- 无标题文档
查看论文信息

题名:

 NR-V2X系统中低时延高可靠的资源分配方案    

作者:

 杨毅琎    

学号:

 20011210302    

保密级别:

 公开    

语种:

 chi    

学科代码:

 085402    

学科:

 工学 - 电子信息 - 通信工程(含宽带网络、移动通信等)    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 电子与通信工程    

研究方向:

 电子与通信工程    

导师姓名:

 陈健    导师信息

导师单位:

 西安电子科技大学    

第二导师姓名:

 唐怀玉    

完成日期:

 2023-03-31    

答辩日期:

 2023-05-27    

外文题名:

 Resource Allocation Schemes for URLLC in NR-V2X System    

关键词:

 新空口车联网 ; 资源分配 ; 短包通信 ; 低时延高可靠通信    

外文关键词:

 New Radio-Vehicle to Everything ; Resource Allocation ; Short Packet Communication ; Ultra Reliable and Low Latency Communication    

摘要:

新空口车联网(New Radio-Vehicle to Everything, NR-V2X)已经成为实现未来智慧交通系统的关键技术。《国家车联网联产业标准体系建设指南(智能网联汽车)》提到从信息通信、交通运输、交通领域创新等多个角度将车联网纳入新基建、智慧交通、智慧城市的重要范畴,加快建设汽车强国。NR-V2X构建了“人-车-路-云”智能交通领域数据的互联互通系统,将在增强驾驶安全、降低事故发生率、节能减排、提高交通效率等方面发挥重要作用。然而,这也对可靠性、端到端时延等方面提出了更严苛的要求,是未来车联网业务所关注的通信痛点。

未来NR-V2X系统存在挑战包括:(1)由于复杂的交通环境与车辆移动性,车辆网络状态在时间与空间上具有动态性,致使系统机动性强,数据通信稳定性差;(2)随着车载通信设备指数性增长,日益稀缺的频谱资源极易造成车辆间复杂的通信干扰问题和网络拥塞,影响车辆关键信息的即时交付;(3)车联网存在广泛的数据业务,如车载多媒体娱乐、视频会议、安全信息传递、高精度地图下载,不同车辆通信类型服务质量(Quality of Service, QoS)需求差异化大,很难同时满足可靠性、时延、吞吐量等方面不同的需求。因此,对NR-V2X系统中低时延高可靠的资源分配方案的研究具有非常重要的理论意义和广泛的应用前景。本论文的主要内容为:

首先,研究了车辆对车辆(vehicle to vehicle, V2V)多播通信最小-最大译码错误率资源分配方案,旨在最小化多播组最大译码错误率,确保车辆安全信息准确及时的传输。本方案通过坐标下降法将复杂混合整数非凸优化问题解耦为连续码长优化和功率优化子问题,进而利用最优化方法将子问题转化为凸优化问题,交替求解。最后,将连续码长转换为整数,得到最优多播译码错误率。仿真结果展现了数据量、码长、最大发射功率、能耗、多播接收端数量及车辆速度对V2V多播译码错误率的影响。与对比方案相比,本方案更加接近全局最优解且多播可靠性总高于99.9%,对NR-V2X多播技术增强的实现具有一定意义。

其次,研究了NR-V2X系统长期稳定资源分配,设计了一种长期双尺度资源分配方案,旨在保障车联网中V2V和V2I车辆用户QoS,提高车联网频谱利用率和网络稳定性。本方案通过多播分组策略,减少因车辆高速移动性造成的通信开销。通过信息年龄与信干噪比概率约束确保低时延高可靠通信,且对系统资源块、各车辆用户发射功率进行资源分配,降低各用户间信息干扰,提高频谱资源利用率。通过仿真实验验证了该方案理论分析的正确性,与对比方案相比,本方案在系统V2I平均总吞吐量与V2V时延上有一定的优越性,可通过调控控制参数V权衡V2I最优平均总吞吐量和队列稳定,且同时满足V2V组内端到端毫秒级通信与高达99.99%的链路可靠性,在一定程度上有助于未来NR-V2X网络长期稳定。

外摘要要:

New radio-vehicle to everything (NR-V2X) has become a key technology to achieve future intelligent transportation systems. The National Connected Vehicle Industry Standard System Construction Guidelines (Intelligent Connected Vehicles) mentioned that the Internet of vehicles has been included into the important category of new infrastructure, smart transportation and smart city from the perspectives of transportation, information communication and innovation in the field of transportation, accelerating the construction of an automobile power. NR-V2X supports the interconnection of data in the transportation field of "person-vehicle-road-cloud". It will play an important role in enhancing driving safety, reducing accident rates, saving energy and reducing emissions, and improving transportation efficiency. However, this also poses more stringent requirements on reliability, end-to-end latency, and other aspects, which is a communication pain point that future connected vehicle services are concerned about.

 

Challenges for future NR-V2X systems include: (1) Complex traffic environment and vehicle mobility. The state of vehicle network is dynamic in time and space, which may result in strong system maneuverability and poor data communication stability. (2) Exponential growth of vehicle-mounted communication equipment. The scarce spectrum resources easily cause complex interference problems and network congestion. This affects the immediate delivery of critical vehicle information. (3) Extensive data services in the Internet of Vehicles, such as vehicle multimedia entertainment, video conferencing, security information transmission, high-precision map download. The demand for quality of service (QoS) varies greatly among different vehicle communication types. It is difficult to meet the different requirements in terms of reliability, delay, throughput, etc. Therefore, it is of great theoretical significance and application prospect to study the resource allocation scheme with low delay and high reliability in NR-V2X system. The main content of this paper is as follows.

 

Firstly, the minimum-maximum decoding error resource allocation scheme of vehicle-to-vehicle (V2V) multicast communication is studied, in order to minimize the maximum decoding error rate of multicast groups and ensure the accurate and timely transmission of vehicle safety information. In this scheme, the complex mixed-integer non-convex optimization problem is decoupled into continuous block length optimization and power allocation subproblems by using the coordinate descent method. Then the optimization method is used to transform the subproblems into convex optimization problems solved alternately. Finally, the block length is converted to the integer variable, and the corresponding optimal solution is derived. The simulation results show the effects of data size, block length, maximum transmitting power, energy consumption, number of receivers, and vehicle speed on the error rate of V2V multicast decoding. Compared with the comparison schemes, this scheme is closer to the global optimal solution and the multicast reliability is generally higher than 99.9%,that has the advantages and certain significance for the enhancement of NR-V2X multicast technology.

 

Secondly, the long-term stable resource allocation scheme of NR-V2X system is studied. It is a long-term dual-scale resource allocation scheme. It guarantees the QoS of different communication types of vehicles in the Internet of vehicles and improves the spectrum utilization rate and network stability. This scheme uses a multicast clustering strategy to reduce communication overhead caused by high-speed vehicle mobility. It realizes high reliability and low delay communications by age of information and signal to interference plus noise ratio probability constraints. Then allocated block length, transmission power, and information interference can be reduced with the enhanced spectrum resource utilization. The correctness of the theoretical analysis of the scheme is verified by the simulation experiment. Compared with the existing scheme, the proposal has great advantages in the average total throughput and delay of the system. The trade-off between optimal average total throughput and queue stability is realized by adjusting parameter V, which can achieve 99.99% reliability and millisecond level end-to-end latency within V2V groups. To a certain extent, this will contribute to long-term stability of future NR-V2X network deployment.

参考文献:
[1] 陈山枝,葛雨明,时岩.蜂窝车联网(C-V2X)技术发展、应用及展望[J].电信科学, 2022, 38(01):1-12.
[2] IMT-2020(5G)推进组. C-V2X 白皮书[R]. 深圳: IMT2020(5G)推进组, 2018.
[3] 3GPP TS 22.185, v14.4.0. Service Requirements for V2X Services[S]. 3GPP, 2018
[4] Naik G, Choudhury B, Park J M. IEEE 802.11 bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications[J]. IEEE Access, 2019, 7: 70169-70184.
[5] Jayaweera S, Manosha S, Rajatheva N, et al. Co-Existence of ITS-G5 and C-V2X at an Urban Road Intersection[C]. 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). Portugal: IEEE, 2021: 253-258.
[6] 3GPP TS22.186, v16.2.0. Enhancement of 3GPP Support for V2X Scenarios [S]. 3GPP. 2019.
[7] Saad M M, Khan M T R, Shah S H A, et al. Advancements in Vehicular Communication Technologies: C-V2X and NR-V2X Comparison[J]. IEEE Communications Magazine, 2021, 59(8): 107-113.
[8] J. B. Kenney. Dedicated Short-Range Communications (DSRC) Standards in the UniStates[J]. Proceedings of the IEEE, 2011, 99(7): 1162-118.
[9] Mir Z H, Filali F. Simulation and Performance Evaluation of Vehicle-To-Vehicle (V2V) Propagation Model in Urban Environment[C]. 2016 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS). Thailand: IEEE, 2016: 394-399.
[10] Abboud K, Omar H A, Zhuang W. Interworking Of DSRC and Cellular Network Technologies for V2X Communications: A Survey[J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9457-9470.
[11] Chen S, Hu J, Shi Y, et al. LTE-V: A TD-LTE-based V2X Solution for Future Vehicular Network[J]. IEEE Internet of Things Journal, 2016, 3(6): 997-1005.
[12] Su H, Zhang X, Chen H H. WSN12-6: Cluster-based DSRC architecture for QoS provisioning over vehicle ad hoc networks[C]. IEEE Globecom 2006. San Francisco: IEEE, 2006: 1-5.
[13] Moradi-Pari E, Tian D, Bahramgiri M, et al. DSRC Versus LTE-V2X: Empirical Performance Analysis of Direct Vehicular Communication Technologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2023.
[14] Lin X. An Overview of 5G Advanced Evolution in 3GPP Release 18[J]. IEEE Communications Standards Magazine, 2022, 6(3): 77-83.
[15] Panzner B, Şahin T, Keshavamurthy P. Coexistence of 5G Sidelink Communication and 5G Sidelink Positioning[C]. 2022 International Symposium ELMAR. Croatia: IEEE, 2022: 77-80.
[16] Zhou H, Xu W, Chen J, et al. Evolutionary V2X Technologies Toward the Internet of Vehicles: Challenges and Opportunities[J]. Proceedings of the IEEE, 2020, 108(2): 308-323.
[17] Garcia M H C, Molina-Galan A, Boban M, et al. A Tutorial on 5G NR V2X Communications[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3): 1972-2026.
[18] Wang P, Di B, Zhang H, et al. Cellular V2X Communications in Unlicensed Spectrum: Harmonious Coexistence with VANET in 5G Systems[J]. IEEE Transactions on Wireless Communications, 2018, 17(8): 5212-5224.
[19] 殷晓虎,谢豪,李加美.基于Markov模型的认知车联网频谱感知方法[J/OL].无线电工程:1-10.http://kns.cnki.net/kcms/detail/13.1097.TN.20230105.1347.011.html. [2023-03-15]
[20] Chen Y, Wang Y, Zhang J, et al. Qos-Driven Spectrum Sharing for Reconfigurable Intelligent Surfaces (Riss) Aided Vehicular Networks[J]. IEEE Transactions on Wireless Communications, 2021, 20(9): 5969-5985.
[21] Hasan M, Mohan S, Shimizu T, et al. Securing Vehicle-To-Everything (V2X) Communication Platforms[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(4): 693-713.
[22] 黄江涛,王鑫,乔少杰.面向车联网的自适应危险驾驶行为分析与预测框架[J/OL].无线电工程:1-9.http://kns.cnki.net/kcms/detail/13.1097.TN.20230309.2012.012.html. [2023-03-15]
[23] Lu R, Zhang L, Ni J, et al. 5G Vehicle-to-Everything Services: Gearing Up for Security and Privacy[J]. Proceedings of the IEEE, 2019, 108(2): 373-389.
[24] 邱旭,卞浩卜,吴铭骁等.基于5G毫米波通信的高速公路车联网任务卸载算法研究[J].计算机科学, 2022, 49(06): 25-31.
[25] Coll-Perales B, Gozalvez J, Gruteser M. Sub-6ghz Assisted MAC for Millimeter Wave Vehicular Communications[J]. IEEE Communications Magazine, 2019, 57(3): 125-131.
[26] Asadi A, Müller S, Sim G H, et al. FML: Fast Machine Learning for 5G Mmwave Vehicular Communications[C]. IEEE INFOCOM 2018-IEEE Conference on Computer Communications. Honolulu: IEEE, 2018: 1961-1969.
[27] 3GPP TS 23.247, v17.4.0. Technical Specification Group Services and System Aspects: Architectural Enhancements for 5G Multicast-Broadcast Services[S]. 3GPP, 2022.
[28] 3GPP TS 23.287, v17.4.0. Technical Specification Group Services and System Aspects: Architecture Enhancements for 5G System (5GS) to Support Vehicle-to-Everything (V2X) Services[S]. 3GPP, 2022.
[29] Roger S, Martin-Sacristan D, Garcia-Roger D, et al. Low-Latency Layer-2-Based Multicast Scheme for Localized V2X Communications[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(8): 2962-2975.
[30] Fallgren M, Abbas T, Allio S, et al. Multicast and Broadcast Enablers for High-Performing Cellular V2X Systems[J]. IEEE Transactions on Broadcasting, 2019, 65(2): 454-463.
[31] Wang Z, Hu J, Liu G, et al. Optimal Power Allocations for Relay-Assisted NOMA-Based 5G V2X Broadcast/Multicast Communications[C]. 2018 IEEE/CIC International Conference on Communications in China (ICCC). Beijing: IEEE, 2018: 688-693.
[32] Liu G, Wang Z, Hu J, et al. Cooperative NOMA Broadcasting/Multicasting for Low-Latency and High-Reliability 5G Cellular V2X Communications[J]. IEEE Internet of Things Journal, 2019, 6(5): 7828-7838.
[33] Chen K L, Chen W Y, Hwang R H. Optimizing Resource Allocation with High-Reliability Constraint for Multicasting Automotive Messages in 5G NR C-V2X Networks[J]. IEEE Transactions on Vehicular Technology, 2022, 72(4): 4792-4804.
[34] Keshavamurthy P, Pateromichelakis E, Dahlhaus D, et al. Resource Scheduling for V2V Communications in Co-Operative Automated Driving[C]. 2020 IEEE Wireless Communications and Networking Conference (WCNC). Korea: IEEE, 2020: 1-6.
[35] g Z, Zhu X, Jiang Y, et al. Dynamic Manager Selection Assisted Resource Allocation in URLLC with Finite Block Length for 5G-V2X Platoons[J]. IEEE Transactions on Vehicular Technology, 2022, 71(11): 11336-11350.
[36] Wang P, Di B, Zhang H, et al. Platoon Cooperation in Cellular V2X Networks for 5G and Beyond[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 3919-3932.
[37] Keshavamurthy P, Pateromichelakis E, Dahlhaus D, et al. Edge Cloud-Enabled Radio Resource Management for Co-Operative Automated Driving[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(7): 1515-1530.
[38] Talukder M A S. Evaluating Transportation Network Mobility and Enhancing Traffic Signal Operations Performance Using Probe Data and Connected Vehicle Technology[M]. The University of Alabama, 2021.
[39] 陆忠梅,陈巍,魏杰,于海涛.车联网极低时延与高可靠通信:现状与展望[J].信号处理, 2019, 35(11): 1773-1783.
[40] Polyanskiy Y, Poor H V, Verdú S. Channel Coding Rate in the Finite Blocklength Regime[J]. IEEE Transactions on Information Theory, 2010, 56(5): 2307-2359.
[41] Durisi G, Koch T, Östman J, et al. Short-Packet Communications Over Multiple-Antenna Rayleigh-Fading Channels[J]. IEEE Transactions on Communications, 2015, 64(2): 618-629.
[42] Durisi G, Koch T, Popovski P. Toward Massive, Ultrareliable, and Low-Latency Wireless Communication with Short Packets[J]. Proceedings of the IEEE, 2016, 104(9): 1711-1726.
[43] Fu X, Guo C, Qu Y, et al. Resource Allocation and Blocklength Selection for Low-Latency Vehicular Communications[J]. IEEE Wireless Communications Letters, 2020, 10(5): 914-918.
[44] Samarakoon S, Bennis M, Saad W, et al. Federated Learning for Ultra-Reliable Low-Latency V2V Communications[C]. 2018 IEEE Global Communications Conference (GLOBECOM). United Arab Emirates: IEEE, 2018: 1-7.
[45] Ashraf M I, Liu C F, Bennis M, et al. Towards Low-Latency and Ultra-Reliable Vehicle-to-Vehicle Communication[C]. 2017 European Conference on Networks and Communications (EuCNC). Finland: IEEE, 2017: 1-5.
[46] Sun C, She C, Yang C, et al. Optimizing Resource Allocation in the Short Blocklength Regime for Ultra-Reliable and Low-Latency Communications[J]. IEEE Transactions on Wireless Communications, 2018, 18(1): 402-415.
[47] Ren H, Pan C, Deng Y, et al. Resource Allocation for Secure URLLC in Mission-Critical Iot Scenarios[J]. IEEE Transactions on Communications, 2020, 68(9): 5793-5807.
[48] Li C, Yang N, Yan S. Optimal Transmission of Short-Packet Communications in Multiple-Input Single-Output Systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 7199-7203.
[49] Sun X, Yan S, Yang N, et al. Short-Packet Downlink Transmission with Non-Orthogonal Multiple Access[J]. IEEE Transactions on Wireless Communications, 2018, 17(7): 4550-4564.
[50] 叶佩文, 贾向东, 杨小蓉, 等. 基于超图划分的车联网 V2I/V2V 资源共享机制研究[J]. 信号处理, 2020, 36(11).
[51] Ashraf M I, Liu C F, Bennis M, et al. Dynamic Resource Allocation for Optimized Latency and Reliability in Vehicular Networks[J]. IEEE Access, 2018, 6: 63843-63858.
[52] Hu Y, Zhu Y, Gursoy M C, et al. SWIPT-Enabled Relaying in Iot Networks Operating with Finite Blocklength Codes[J]. IEEE Journal on Selected Areas in Communications, 2018, 37(1): 74-88.
[53] Pan C, Ren H, Deng Y, et al. Joint Blocklength and Location Optimization for URLLC-Enabled UAV Relay Systems[J]. IEEE Communications Letters, 2019, 23(3): 498-501.
[54] Ren H, Pan C, Deng Y, et al. Joint Power and Blocklength Optimization for URLLC in A Factory Automation Scenario[J]. IEEE Transactions on Wireless Communications, 2019, 19(3): 1786-1801.
[55] Zhang S, Li J, Luo H, et al. Low-Latency and Fresh Content Provision in Information-Centric Vehicular Networks[J]. IEEE Transactions on Mobile Computing, 2020, 21(5): 1723-1738.
[56] Abdel-Aziz M K, Samarakoon S, Liu C F, et al. Optimized Age of Information Tail for Ultra-Reliable Low-Latency Communications in Vehicular Networks[J]. IEEE Transactions on Communications, 2019, 68(3): 1911-1924.
[57] Abdel-Aziz M K, Samarakoon S, Bennis M, et al. Ultra-Reliable and Low-Latency Vehicular Communication: An Active Learning Approach[J]. IEEE Communications Letters, 2019, 24(2): 367-370.
[58] Xie M, Gong J, Jia X, et al. Age and Energy Tradeoff for Multicast Networks with Short Packet Transmissions[J]. IEEE Transactions on Communications, 2021, 69(9): 6106-6119.
[59] Chen S, Hu J, Zhao L, et al. Cellular Vehicle-to-Everything (C-V2X)[M]. Springer Nature, 2023.
[60] ABUELSAMID S. C-V2X is Finally Gaining Momentum in The U.S.[EB]. https://www.mobilityengineeringtech.com/component/content/article/ae/supplements/ave/published/navigator/44799. [2023-03-15]
[61] 3GPP TS 23.287,v16.2.0. Architecture Enhancements for 5G System (5GS) to Support Vehicle-to-Everything (V2X) Services[S]. 3GPP, 2020.
[62] Sabeeh S. Centralized Resource Allocation Latency of Sidelink Communication in NR-V2X[C]. 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall). London: IEEE, 2022: 1-6.
[63] Molina-Galan A, Coll-Perales B, Lusvarghi L, et al. How Does 5G NR V2X Mode 2 Handle Aperiodic Packets and Variable Packet Sizes?[C]. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). Jiangsu: IEEE, 2022: 183-188.
[64] Gyawali S, Xu S, Qian Y, et al. Challenges and Solutions for Cellular Based V2X Communications[J]. IEEE Communications Surveys & Tutorials, 2020, 23(1): 222-255.
[65] Feinstein A. A New Basic Theorem of Information Theory[J]. Transactions of the IRE Professional Group on Information Theory, 1954, 4(4): 2-22.
[66] Kosta A, Pappas N, Angelakis V. Age of Information: A New Concept, Metric, and Tool[J]. Foundations and Trends in Networking, 2017, 12(3): 162-259.
[67] Kaul S, Yates R, Gruteser M. Real-Time Status: How Often Should One Update?[C]. 2012 Proceedings IEEE INFOCOM. Orlando: IEEE, 2012: 2731-2735.
[68] 万能,罗雅婷.浅析车联网发展历程及前景[J].汽车实用技术, 2020(15): 29-32.
[69] Nasir A A. Min-Max Decoding-Error Probability-Based Resource Allocation for a URLLC System[J]. IEEE Communications Letters, 2020, 24(12): 2864-2867.
[70] Xu Y, Shen C, Chang T H, et al. Transmission Energy Minimization for Heterogeneous Low-Latency NOMA Downlink[J]. IEEE Transactions on Wireless Communications, 2019, 19(2): 1054-1069.
[71] Liang L, Li G Y, Xu W. Resource Allocation for D2D-Enabled Vehicular Communications[J]. IEEE Transactions on Communications, 2017, 65(7): 3186-3197.
[72] Li Y, Zhang G, Ren C. Network Slicing for Iov: Qos-Oriented Radio Resource Optimization[C]. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing: IEEE, 2022, 6: 449-454.
中图分类号:

 TN92    

馆藏号:

 60109    

开放日期:

 2024-09-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式