- 无标题文档
查看论文信息

中文题名:

 基于重组荧光素酶分子探针的构建及其成像应用    

姓名:

 蒋依依    

学号:

 20121213208    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085409    

学科名称:

 工学 - 电子信息 - 生物医学工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 生物医学工程    

研究方向:

 生物医学工程    

第一导师姓名:

 王福    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 刘斌    

完成日期:

 2023-05-01    

答辩日期:

 2023-05-15    

外文题名:

 Construction of molecular probe based on recombinant luciferase and its imaging application    

中文关键词:

 萤火虫荧光素酶 ; 金纳米棒 ; 双模态探针 ; 细胞凋亡    

外文关键词:

 firefly luciferase ; gold nanorods ; dual-mode probes ; apoptosis    

中文摘要:

恶性肿瘤严重威胁人们的生活质量,是我国最常见的致死因素之一。因此,发展新的诊断技术和诊疗方法防治癌症具有重要的社会意义。近年,活体成像技术的蓬勃发展对疾病诊疗领域做出了意义深远的贡献。体内成像系统能够直接监测机体的细胞活性和基因行为,应用前景广阔,为癌症的诊断提供了新的思路。随着对分子成像技术的深入研究,多模态成像技术现今已成为一个研究热点。该技术通过构建两种或两种以上成像模式相结合的方法,应用各自的优势,互补各自的劣势,进而为疾病的诊断提供更加全面的信息。生物发光成像(Bioluminescence Imaging, BLI)是基于荧光素酶-荧光素对反应产生的生物发光,具有特异性强、灵敏度高、极低的背景和极高的信噪比等优点。萤火虫荧光素酶(Firefly Luciferase, Fluc)是众多荧光素酶的一种,与其他天然荧光素酶相比,发光波长较长(560 nm),是一种常用的信号分子。光声成像(Photoacoustic Imaging, PAI)是一种基于不同生物组织发色团对光吸收差异的新型无损成像方法,将高对比度的光学成像和高穿透深度的超声成像相结合,克服了光学成像组织穿透深度的不足,并能提供多尺度、多维度的光声图像信息。金纳米粒子(Au NPs)可以有效地增强组织的特异性吸收,与常规的光吸收造影剂(如ICG)相比高出约105倍。金纳米棒(Au NRs)具备独特的光学特性、良好的生物相容性和可控的表面修饰等优点,使其有望在生物成像、癌症治疗等多种领域得到应用。上述两种成像模式都可以对活体动物不同组织部位的各种生化过程进行实时、连续的监测,且不会对组织造成损伤。

基于此,本论文开发了一种双模态成像探针。该探针可以同时进行生物发光成像和光声成像,并在此基础上修饰靶向分子叶酸(Folic Acid, FA)和耐久霉素(Duramycin),实现双模态探针特异性靶向肿瘤细胞的功能,达到对肿瘤细胞精准成像的目的。首先构建Fluc的基因重组表达菌株,对目标蛋白表达纯化,使其可用于生物发光成像研究。其次制备Au NRs,以实现光声成像的研究。然后通过化学合成的方法制备靶向叶酸受体阳性细胞的双模态成像探针,从而提升对特定肿瘤的靶向效果。最后通过化学合成的方法制备双模态细胞凋亡检测探针,进一步对凋亡细胞进行可视化检测。通过上述研究,本论文的工作将有望为以细胞凋亡为主要特征的相关疾病的诊断提供新思路。具体工作内容如下:

(1)采用克隆载体pRSETA,宿主细胞E.coli BL21(DE3)构建了Fluc的基因重组表达菌株E.coli BL21(DE3)(pRSETA-Fluc)。异丙基-β-D-硫代半乳糖苷(IPTG)诱导Fluc过表达,镍柱亲和层析法初步纯化Fluc蛋白。SDS-PAGE分析得出61 kDa左右出现目的条带,借助具有相对截留分子量的超滤管超滤浓缩得到后续实验所需的蛋白。

(2)晶种法合成Au NRs。首先,将CTAB与HAuCl4快速混匀,再加入冰冷的NaBH4,在27℃恒温培养箱中静置2 h。随后依次添加CTAB,HAuCl4,AgNO3,H2SO4制备生长液,再滴加L-抗坏血酸。最后,加入金种子溶液并将其置于27°C恒温培养箱中静置过夜。离心后用去离子水洗涤以除去多余的CTAB,并在去离子水中重新分散以获得后续实验所需要的Au NRs。

(3)制备靶向叶酸受体阳性细胞的双模态成像探针(FA-Fluc-Au, FFA),实现叶酸受体阳性细胞的生物发光和光声成像。叶酸受体(FR)集中表达在许多恶性肿瘤细胞表面,几乎不表达在正常细胞表面。FFA探针通过FR的特异性内吞作用选择性靶向到特定肿瘤细胞,后续可以配合治疗药物实时监测肿瘤细胞的变化。体内外实验表明,FFA没有毒副作用,生物相容性较好。与FA阻断组、非靶向组和正常细胞对照组相比,实验组具有更高的信号强度,表明该探针具有特异性靶向FR阳性细胞的能力。

(4)为了提高双模态成像探针的应用性,构建了基于耐久霉素(Duramycin)的双模态细胞凋亡检测探针(Duramycin-Fluc-Au, DFA)。细胞凋亡是生物体内生理性和程序性细胞死亡的过程。在细胞凋亡早期,细胞膜内的磷脂酰乙醇胺(Phosphatidylethanolamine, PE)翻转到膜外,Duramycin可以与PE特异性结合,实现对细胞凋亡的无创、实时监测,精准判断肿瘤细胞对治疗药物的反应。体内外实验表明,DFA没有明显的细胞毒性,生物相容性较好。更重要的是,阿霉素(DOX)诱导细胞凋亡后,将DFA与肿瘤细胞孵育,可以明显看出随着DOX诱导时间和浓度的增加,探针信号增强,表明探针可以特异性靶向凋亡细胞。进一步从体内动物实验中得出,与DOX未诱导组、非靶向组相比,实验组具有更高的信号强度,再次验证了探针特异性靶向凋亡细胞的能力,为后续监测肿瘤细胞凋亡奠定了基础。

外文摘要:

Malignant tumors severely threaten people's quality of life and are one of the most common causes of death in China. Therefore, it is socially important to develop new theranostic methods to prevent and treat cancer. Recently, the flourishing development of in vivo imaging technology has made significant contributions to the field of medical imaging. In vivo imaging system can directly monitor the cellular activity and genetic behavior of the body, which has a good and broad application prospect and provides a new way of thinking for the diagnosis and treatment of cancer. With the increasing development and further investigation of molecular imaging technology, multimodal imaging has become a hot spot, which provides more comprehensive information for disease diagnosis by constructing a method combining two or more imaging modalities, applying their respective advantages and complementing their respective disadvantages. Bioluminescence imaging (BLI) is based on bioluminescence generated by luciferase-luciferin pair reaction, which has high specificity and sensitivity, low background and high signal-to-noise ratio. Firefly luciferase (Fluc) is one of the many luciferases with wavelengths up to 560 nm compared to other natural luciferases and is a commonly used signaling molecule. Photoacoustic imaging (PAI) is a new nondestructive imaging method based on the difference in light absorption by chromophores of biological tissues, with high contrast of pure optical imaging and high penetration depth of pure ultrasound imaging, overcoming the inadequate methods of traditional medical imaging and giving multi-scale and multi-dimensional photoacoustic image information. Gold nanoparticles (Au NPs) can effectively enhance tissue-specific absorption, which is about 105 times higher compared to conventional light-absorbing contrast agents (e.g. ICG). Gold nanorods (Au NRs) possess exceptional optical characteristics, excellent biocompatibility, and accessible surface modifications, which make them promising for a variety of applications in bioimaging, cancer therapy, and other fields. Both imaging modalities allow real-time, continuous monitoring experiments of various biochemical processes in different tissue sites of living animals without causing damage to the tissues, and are nondestructive imaging modalities.

 

Based on the above considerations, this thesis explores the use of bioluminescence imaging and photoacoustic imaging as two imaging modes of dual-mode imaging probes, based on which folic acid (FA) and Duramycin are further added as targeting molecules to realize the function of dual-mode probes to specifically target tumor cells for precise targeting and imaging studies. Firstly, we constructed a recombinant expression strain of firefly luciferase and purified the expression of the target protein, which can be used for bioluminescence imaging studies. Secondly, gold nanorods were prepared to enable photoacoustic imaging studies. Then dual-mode imaging probes targeting malignant tumor cells with high expression of folate receptors were prepared by chemical synthesis to improve the targeting effect on specific tumors. Finally, a dual-mode apoptosis detection probe was prepared by chemical synthesis to further visualize apoptotic cells. With the above studies, the work in this thesis will hopefully provide new ideas for the diagnosis of related diseases with apoptosis as the main feature. Details of the work are as follows:

 

(1) A recombinant expression strain of the gene for firefly luciferase, E.coli BL21 (DE3) (pRSETA-Fluc), was constructed using the cloning vector pRSETA, host cell E.coli BL21 (DE3). Isopropyl-β-D-thiogalactoside (IPTG) overexpression of Fluc was followed by Ni-NTA affinity chromatography purification. SDS-PAGE analysis revealed the target band to be approximately 61 kDa, and the protein needed for further experiments was determined by the ultrafiltration concentration in relation to the ultrafiltration tube's interception molecular weight.

 

(2) Gold nanorods were synthesized by seed method. First, CTAB and HAuCl4 were mixed quickly, then ice-cold NaBH4 was added and placed in a constant temperature incubator at 27°C for 2 h. Subsequently, CTAB, HAuCl4, AgNO3, H2SO4 were added sequentially to prepare the growth solution, and then L-ascorbic acid was added dropwise. Finally, the gold seed solution was added and placed in a constant temperature incubator at 27°C and left overnight. After centrifugation, they were washed with ultrapure water to remove excess CTAB and redispersed in ultrapure water to obtain the Au NRs required for subsequent experiments.

 

(3) A dual-mode imaging probe (FA-Fluc-Au, FFA) targeting folate receptor highly expressing malignant tumor cells was prepared by chemical synthesis to achieve bioluminescence and photoacoustic imaging of folate receptor highly expressing malignant tumor cells. The FFA probe selectively targets to specific tumor cells through the specific endocytosis of FR and can be subsequently used with therapeutic drugs to monitor tumor cell changes in real time. In vitro and in vivo experiments have shown that FFA has no toxic side effects and is biocompatible. More importantly, the experimental group had higher signal intensity compared with the FA blocking group, non-targeting group and normal cell control group, indicating that the probe has the ability to specifically target folate receptor high expression malignant tumor cells.

 

(4) To improve the applicability of the bimodal imaging probe, a dual-mode apoptosis detection probe (Duramycin-Fluc-Au, DFA) based on Duramycin was constructed. Apoptosis is a process of physiological and programmed cell death in living organisms. At the early stage of apoptosis, phosphatidylethanolamine (PE) flips from inside to outside the cell membrane. Duramycin can specifically bind to PE to achieve non-invasive, real-time monitoring of apoptosis and accurately determine the response of tumor cells to therapeutic drugs. In vivo and in vitro experiments have shown that DFA has no significant cytotoxicity and good biocompatibility. More importantly, after DOX induced apoptosis, incubation of the DFA probe with tumor cells clearly showed enhanced probe signal with increasing DOX induction time and concentration, indicating that the probe could specifically target apoptotic cells. Further from in vivo animal experiments, it was concluded that the experimental group had higher signal intensity compared with the DOX uninduced group and the non-targeted group, which again verified the ability of the probe to specifically target apoptotic cells and laid the foundation for subsequent monitoring of tumor cell apoptosis.

参考文献:
[1] Yeh H W, Ai H W. Development and applications of bioluminescent and chemiluminescent reporters and biosensors[J]. Annual Review of Analytical Chemistry (Palo Alto Calif), 2019, 12(1): 129-150.
[2] Fleiss A, Sarkisyan K S. A brief review of bioluminescent systems (2019)[J]. Current Genetics, 2019, 65(4): 877-882.
[3] Endo M, Ozawa T. Advanced bioluminescence system for in vivo imaging with brighter and red-shifted light emission[J]. International Journal of Molecular Sciences, 2020, 21(18), 6538.
[4] Love A C, Prescher J A. Seeing (and using) the light: recent developments in bioluminescence technology[J]. Cell Chemical Biology, 2020, 27(8): 904-920.
[5] Yang X, Qin X, Ji H, et al. Constructing firefly luciferin bioluminescence probes for in vivo imaging[J]. Organic & Biomolecular Chemistry, 2022, 20(7): 1360-1372.
[6] Fanaei‐Kahrani Z, Ganjalikhany M R, Rasa S M M, et al. New insights into the molecular characteristics behind the function of Renilla luciferase[J]. Journal of Cellular Biochemistry, 2017, 119(2): 1780-1790.
[7] Xiong Y, Zhang Y Y, Li Z F, et al. Engineered amber-emitting nano luciferase and its use for immunobioluminescence imaging in vivo[J]. Journal of the American Chemical Society, 2022, 144(31): 14101-14111.
[8] Wu N, Kamioka T, Kuroda Y. A novel screening system based on VanX-mediated autolysis-Application to Gaussia luciferase[J]. Biotechnology And Bioengineering, 2016, 113(7): 1413-1420.
[9] Rodriguez De La Fuente L, Cancela I G, Estevez-Salguero A M, et al. Development of a biosensor based on a new marine luciferase fused to an affibody to assess Her2 expression in living cells[J]. Analytica Chimica Acta, 2022, 1221: 340084.
[10] Kotlobay A A, Kaskova Z M, Yampolsky I V. Palette of luciferases: natural biotools for new applications in biomedicine[J]. Acta Naturae, 2020, 12(2): 15-27.
[11] Yao Z, Zhang B S, Prescher J A. Advances in bioluminescence imaging: new probes from old recipes[J]. Current Opinion In Chemical Biology, 2018, 45: 148-156.
[12] Kaskova Z M, Tsarkova A S, Yampolsky I V. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine[J]. Chemical Society Reviews, 2016, 45(21): 6048-6077.
[13] Syed A J, Anderson J C. Applications of bioluminescence in biotechnology and beyond[J]. Chemical Society Reviews, 2021, 50(9): 5668-5705.
[14] Jiang Y, Shi X, Tang C, et al. Beyond luciferase-luciferin system: modification, improved imaging and biomedical application[J]. Coordination Chemistry Reviews, 2023, 481: 215045.
[15] Hall M P, Woodroofe C C, Wood M G, et al. Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging[J]. Nature Communications, 2018, 9(1): 132.
[16] Dimond A, Van De Pette M, Fisher A G. Illuminating epigenetics and inheritance in the immune system with bioluminescence[J]. Trends In Immunology, 2020, 41(11): 994-1005.
[17] Song Y, Xu Z, Wang F. Genetically encoded reporter genes for microRNA imaging in living cells and animals[J]. Molecular Therapy Nucleic Acids, 2020, 21: 555-567.
[18] Wang F, Zhang B, Zhou L, et al. Imaging dendrimer-grafted graphene oxide mediated anti-miR-21 delivery with an activatable luciferase reporter[J]. ACS Applied Materials & Interfaces, 2016, 8(14): 9014-9021.
[19] Lang K, Chin J W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins[J]. Chemical Reviews, 2014, 114(9): 4764-4806.
[20] Jones K A, Porterfield W B, Rathbun C M, et al. Orthogonal luciferase-luciferin pairs for bioluminescence imaging[J]. Journal of the American Chemical Society, 2017, 139(6): 2351-2358.
[21] Rudin M, Weissleder R. Molecular imaging in drug discovery and development[J]. Nature Reviews Drug Discovery, 2003, 2(2): 123-131.
[22] Rathbun C M, Porterfield W B, Jones K A, et al. Parallel screening for rapid identification of orthogonal bioluminescent tools[J]. ACS Central Science, 2017, 3(12): 1254-1261.
[23] Alsawaftah N, Farooq A, Dhou S, et al. Bioluminescence imaging applications in cancer: a comprehensive review[J]. IEEE Reviews in Biomedical Engineering, 2021, 14: 307-326.
[24] Avci P, Karimi M, Sadasivam M, et al. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging[J]. Virulence, 2018, 9(1): 28-63.
[25] Kobayashi M, Murakami T, Uchibori R, et al. Establishment and characterization of transplantable, luminescence labeled rat renal cell carcinoma cell lines[J]. Journal of Urology, 2010, 183(5): 2029-2035.
[26] Xu X, Guo Y, Du G, et al. Bioluminescence imaging-based assessment of the anti-triple-negative breast cancer and NF-Kappa B pathway inhibition activity of britanin[J]. Frontiers in Pharmacology, 2020, 11: 575.
[27] Oba Y, Yoshida M, Shintani T, et al. Firefly luciferase genes from the subfamilies Psilocladinae and Ototretinae (Lampyridae, Coleoptera)[J]. Comparative Biochemistry and Physiology. B: Biochemistry and Molecular Biology, 2012, 161(2): 110-116.
[28] Oba Y, Konishi K, Yano D, et al. Resurrecting the ancient glow of the fireflies[J]. Science Advances, 2020, 6(49): eabc5705.
[29] Conti F a B. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes[J]. Structure, 1996, 4(3): 287-298.
[30] Lomakina G Y, Ugarova N N. Bioluminescent test systems based on firefly luciferase for studying stress effects on living cells[J]. Biophysical Reviews, 2022, 14(4): 887-892.
[31] Jiang T, Yang X, Li G, et al. Bacteria-based live vehicle for in vivo bioluminescence imaging[J]. Analytical Chemistry, 2021, 93(47): 15687-15695.
[32] Zheng Z, Xia T, Wang T, et al. Realization of firefly bioluminescence cycle in vitro and in cells[J]. Biosensors & Bioelectronics, 2023, 220: 114860.
[33] Zhang Y, Du Y, Li M, et al. Activity-based genetically encoded fluorescent and luminescent probes for detecting formaldehyde in living cells[J]. Angewandte Chemie International edtion. in English, 2020, 59(38): 16352-16356.
[34] Al-Handawi M B, Polavaram S, Kurlevskaya A, et al. Spectrochemistry of firefly bioluminescence[J]. Chemical Reviews, 2022, 122(16): 13207-13234.
[35] Chen Y, Wu C, Wang C, et al. Bioluminescence imaging of urokinase-type plasminogen activator activity in vitro and in tumors[J]. Analytical Chemistry, 2021, 93(29): 9970-9973.
[36] Wu W, Su J, Tang C, et al. cybLuc: An effective aminoluciferin derivative for deep bioluminescence imaging[J]. Analytical Chemistry, 2017, 89(9): 4808-4816.
[37] Iwano S, Sugiyama M, Hama H, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals[J]. Science, 2018, 359(6378):935-939.
[38] Pelentir G F, Bevilaqua V R, Viviani V R. A highly efficient, thermostable and cadmium selective firefly luciferase suitable for ratiometric metal and pH biosensing and for sensitive ATP assays[J]. Photochemical and Photobiological Sciences, 2019, 18(8): 2061-2070.
[39] Feeney K A, Putker M, Brancaccio M, et al. In-depth Characterization of firefly luciferase as a reporter of circadian gene expression in mammalian cells[J]. Journal of Biological Rhythms, 2016, 31(6): 540-550.
[40] Conway T P, Daniels K J, Park Y N, et al. Generating a battery of monoclonal antibodies against firefly luciferase for dot blot analysis, western blot analysis, and immunostaining of cells in culture and paraffin sections[J]. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2018, 37(1): 45-51.
[41] Wang S, Zhao Y, Xu Y. Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology[J]. Visual Computing for Industry, Biomedicine and Art, 2020, 3(1): 24.
[42] Men X, Yuan Z. Multifunctional conjugated polymer nanoparticles for photoacoustic-based multimodal imaging and cancer photothermal therapy[J]. Journal of Innovative Optical Health Sciences, 2019, 12(03): 1930001.
[43] Park E Y, Lee H, Han S, et al. Photoacoustic imaging systems based on clinical ultrasound platform[J]. Experimental biology and medicine / Society for Experimental Biology and Medicine, 2022, 247(7): 551-560.
[44] Attia A B E, Balasundaram G, Moothanchery M, et al. A review of clinical photoacoustic imaging: Current and future trends[J]. Photoacoustics, 2019, 16: 100144.
[45] Neprokin A, Broadway C, Myllyla T, et al. Photoacoustic imaging in biomedicine and life sciences[J]. Life (Basel), 2022, 12(4): 588.
[46] Okumura K, Yoshida K, Yoshioka K, et al. Photoacoustic imaging of tumour vascular permeability with indocyanine green in a mouse model[J]. European Radiology Experimental, 2018, 2(1): 5.
[47] Lee C Y, Fujino K, Motooka Y, et al. Photoacoustic imaging to localize indeterminate pulmonary nodules: A preclinical study[J]. PLoS One, 2020, 15(4): e0231488.
[48] Salah D, Moghanm F S, Arshad M, et al. Polymer-peptide modified gold nanorods to improve cell conjugation and cell labelling for stem cells photoacoustic imaging[J]. Diagnostics (Basel), 2021, 11(7): 1196.
[49] Du Z, Yan K, Cao Y, et al. Regenerated keratin-encapsulated gold nanorods for chemo-photothermal synergistic therapy[J]. Materials Science and Engineering C-Materials for Biological Applications, 2020, 117: 111340.
[50] Danhier F, Feron O, Preat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. Journal of Controlled Release, 2010, 148(2): 135-146.
[51] Bertrand N, Wu J, Xu X, et al. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology[J]. Advanced Drug Delivery Reviews, 2014, 66: 2-25.
[52] Haine A T, Niidome T. Gold nanorods as nanodevices for bioimaging, photothermal therapeutics, and drug delivery[J]. Chemical and Pharmaceutical Bulletin. 2017;65(7):625-628.
[53] Chen H, Li B, Ren X, et al. Multifunctional near-infrared-emitting nano-conjugates based on gold clusters for tumor imaging and therapy[J]. Biomaterials, 2012, 33(33): 8461-8476.
[54] Her S, Jaffray D A, Allen C. Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements[J]. Advanced Drug Delivery Reviews, 2017, 109: 84-101.
[55] Marangoni V S, Cancino-Bernardi J, Zucolotto V. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods-a review[J]. Journal of Biomedical Nanotechnology, 2016, 12(6): 1136-1158.
[56] Cui L, Her S, Borst G R, et al. Radiosensitization by gold nanoparticles: will they ever make it to the clinic?[J]. Radiotherapy and Oncology, 2017, 124(3): 344-356.
[57] Chen Y S, Zhao Y, Yoon S J, et al. Miniature gold nanorods for photoacoustic molecular imaging in the second near-infrared optical window[J]. Nature Nanotechnology, 2019, 14(5): 465-472.
[58] Xie L, Zhang X, Chu C, et al. Preparation, toxicity reduction and radiation therapy application of gold nanorods[J]. Journal of Nanobiotechnology, 2021, 19(1): 454.
[59] Jokerst J V, Cole A J, Van de Sompel D, et al. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice[J]. ACS nano, 2012, 6(11), 10366–10377.
[60] Zeng S, Liu S, Lan Y, et al. Combined photothermotherapy and chemotherapy of oral squamous cell carcinoma guided by multifunctional nanomaterials enhanced photoacoustic tomography[J]. International Journal of Nanomedicine, 2021, 16: 7373-7390.
[61] He Z, Wang Q, Zhang N, et al. Gold nanorods/tetrahedral DNA composites for chemo-photothermal therapy[J]. Regenerative Biomaterials, 2022, 9: rbac032.
[62] Zhang L, Chen S, Ma R, et al. NIR-excitable PEG-modified Au nanorods for photothermal therapy of cervical cancer[J]. ACS Applied Nano Materials, 2021, 4(12): 13060-13070.
[63] He T, Jiang C, He J, et al. manganese-dioxide-coating-instructed plasmonic modulation of gold nanorods for activatable duplex-imaging-guided NIR-II photothermal-chemodynamic therapy[J]. Advanced Materials, 2021, 33(13): e2008540.
[64] Sijilmassi O. Folic acid deficiency and vision: a review[J]. Graefes Archive for Clinical and Experimental Ophthalmology, 2019, 257(8): 1573-1580.
[65] Stallivieri A, Baros F, Jetpisbayeva G, et al. the interest of folic acid in targeted photodynamic therapy[J]. Current Medicinal Chemistry. 2015;22(27):3185-3207.
[66] Newstead S. Structural basis for recognition and transport of folic acid in mammalian cells[J]. Current Opinion in Structural Biology, 2022, 74: 102353.
[67] Nawaz F Z, Kipreos E T. Emerging roles for folate receptor FOLR1 in signaling and cancer[J]. Trends in Endocrinology and Metabolism, 2022, 33(3): 159-174.
[68] Van Dam G M, Themelis G, Crane L M, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results[J]. Nature Medicine, 2011, 17(10): 1315-1319.
[69] Wang D, Ren Y, Shao Y, et al. Facile preparation of DOX orubicin-loaded and folic acid-conjugated carbon nanotubes@poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment[J]. Bioconjugate Chemistry, 2017, 28(11): 2815-2822.
[70] Wang D, Meng L, Fei Z, et al. Multi-layered tumor-targeting photothermal-DOXorubicin releasing nanotubes eradicate tumors in vivo with negligible systemic toxicity[J]. Nanoscale, 2018, 10(18): 8536-8546.
[71] Geersing A, De Vries R H, Jansen G, et al. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells[J]. Bioorganic and Medicinal Chemistry Letters, 2019, 29(15): 1922-1927.
[72] Santra S, Kaittanis C, Santiesteban O J, et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy[J]. Journal of the American Chemical Society, 2011, 133(41): 16680-16688.
[73] Liu J, Chen H, Liu Y, et al. Cancer selective target degradation by folate-caged PROTACs[J]. Journal of the American Chemical Society, 2021, 143(19): 7380-7387.
[74] Zhang L, Yang Z, Ren J, et al. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy[J]. Nano Research, 2020, 13(5): 1389-1398.
[75] Carneiro B A, El-Deiry W S. Targeting apoptosis in cancer therapy[J]. Nature Reviews Clinical Oncology, 2020, 17(7): 395-417.
[76] Banfalvi G. Methods to detect apoptotic cell death[J]. Apoptosis, 2017, 22(2): 306-323.
[77] Zhang D, Jin Q, Jiang C, et al. Imaging cell death: focus on early evaluation of tumor response to therapy[J]. Bioconjugate Chemistry, 2020, 31(4): 1025-1051.
[78] Wu J C, Qin X, Neofytou E. Radiolabeled duramycin promising translational imaging of myocardial apoptosis[J]. Jacc-Cardiovascular Imaging, 2018, 11(12): 1834-1836.
[79] Niers J M, Kerami M, Pike L, et al. Multimodal in vivo imaging and blood monitoring of intrinsic and extrinsic apoptosis[J]. Molecular Therapy, 2011, 19(6): 1090-1096.
[80] Zhang F, Zhu L, Liu G, et al. Multimodality imaging of tumor response to DOXil[J]. Theranostics, 2011, 1: 302-309.
[81] Niu G, Zhu L, Ho D N, et al. Longitudinal bioluminescence imaging of the dynamics of DOXorubicin induced apoptosis[J]. Theranostics, 2013, 3(3): 190-200.
[82] Nazari M, Emamzadeh R, Hosseinkhani S, et al. Renilla luciferase-labeled Annexin V: a new probe for detection of apoptotic cells[J]. Analyst, 2012, 137(21): 5062-5070.
[83] Ogawa K, Aoki M. Radiolabeled apoptosis imaging agents for early detection of response to therapy[J]. The Scientific World Journal, 2014, 2014: 732603-732603.
[84] Head T, Dau P, Duffort S, et al. An enhanced bioluminescence-based Annexin V probe for apoptosis detection in vitro and in vivo[J]. Cell Death and Disease, 2017, 8(5): e2826.
[85] Tsuboi S, Jin T. Dual-colour (near-infrared/visible) emitting annexin V for fluorescence imaging of tumour cell apoptosis in vitro and in vivo[J]. RSC Advances, 2020, 10(63): 38244-38250.
[86] Li X, Wang C, Tan H, et al. Gold nanoparticles-based SPECT/CT imaging probe targeting for vulnerable atherosclerosis plaques[J]. Biomaterials, 2016, 108: 71-80.
[87] Zhang Y L, Hu J, Yu M J, et al. A novel BRET based genetic coded biosensor for apoptosis detection at deep tissue level in live animal[J]. Apoptosis, 2021, 26(11-12): 628-638.
[88] Hou S, Johnson S E, Zhao M. A one-step staining probe for phosphatidylethanolamine[J]. Chembiochem, 2015, 16(13): 1955-1960.
[89] Broughton L J, Giuntini F, Savoie H, et al. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy[J]. Journal of Photochemistry and Photobiology B-Biology, 2016, 163: 374-384.
[90] Elvas F, Stroobants S, Wyffels L. Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis[J]. Apoptosis, 2017, 22(8): 971-987.
[91] An L, Cogan D P, Navo C D, et al. Substrate-assisted enzymatic formation of lysinoalanine in duramycin[J]. Nature Chemical Biology, 2018, 14(10): 928-933.
[92] Zhang D, Gao M, Jin Q, et al. Development of duramycin-based molecular probes for cell death imaging[J]. Molecular Imaging and Biology, 2022, 24(4): 612-629.
[93] Liu C, Li Y, Qin X, et al. Early prediction of tumor response after radiotherapy in combination with cetuximab in nasopharyngeal carcinoma using (99m) Tc-duramycin imaging[J]. Biomedicine & Pharmacotherapy, 2020, 125: 109947.
[94] Tan H, Abudupataer M, Qiu L, et al. Tc-99m-labeled Duramycin for detecting and monitoring cardiomyocyte death and assessing atorvastatin cardioprotection in acute myocardial infarction[J]. Chemical Biology & Drug Design, 2021, 97(2): 210-220.
[95] Hu C, Tan H, Lin Q, et al. SPECT/CT imaging of apoptosis in aortic aneurysm with radiolabeled duramycin (vol 24, pg 745, 2019)[J]. Apoptosis, 2019, 24(9-10): 756-757.
[96] Liu Z, Barber C, Gupta A, et al. Imaging assessment of cardioprotection mediated by a dodecafluoropentane oxygen-carrier administered during myocardial infarction[J]. Nuclear Medicine and Biology, 2019, 70: 67-77.
[97] Kawai H, Chaudhry F, Shekhar A, et al. Molecular imaging of apoptosis in ischemia reperfusion injury with radiolabeled duramycin targeting phosphatidylethanolamine[J]. Jacc-Cardiovascular Imaging, 2018, 11(12): 1823-1833.
[98] Yuan G, Liu S, Ma H, et al. Targeting phosphatidylethanolamine with fluorine-18 labeled small molecule probe for apoptosis imaging[J]. Molecular Imaging and Biology, 2020, 22(4): 914-923.
[99] Su S, Xiang X, Lin L, et al. Cell death PET/CT imaging of rat hepatic fibrosis with F-18-labeled small molecule tracer[J]. Nuclear Medicine and Biology, 2021, 98-99: 76-83.
[100] Rowe S P, Pomper M G. Molecular imaging in oncology: Current impact and future directions[J]. CA: A Cancer Journal for Clinicians, 2022, 72(4): 333-352.
[101] Belleti E, Bevilaqua V R, Brito A M M, et al. Synthesis of bioluminescent gold nanoparticle-luciferase hybrid systems for technological applications[J]. Photochemical and Photobiological Sciences, 2021, 20(11): 1439-1453.
[102] Abhijith K S, Sharma R, Ranjan R, et al. Facile synthesis of gold-silver alloy nanoparticles for application in metal enhanced bioluminescence[J]. Photochemical and Photobiological Sciences, 2014, 13(7): 986-991.
[103] Kakinen A, Ding F, Chen P, et al. Interaction of firefly luciferase and silver nanoparticles and its impact on enzyme activity[J]. Nanotechnology, 2013, 24(34): 345101.
中图分类号:

 R31    

开放日期:

 2023-12-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式