, 2010, 217(7): 3166-3173.
[51] Biswas S, Das S, Debchoudhury S, et al. Co-evolving bee colonies by forager migration: A multi-swarm based Artificial Bee Colony algorithm for global search space[J]. Applied Mathematics and Computation, 2014, 232: 216-234.
[52] Gao W, Liu S, Huang L. Enhancing artificial bee colony algorithm using more information-based search equations[J]. Information Sciences, 2014, 270: 112-133
[53] Alizadegan A, Asady B, Ahmadpour M. Two modified versions of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2013, 225: 601-609.
[54] Aydin D, Özyön S, Yaşar C, et al. Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem[J]. International journal of electrical power & energy systems, 2014, 54: 144-153.
[55] Kang F, Li J, Li H. Artificial bee colony algorithm and pattern search hybridized for global optimization[J]. Applied Soft Computing, 2013, 13(4): 1781-1791.
[56] Li B, Li Y, Gong L. Protein secondary structure optimization using an improved artificial bee colony algorithm based on AB off-lattice model[J]. Engineering Applications of Artificial Intelligence, 2014, 27: 70-79
[57] Gan C, Cao W, Wu M, et al. A new bat algorithm based on iterative local search and stochastic inertia weight[J]. Expert Systems with Applications, 2018, 104: 202-212.
[58] Liu Q, Wu L, Xiao W, et al. A novel hybrid bat algorithm for solving continuous optimization problems[J]. Applied Soft Computing, 2018, 73: 67-82.
[59] Chen M R, Huang Y Y, Zeng G Q, et al. An improved bat algorithm hybridized with extremal optimization and Boltzmann selection[J]. Expert Systems with Applications, 2021, 175: 114812.
[60] Cui Z, Li F, Zhang W. Bat algorithm with principal component analysis[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 603-622.
[61] Wu L, Liu Q, Tian X, et al. A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems[J]. Knowledge-Based Systems, 2018, 144: 153-173.
[62] Yuan X, Dai X, Zhao J, et al. On a novel multi-swarm fruit fly optimization algorithm and its application[J]. Applied Mathematics and Computation, 2014, 233: 260-271.
[63] Hu G, Xu Z, Wang G, et al. Forecasting energy consumption of long-distance oil products pipeline based on improved fruit fly optimization algorithm and support vector regression[J]. Energy, 2021, 224: 120153.
[64] Duan H, Qiu H. Advancements in pigeon-inspired optimization and its variants[J]. Science China Information Sciences, 2019, 62: 1-10.
[65] Dou R, Duan H. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system[J]. Aerospace Science and Technology, 2017, 61: 11-20.
[66] Yang Z, Duan H, Fan Y, et al. Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization[J]. Aerospace Science and Technology, 2018, 79: 518-530.
[67] Duan H, Wang X. Echo state networks with orthogonal pigeon-inspired optimization for image restoration[J]. IEEE transactions on neural networks and learning systems, 2015, 27(11): 2413-2425.
[68] Xu X, Deng Y. Uav power component—dc brushless motor design with merging adjacent-disturbances and integrated-dispatching pigeon-inspired optimization[J]. IEEE Transactions on Magnetics, 2018, 54(8): 1-7.
[69] Zhang D, Duan H. Social-class pigeon-inspired optimization and time stamp segmentation for multi-UAV cooperative path planning[J]. Neurocomputing, 2018, 313: 229-246.
[70] Ma H, Shen S, Yu M, et al. Multi-population techniques in nature inspired optimization algorithms: A comprehensive survey[J]. Swarm and evolutionary computation, 2019, 44: 365-387.
[71] Niu B, Zhu Y, He X. Multi-population cooperative particle swarm optimization[C]//Advances in Artificial Life: 8th European Conference, ECAL 2005, Canterbury, UK, September 5-9, 2005. Proceedings 8. Springer Berlin Heidelberg, 2005: 874-883.
[72] Yu G. A new multi-population-based artificial bee colony for numerical optimisation[J]. International Journal of Computing Science and Mathematics, 2016, 7(6): 509-515.
[73] Aimi H, Suyama K. IIR filter design using multi-swarm PSO based on particle reallocation strategy[J]. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 2016, 99(11): 1947-1954.
[74] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer with local search[C]//2005 IEEE congress on evolutionary computation. Ieee, 2005, 1: 522-528.
[75] Liang J J, Suganthan P N. Dynamic multi-swarm particle swarm optimizer[C]//Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005. IEEE, 2005: 124-129.
[76] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in engineering software, 2014, 69: 46-61.
[77] Fausto F, Cuevas E, Valdivia A, et al. A global optimization algorithm inspired in the behavior of selfish herds[J]. Biosystems, 2017, 160: 39-55.
[78] Li B, Lin T S, Liao L, et al. Genetic algorithm based on multipopulation competitive coevolution[C]//2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). IEEE, 2008: 225-228.
[79] Swarm intelligence and bio-inspired computation: theory and applications[M]. Newnes, 2013.
[80] Blum C, Li X. Swarm intelligence in optimization[M]//Swarm intelligence. Springer, Berlin, Heidelberg, 2008: 43-85.
[81] Chakraborty A, Kar A K. Swarm intelligence: A review of algorithms[J]. Nature-inspired computing and optimization, 2017: 475-494.
[82] Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE transactions on evolutionary computation, 1997, 1(1): 67-82.
[83] Adhikari D, Kim E, Reza H. A fuzzy adaptive differential evolution for multi-objective 3D UAV path optimization[C]//2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017: 2258-2265.
[84] Cai Q, Long T, Wang Z, et al. Multiple paths planning for UAVs using particle swarm optimization with sequential niche technique[C]//2016 Chinese Control and Decision Conference (CCDC). IEEE, 2016: 4730-4734.
[85] Cekmez U, Ozsiginan M, Sahingoz O K. Multi-UAV path planning with parallel genetic algorithms on CUDA architecture[C]//Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion. 2016: 1079-1086.
[86] San K T, Lee E Y, Chang Y S. The delivery assignment solution for swarms of UAVs dealing with multi-dimensional chromosome representation of genetic algorithm[C]//2016 IEEE 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, 2016: 1-7.
[87] Liu C, Xie W, Zhang P, et al. Multi-uavs cooperative coverage reconnaissance with neural network and genetic algorithm[C]//Proceedings of the 2019 3rd High Performance Computing and Cluster Technologies Conference. 2019: 81-86.
[88] Duan F, Li X, Zhao Y. Express uav swarm path planning with vnd enhanced memetic algorithm[C]//Proceedings of the 2018 International Conference on Computing and Data Engineering. 2018: 93-97.
[89] Pan Y, Yang Y, Li W. A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV[J]. Ieee Access, 2021, 9: 7994-8005.
[90] Vijayakumari D M, Kim S, Suk J, et al. Receding-horizon trajectory planning for multiple uavs using particle swarm optimization[C]//AIAA Scitech 2019 forum. 2019: 1165.
[91] Li X, Zhao Y, Zhang J, et al. A hybrid PSO algorithm based flight path optimization for multiple agricultural UAVs[C]//2016 IEEE 28th international conference on tools with artificial intelligence (ICTAI). IEEE, 2016: 691-697.
[92] Hoang V T, Phung M D, Dinh T H, et al. Reconfigurable multi-uav formation using angle-encoded pso[C]//2019 IEEE 15th International Conference on Automation Science and Engineering (CASE). IEEE, 2019: 1670-1675.
[93] Shao S, Peng Y, He C, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization[J]. ISA transactions, 2020, 97: 415-430.
[94] He W, Qi X, Liu L. A novel hybrid particle swarm optimization for multi-UAV cooperate path planning[J]. Applied Intelligence, 2021, 51: 7350-7364.
[95] Wang B H, Wang D B, Ali Z A. A Cauchy mutant pigeon-inspired optimization–based multi-unmanned aerial vehicle path planning method[J]. Measurement and Control, 2020, 53(1-2): 83-92.
[96] Hu C, Xia Y, Zhang J. Adaptive operator quantum-behaved pigeon-inspired optimization algorithm with application to UAV path planning[J]. Algorithms, 2018, 12(1): 3.
[97] Zhang B, Duan H. Three-dimensional path planning for uninhabited combat aerial vehicle based on predator-prey pigeon-inspired optimization in dynamic environment[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2015, 14(1): 97-107.
[98] Fox D, Burgard W, Thrun S. The dynamic window approach to collision avoidance[J]. IEEE Robotics & Automation Magazine, 1997, 4(1): 23-33.
[99] Imanian N, Shiri M E, Moradi P. Velocity based artificial bee colony algorithm for high dimensional continuous optimization problems[J]. Engineering Applications of Artificial Intelligence, 2014, 36: 148-163.
[100] Aydin D, Özyön S, Yaşar C, et al. Artificial bee colony algorithm with dynamic population size to combined economic and emission dispatch problem[J]. International journal of electrical power & energy systems, 2014, 54: 144-153.
[101] Xu C, Duan H, Liu F. Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle (UCAV) path planning[J]. Aerospace science and technology, 2010, 14(8): 535-541.
[102] Qu C, Gai W, Zhong M, et al. A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning[J]. Applied soft computing, 2020, 89: 106099.
[103] Zong X, Sun Q, Yao D, et al. Trajectory planning in 3D dynamic environment with non-cooperative agents via fast marching and Bézier curve[J]. Cyber-Physical Systems, 2019, 5(2): 119-143.
中图分类号:

 V24    

馆藏号:

 58694    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式