- 无标题文档
查看论文信息

中文题名:

 宽带小型化微带天线的研究    

姓名:

 田璐    

学号:

 17021223270    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 电子信息    

研究方向:

 微带天线    

第一导师姓名:

 徐云学    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 牟廷松    

完成日期:

 2020-06-17    

答辩日期:

 2020-05-24    

外文题名:

 Research on Broadband Miniaturized Microstrip Antenna    

中文关键词:

 微带印刷振子天线 ; 小型化 ; 宽频带 ; 阵列天线    

外文关键词:

 Microstrip printed dipole antenna ; miniaturization ; wideband ; array antenna    

中文摘要:

随着无线通信技术的发展,具有宽频带,小型化,低交叉极化电平,稳定辐射方向图等良好性能的天线越来越受欢迎。特别是在相控阵天线的应用中,具有更宽的频带意味着可适用于更多的应用领域,具有体积更小的天线单元意味着可广泛的应用于各种飞行器。因此,研究具有宽频带小型化特性的阵列天线单元具有非常重要的工程意义。在相控阵天线的应用中,微带印刷振子天线因为其成本低,重量轻以及易于安装和制造而广受欢迎。然而,传统的微带印刷振子天线难以在足够宽的频带内同时获得小型化,低交叉极化电平和稳定的辐射方向图。本文基于传统微带印刷振子天线,对其宽频带、小型化和低交叉极化特性进行了深入研究。论文的主要工作与研究成果如下:

1. 基于微带印刷振子天线的宽频带设计。首先设计了一款具有双边引向器的微带印刷振子天线。为了改善其宽带特性,该天线采用阻抗变换馈电巴伦;通过引入双边引向器使得天线获得了更加稳定的辐射特性,并进一步改善了阻抗特性。该天线尺寸为27×22×12mm3,实现了约为24.2%(8.1~10.1GHz)的阻抗带宽,在E平面和H平面分别获得了大于 和 的半功率波束宽度;然后设计了一款具有低交叉极化电平的微带印刷振子天线。为了降低其交叉极化电平,该天线采用双面印刷振子臂结构;通过加载寄生单元,极大的扩展了天线的阻抗带宽。该天线尺寸为47×33×1.57mm3,实现了约为76.9%(2.4~5.4GHz)的阻抗带宽,在E平面和H平面分别得到了小于-40dB和-20dB的交叉极化电平。

2. 基于微带印刷振子天线的小型化宽频带设计。首先设计了一款宽带小型化微带印刷振子天线,通过改进耦合槽线为阶梯状加载扇形结构,并利用多级阻抗变换技术和馈电巴伦匹配端加载扇形的方法,实现了微带印刷振子天线的宽带化和小型化。该天线尺寸为19.5×14.6×0.47mm3,实现了约为40%(8~12GHz)的阻抗带宽,在E平面和H平面分别获得了大于 和 的半功率波束宽度。然后将该天线组成1×5的阵列,并使用1分5不等分馈电网络对其馈电,该阵列的尺寸为120×67×15.7mm3,仿真结果表明,1×5阵列天线增益≥10.26dBi,H面波束宽度> ,E面波束宽度> 。最后对该阵列加工并测试,测试结果与仿真结果吻合。

3. 基于微带印刷振子天线阵列的低副瓣设计。设计了一款低副瓣天馈线天线,利用泰勒幅度加权分布实现了低副瓣的要求。所提出的天线阵列是由一分六十四不等分馈电网络和天线阵面级联构成,该天线结构尺寸为1728×22×112.55 mm3,仿真结果表明,天线增益≥22dB,波束宽度≤ 以及副瓣电平≤-25dB,满足设计指标要求;采用天线阵面和馈电网络一体化加工,有利于降低安装过程中产生的误差,具有一定的工程实用价值。

外文摘要:

With the development of wireless communication technology, antennas with good performance such as wide frequency bands, miniaturization, low cross-polarization levels, and stable radiation patterns are becoming more and more popular. Especially in the application of phased array antennas, having a wider frequency band means that it can be applied to more application fields, and having a smaller antenna element means that it can be widely used in various aircraft. Therefore, it is of great engineering significance to study array antenna elements with the characteristics of miniaturization in a wide frequency band. In the application of phased array antennas, microstrip printed dipole antennas are popular because of their low cost, light weight, and ease of installation and manufacturing. However, it is difficult for the conventional microstrip printed dipole antenna to obtain miniaturization, low cross-polarization level and stable radiation pattern simultaneously in a sufficiently wide frequency band. In this thesis, based on the traditional microstrip printed dipole antenna, the characteristics of its wide frequency band, miniaturization and low cross-polarization are studied in depth. The main work and research results of the paper are as follows:

 

Firstly, broadband design based on microstrip printed dipole antenna. A microstrip printed dipole antenna with bilateral directors is designed. In order to improve its broadband characteristics, the antenna uses an impedance-transformed balun; the introduction of bilateral directors allows the antenna to obtain more stable radiation characteristics and further improve the impedance characteristics. The size of the antenna is 27×22×12mm3, which achieves an impedance bandwidth of about 24.2% (8.1~10.1GHz), and obtained half-power beamwidths greater than and in the E-plane and H-plane, respectively. Then a microstrip printed dipole antenna with low cross-polarization level was designed. In order to reduce its cross-polarization level, the antenna adopts a double-sided printed dipole arm structure; by loading parasitic elements, the impedance bandwidth of the antenna is greatly expanded. The size of the antenna is 47×33×1.57mm3, which achieves an impedance bandwidth of about 76.9% (2.4~5.4GHz), and cross-polarization levels greater than -40dB and -20dB are obtained in the E-plane and H-plane, respectively.

 

Secondly, miniaturized broadband design based on microstrip printed dipole antenna. A broadband miniaturized microstrip printed dipole antenna is designed. By improving the coupling slot line as a stepped loading sector structure, and using the multi-level impedance transformation technology and the method of loading the fan shape at the feeding balun matching end, the broadband and miniaturization of the microstrip printed dipole antenna are realized. The size of the antenna is 19.5×14.6×0.47mm3, which realizes an impedance bandwidth of about 40%(8~12GHz), and obtains half-power beamwidths greater than and in the E-plane and H-plane, respectively. Then the antenna is formed into a 1×5 array, and it is fed with a one-to-five unequal feed network. The size of the array is 120×67×15.7mm3. The simulation results show that the antenna array gain≥10.26dBi, H plane beam width> , E plane beam width> . Finally, the array is processed and tested, and the test results are consistent with the simulation results.

 

Thirdly, low sidelobe design based on microstrip printed dipole antenna. A low-side lobe antenna array is designed, and the requirements of low side lobe are realized by using Taylor amplitude weighted distribution. The proposed antenna array is composed of a cascade of sixty-four unequal feed networks and antenna arrays. The antenna structure size is 1728×22×112.55mm3. Simulation results show that antenna array gain≥22dB, the beam width≤ and the SLL≤-25dB, which meet the design index requirements. The integrated processing of the antenna array and the feed network is beneficial to reduce the errors generated during the installation process, and has certain practical value in engineering.

参考文献:
[1]马虹. 天线技术的发展与应用[J]. 电信科学, 2010(S1): 114-117.
[2]冯军. 浅析天线技术研究与应用[J]. 农家科技, 2011, 000(005): 36.
[3]董加伟. 方向图可重构印刷偶极子天线的研究[D]. 天津大学, 2009.
[4]John D. Kraus, Ronald J. Marhefka. 天线[M]. 北京: 电子工业出版社, 2007.
[5]C. A. Balanis. Antenna theory: analysis and design, Second edition[M]. New York: Wiley, 1997.
[6]林昌禄. 近代天线设计[M]. 北京: 人民邮电出版社, 1990.
[7]楼才义, 徐建良, 杨小牛. 软件无线电原理与应用[M]. 北京: 电子工业出版社, 2014.
[8]Wong, Kin Lu. Compact and Broadband Microstrip Antennas[M]. John Wiley & Sons, Ltd, 2002.
[9]Hall P S , Gupta K C . Analysis and Design of Integrated Circuit-Antenna Modules[M]. John Wiley & Sons, Inc, 2002.
[10]彭江露. 射频仿真目标阵列宽带天线研究与设计[D]. 南京航空航天大学, 2016.
[11]覃凤. 浅谈分形技术在小型化微带天线中的应用[J]. 通讯世界, 2017, 000(005): 110.
[12]王乃彪. 超宽频带锥削槽天线及阵列的设计与实现[D]. 西安电子科技大学, 2009.
[13]Yacouba Coulibaly, Tayeb A. Denidni, Larbi Talbi. Broadband coplanar waveguide-fed printed monopole antenna with strip-sleeves[J]. 2006, 48(2): 209-212.
[14]Petr Cerny, M. Mazanek. Simulated Transient Radiation Characteristics of Optimized Ultra Wideband Printed Dipole Antennas[C]// Radioelektronika, International Conference. IEEE, 2007.
[15]Workshop WS1. The Art and Science of UWB Antennas[C]// IEEE International Conference on Ultra-wideband. IEEE, 2007.
[16]赵立凯. VHF/UHF频段宽带天线的研究与设计[D]. 兰州大学, 2012.
[17]Spence T G , Werner D H . A Novel Miniature Broadband/Multiband Antenna Based on an End-Loaded Planar Open-Sleeve Dipole[J]. IEEE Transactions on Antennas & Propagation, 2006, 54(12): 3614-3620.
[18]高国平. 超宽带天线设计及其阵列研究[D]. 兰州大学, 2009.
[19]Zhao J , Chen C C , Psychoudakis D , et al. Broadband characteristics of a dome-dipole antenna[C]// IEEE Antennas & Propagation Society International Symposium. IEEE, 2010.
[20]Y. Wang, B. Sun, L. Wen , et al. Printed broadband dipole antenna with tapered arms for multi-band applications[C]// 2010 International Symposium on Signals, Systems and Electronics, Nanjing, IEEE, 2010.
[21]吴建刚, 周扬, 胡祥刚, 等. 伞形印刷偶极子天线设计[J]. 电子设计工程, 2013(19): 155-156+160.
[22]李蒙, 陈启兴. 弧形宽带印刷偶极子5G天线的设计[J]. 成都信息工程大学学报, 2019(5): 470-474.
[23]Waterhouse R B , Novak D , Nirmalathas A , et al. Broadband printed millimeter-wave antennas[J]. IEEE Transactions on Antennas & Propagation, 2003, 51(9): 2492-2495.
[24]李由, 张海民, 曹群生. 一种宽频带双极化印刷偶极子基站天线[J]. 现代电子技术, 2015, 000(001): 55-58.
[25]彭超. 一种用于无线局域网的双频带印刷偶极子天线[J]. 电子科技, 2010, 23(12): 27-29.
[26]何小煜, 俞钰峰, 张则涛, 等. 一种用于频谱监测的宽带宽波束印刷偶极子天线[J]. 科学技术与工程, 2015, 15(17): 164-166.
[27]李晋阳, 张小苗, 杨倩, 等. 带有新型寄生单元的印刷偶极子天线[C]//2009年全国天线年会. 中国电子学会: 中国电子学会微波分会, 2009.
[28]李晨昕, 张曦蒙, 马育红, 等. 宽带枝节形印刷偶极子天线[C]//2019年全国微波毫米波会议. 中国电子学会: 中国电子学会微波分会, 2019.
[29]Katehi P , Alexopoulos N . A generalized solution to a class of printed circuit antennas[C]// Antennas & Propagation Society International Symposium. IEEE, 1984.
[30]Levine E, Shtrikman S, Treves D. Double-sided printed arrays with large bandwidth[J]. Iee Proceedings H Microwaves Antennas & Propagation, 1988, 135(1): 54.
[31]陈盼, 曹祥玉, 高军. 一种宽频带低交叉极化伞形印刷振子阵列天线[J]. 西安电子科技大学学报, 2010, 37(5): 966-970.
[32]肖志刚, 蒋瑶, 汪志刚. 电磁带隙结构反射板双面印刷偶极子天线研究[J]. 乐山师范学院学报, 2013, 028(005): 19-22.
[33]冉烽力. 一种由缝隙和印刷偶极子组成的宽带互补型天线[C]//2017年全国微波毫米波会议. 中国电子学会: 中国电子学会微波分会, 2017.
[34]Ta S X , Park I . Broadband printed-dipole antennas for millimeter-wave applications[C]//IEEE Radio & Wireless Symposium. IEEE, 2017.
[35]Guo M , Zhong S S . Broadband widebeamwidth printed dipole antenna[C]//IEEE International Workshop on Antenna Technology. IEEE, 2012.
[36]Cui Y H , Li R L , Wang P . A Novel Broadband Planar Antenna for 2G/3G/LTE Base Stations[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(5): 2767-2774.
[37]Wen D L , Zheng D Z , Chu Q X . A Dual-polarized Planar Antenna Using Four Folded Dipoles and Its Array for Base Stations[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(12): 5536-5542.
[38]Wen L H, Gao S, Luo Q, et al. Compact Dual-Polarized Shared-Dipole Antennas for Base Station Applications[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6826-6834.
[39]Wang C , Chen Y , Yang S . Dual-Band Dual-Polarized Antenna Array With Flat-Top and Sharp Cutoff Radiation Patterns for 2G/3G/LTE Cellular Bands[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 5907-5917.
[40]Shinde S S , Tamang M , Meena A . Design and Analysis of wideband UHF Printed Dipole Antenna with Integrated Balun for Radar[C]// 2018 IEEE Indian Conference on Antennas and Propogation (InCAP). IEEE, 2018.
[41]Zhang Q Y, Gao Y. A compact broadband dual-polarized antenna array for base stations[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(6): 1073-1076.
[42]Cui Y H , Li R L , Fu H Z . A Broadband Dual-Polarized Planar Antenna for 2G/3G/LTE Base Stations[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(9): 4836-4840.
[43]A. Desai, P. Nayeri, A Broadband Printed Conical Bowtie Dipole Antenna with an Integrated Balun[C]// 2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), IEEE, 2019.
[44]Gou Y , Yang S , Li J , et al. A Compact Dual-Polarized Printed Dipole Antenna With High Isolation for Wideband Base Station Applications[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(8): 4392-4395.
[45]Huang H , Liu Y , Gong S . A Broadband Dual-polarized Base Station Antenna with Sturdy Construction[J]. IEEE Antennas & Wireless Propagation Letters, 2016, PP(99): 665-668.
[46]王国奇, 岳彩龙, 邢凤闯, 等. 一种宽频带双极化印刷偶极子基站天线[J]. 科学技术与工程, 2017, 017(021): 45-49.
[47]罗秋强, 陈昌明, 夏佳明, 等. 一种适用于LTE基站的宽频带双极化印刷偶极子天线[J]. 微波学报, 2019, 35(06): 31-35.
[48]Sarkar S , Banerjee A , Gupta B . A Balanced Feed Triple Frequency Patch Loaded Printed Dipole Antenna for WiMAX/WLAN Applications[C]// IEEE International Rf & Microwave Conference. IEEE, 2018.
[49]傅世强, 熊昂宇, 陈韦宁, 等. 用于超高频射频识别的小型宽带高定向天线[J]. 系统工程与电子技术, 2020, 42(05): 987-991.
[50]A. S. Abd El-Hameed, A. Barakat, A. B. Abdel-Rahman, et al. Broadband printed-dipole antenna for future 5G applications and wireless communication[C]// 2018 IEEE Radio and Wireless Symposium (RWS), IEEE, 2018.
[51]Li R L , Wu T , Pan B , et al. Equivalent-Circuit Analysis of a Broadband Printed Dipole With Adjusted Integrated Balun and an Array for Base Station Applications[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(7): 2180-2184.
[52]H. Wang, I. Park, Series-Fed Printed Dipole Array Antenna[C]// 2018 11th Global Symposium on Millimeter Waves (GSMM), IEEE, 2018.
[53]赵程光. 可穿戴偶极子天线与超宽带印刷天线的设计[D]. 西安电子科技大学, 2012.
中图分类号:

 TN8    

馆藏号:

 46275    

开放日期:

 2020-12-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式