- 无标题文档
查看论文信息

中文题名:

 具有合作捕食的捕食-食饵模型的共存解    

姓名:

 韩卓茹    

学号:

 20071212570    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 西安电子科技大学    

院系:

 数学与统计学院    

专业:

 数学    

研究方向:

 偏微分方程    

第一导师姓名:

 李善兵    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-06-20    

答辩日期:

 2023-05-26    

外文题名:

 Coexistence Solutions of Predator-prey Models with Hunting Cooperation    

中文关键词:

 捕食-食饵模型 ; 合作捕食 ; 空间异质 ; 交叉扩散 ; 共存解    

外文关键词:

 Predator-prey model ; Hunting cooperation ; Spatial heterogeneity ; Cross-diffusion ; Coexistence solutions    

中文摘要:

       在生物数学中, 捕食-食饵系统始终是研究的热点. 目前, 捕食者觅食过程中的干扰行为对捕食-食饵系统动力学的影响已经受到了广泛的关注, 然而, 捕食者觅食过程中的合作行为在很大程度上被忽略了. 本文主要考虑具有合作捕食效应的捕食-食饵系统的共存问题, 讨论合作捕食对捕食-食饵系统的影响.

       本文第一部分研究了一类齐次 Neumann 边界条件下具有空间异质和合作捕食的捕食-食饵模型. 首先, 利用线性化理论的谱分析和比较原理, 证明了平凡解和半平凡解的全局渐近稳定性; 其次, 利用不动点指数理论, 建立了共存解存在的充分条件; 最后, 利用 MATLAB 进行数值模拟, 验证已得到的理论结果, 并进一步探讨空间异质和合作捕食对共存解的影响. 结果表明, 空间异质和合作捕食均会对两物种的共存产生明显影响.

       本文第二部分研究了一类齐次 Dirichlet 边界条件下具有交叉扩散和合作捕食的捕食-食饵模型. 首先, 基于线性化理论的谱分析, 证明了平凡解和半平凡解具有局部渐近稳定性; 进一步, 利用锥上的度理论, 给出了共存解存在的充分条件; 最后, 利用 MATLAB 进行数值模拟, 讨论交叉扩散和合作捕食对共存解的影响. 结果表明, 交叉扩散和合作捕食均会对两物种的共存产生明显影响.

外文摘要:

       In biomathematics, predator-prey systems have always been a hot spot of research. At present, the effect of predator interference behavior during foraging on the dynamics of predator-prey systems has received extensive attention. However, the cooperative behavior of predators during foraging has been largely ignored. In this paper, the coexistence problem of predator-prey systems with cooperative predation effect is considered, and the effect of hunting cooperation on predator-prey systems is discussed.

       In the first part of this paper, a predator-prey model with spatial heterogeneity and hunting cooperation under homogeneous Neumann boundary conditions is investigated. Firstly, by using the spectral analysis of linearized theory and the comparison principle, the global asymptotic stability of trivial solution and semi-trivial solutions is obtained. Secondly, the sufficient conditions for the existence of coexistence solutions are established by the fixed point index theory. Finally, numerical simulations are carried out with MATLAB to verify the theoretical results obtained and further discass the effect of spatial heterogeneity and hunting cooperation on coexistence solutions. The results indicate that both spatial heterogeneity and hunting cooperation have obvious influence on the coexistence of the two species.

       In the second part of this paper, a predator-predator model with cross-diffusion and hunting cooperation under homogeneous Dirichlet boundary conditions is studied. Based on the spectral analysis of linearized theory, the local asymptotic stability of trivial and semi-trivial solutions is proved. Moreover, the sufficient conditions for the existence of coexistence solutions are given by using the degree theory in cones. Finally, numerical simulations are performed with MATLAB to discuss the effect of cross-diffusion and hunting cooperation on coexistence solutions. The results suggest that cross-diffusion and hunting cooperation have obvious effect on the coexistence of the two species.

参考文献:
[1] 唐三一, 肖燕妮, 梁菊花等. 生物数学[M]. 北京 : 科学出版社, 2019.
[2] SHIRAKIHARA K, TANAKA S. Two fish species competition model with nonlinear interactions and equilibrium catches[J]. Population Ecology, 1978, 20(1) : 123 – 140.
[3] VOLTERRA V. Variations and fluctuations of the number of individuals in animal species living together[J]. ICES Journal of Marine Science, 1928, 3(1) : 3 – 51.
[4] IKEDA-OHTSUBO W, BRUNE A. Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and ‘Candidatus Endomicrobium trichonymphae’[J]. Molecular Ecology, 2009, 18(2) : 332 – 342.
[5] KANG Y, ARMBRUSTER D, KUANG Y. Dynamics of a plant-herbivore model[J]. Journal of Biological Dynamics, 2008, 2(2) : 89 – 101.
[6] BRAUER F, CASTILLO-CHAVEZ C. Mathematical models in population biology and epidemiology[M]. New York : Springer, 2012.
[7] MURRAY J D. Mathematical biology: I. An introduction[M]. New York : Springer, 2002.
[8] LOTKA A J. Elements of physical biology[M]. Baltimore : Williams & Wilkins, 1925.
[9] LOTKA A J. Undamped oscillations derived from the law of mass action[J]. Journal of the American Chemical Society, 1920, 42(8) : 1595 – 1599.
[10] HOLLING C S. The components of predation as revealed by a study of small-mammal predation of the European Pine Sawfly1[J]. The Canadian Entomologist, 1959, 91(5) : 293 – 320.
[11] HOLLING C S. Some characteristics of simple types of predation and parasitism1[J]. The Canadian Entomologist, 1959, 91(7) : 385 – 398.
[12] HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. The Memoirs of the Entomological Society of Canada, 1965, 97(S45) : 5 – 60.
[13] BEREC L. Impacts of foraging facilitation among predators on predator-prey dynamics[J]. Bulletin of Mathematical Biology, 2010, 72 : 94 – 121.
[14] SPRADBERY J P. Host finding by Rhyssa persuasoria(L.), an ichneumonid parasite of siricid woodwasps[J]. Animal Behaviour, 1970, 18 : 103 – 114.
[15] RUXTON G D, GURNEY W S C, DE ROOS A M. Interference and generation cycles[J]. Theoretical Population Biology, 1992, 42(3) : 235 – 253.
[16] ARNQVIST G, JONES T M, ELGAR M A. Sex-role reversed nuptial feeding reduces male kleptoparasitism of females in Zeus bugs (Heteroptera; Veliidae)[J]. Biology Letters, 2006, 2(4) : 491 – 493.
[17] HUISMAN G, DE BOER R J. A formal derivation of the “Beddington” functional response[J]. Journal of Theoretical Biology, 1997, 185(3) : 389 – 400.
[18] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975 : 331 – 340.
[19] DEANGELIS D L, GOLDSTEIN R A, O’NEILL R V. A model for tropic interaction[J]. Ecology, 1975, 56(4) : 881 – 892.
[20] CROWLEY P H, MARTIN E K. Functional responses and interference within and between year classes of a dragonfly population[J]. Journal of the North American Benthological Society, 1989, 8(3) : 211 – 221.
[21] ARDITI R, GINZBURG L R. Coupling in predator-prey dynamics: ratio-dependence[J]. Journal of
Theoretical Biology, 1989, 139(3) : 311 – 326.
[22] MARSH A C, RIBBINK A J. Feeding schools among Lake Malawi cichlid fishes[J]. Environmental Biology of Fishes, 1986, 15 : 75 – 79.
[23] BEDNARZ J C. Cooperative hunting Harris’ hawks (Parabuteo unicinctus)[J]. Science, 1988, 239(4847) : 1525 – 1527.
[24] COSNER C, DEANGELIS D L, AULT J S, et al. Effects of spatial grouping on the functional response of predators[J]. Theoretical Population Biology, 1999, 56(1) : 65 – 75.
[25] KRAUSZ R R. Living in groups[J]. Transactional Analysis Journal, 2013, 43(4) : 366 – 374.
[26] GARDNER J L. Winter flocking behaviour of speckled warblers and the Allee effect[J]. Biological Conservation, 2004, 118(2) : 195 – 204.
[27] KIM K W, KRAFFT B, CHOE J C. Cooperative prey capture by young subsocial spiders: I. Functional value[J]. Behavioral Ecology and Sociobiology, 2005, 59 : 92 – 100.
[28] DUGATKIN L A. Cooperation among animals: an evolutionary perspective[M]. New York : Oxford University Press, 1997.
[29] PACKER C, SCHEEL D, PUSEY A E. Why lions form groups: food is not enough[J]. The American Naturalist, 1990, 136(1) : 1 – 19.
[30] SCHMIDT P A, MECH L D. Wolf pack size and food acquisition[J]. The American Naturalist, 1997, 150(4) : 513 – 517.
[31] BOESCH C. Cooperative hunting in wild chimpanzees[J]. Animal Behaviour, 1994, 48(3) : 653 – 667.
[32] MOFFETT M W. Foraging dynamics in the group-hunting myrmicine ant, Pheidologeton diversus[J]. Journal of Insect Behavior, 1988, 1 : 309 – 331.
[33] UETZ G W. Foraging strategies of spiders[J]. Trends in Ecology & Evolution, 1992, 7(5) : 155 –159.
[34] HECTOR D P. Cooperative hunting and its relationship to foraging success and prey size in an avian predator[J]. Ethology, 1986, 73(3) : 247 – 257.
[35] BSHARY R, HOHNER A, AIT-EL-DJOUDI K, et al. Interspecific communicative and coordinated hunting between groupers and giant moray eels in the Red Sea[J]. PLOS Biology, 2006, 4(12) : e431.
[36] MACDONALD D W. The ecology of carnivore social behaviour[J]. Nature, 1983, 301 : 379 – 384.
[37] ZHANG B, KULA A, MACK K M L, et al. Carrying capacity in a heterogeneous environment with habitat connectivity[J]. Ecology Letters, 2017, 20(9) : 1118 – 1128.
[38] RYU K, KO W, HAQUE M. Bifurcation analysis in a predator-prey system with a functional response increasing in both predator and prey densities[J]. Nonlinear Dynamics, 2018, 94 : 1639 –1656.
[39] YAN S X, JIA D X, ZHANG T H, et al. Pattern dynamics in a diffusive predator-prey model with hunting cooperations[J]. Chaos, Solitons & Fractals, 2020, 130 : 109428.
[40] DJILALI S, CATTANI C. Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response[J]. Chaos, Solitons & Fractals, 2021, 151 : 111258.
[41] ZHANG X B, ZHU H L. Dynamics and pattern formation in homogeneous diffusive predator–prey systems with predator interference or foraging facilitation[J]. Nonlinear Analysis: Real World Applications, 2019, 48 : 267 – 287.
[42] ALVES M T, HILKER F M. Hunting cooperation and Allee effects in predators[J]. Journal of Theoretical Biology, 2017, 419 : 13 – 22.
[43] WU D Y, ZHAO M. Qualitative analysis for a diffusive predator-prey model with hunting cooperative[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 515 : 299 – 309.
[44] RYU K, KO W. Asymptotic behavior of positive solutions to a predator-prey elliptic system with strong hunting cooperation in predators[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 531 : 121726.
[45] PAL S, PAL N, SAMANTA S, et al. Effect of hunting cooperation and fear in a predator-prey model[J]. Ecological Complexity, 2019, 39 : 100770.
[46] SONG D X, LI C, SONG Y L. Stability and cross-diffusion-driven instability in a diffusive predator-prey system with hunting cooperation functional response[J]. Nonlinear Analysis: Real World Applications, 2020, 54 : 103106.
[47] FU S M, ZHANG H S. Effect of hunting cooperation on the dynamic behavior for a diffusive Holling type II predator-prey model[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 99 : 105807.
[48] CARFORA M F, TORCICOLLO I. A fractional-in-time prey-predator model with hunting cooperation: qualitative analysis, stability and numerical approximations[J]. Axioms, 2021, 10(2) : 78.
[49] CARFORA M F, TORCICOLLO I. Traveling band solutions in a system modeling hunting cooperation[J]. Mathematics, 2022, 10(13) : 2303.
[50] 叶其孝, 李正元, 王明新等. 反应扩散方程引论[M]. 北京 : 科学出版社, 2011.
[51] EVANS L C. Partial differential equations[M]. America : American Mathematical Society, 2022.
[52] ALLEN L J S, BOLKER B M, LOU Y, et al. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21(1) : 1 – 20.
[53] YAMADA Y. Stability of steady states for prey-predator diffusion equations with homogeneous Dirichlet conditions[J]. SIAM Journal on Mathematical Analysis, 1990, 21(2) : 327 – 345.
[54] CONWAY E, GARDNER R, SMOLLER J A. Stability and bifurcation of steady-state solutions for predator-prey equations[J]. Advances in Applied Mathematic, 1982, 3 : 288 – 334.
[55] RUAN W H, FENG W. On the fixed point index and multiple steady-state solutions of reaction diffusion systems[J]. Differential and Integral Equations-International Journal for Theory and Applications, 1995, 8(2) : 371 – 392.
[56] LI S B, XIAO Y N, DONG Y Y. Diffusive predator-prey models with fear effect in spatially heterogeneous environment[J]. Electronic Journal of Differential Equations, 2021, 2021(70) : 1 – 31.
[57] DANCER E N. On positive solutions of some pairs of differential equations[J]. Transactions of the American Mathematical Society, 1984, 284(2) : 729 – 743.
[58] LI L. Coexistence theorems of steady states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1) : 143 – 166.
[59] JIN H Y, KIM Y J, WANG Z A. Boundedness, stabilization, and pattern formation driven by density-suppressed motility[J]. SIAM Journal on Applied Mathematics, 2018, 78(3) : 1632 – 1657.
[60] FU X F, TANG L H, LIU C L, et al. Stripe formation in bacterial systems with density-suppressed motility[J]. Physical Review Letters, 2012, 108(19) : 198102.
[61] LIU C L, FU X F, LIU L Z, et al. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334(6053) : 238 – 241.
[62] MA M J, PENG R, WANG Z A. Stationary and non-stationary patterns of the density-suppressed motility model[J]. Physica D: Nonlinear Phenomena, 2020, 402 : 132259.
[63] JIN H Y, WANG Z A. Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion[J]. European Journal of Applied Mathematics, 2021, 32(4) : 652 – 682.
[64] OKUBO A, LEVIN S A. Diffusion and ecological problems: modern perspectives[M]. New York : Springer, 2001.
[65] L ´OPEZ-G ´OMEZ J, PARDO R. Existence and uniqueness of coexistence states for the predator-prey model with diffusion: the scalar case[J]. Differential Integral Equations, 1993, 6(5) : 1025 – 1031.
[66] DANCER E N. On uniqueness and stability for solutions of singularly perturbed predator-prey type equations with diffusion[J]. Journal of Differential Equations, 1993, 102(1) : 1 – 32.
[67] L ´OPEZ-G ´OMEZ J, SAN GIL R P. Coexistence regions in Lotka-Volterra models with diffusion[J]. Nonlinear Analysis: Theory, Methods & Applications, 1992, 19(1) : 11 – 28.
[68] KADOTA T, KUTO K. Positive steady states for a prey-predator model with some nonlinear diffusion terms[J]. Journal of Mathematical Analysis and Applications, 2006, 323(2) : 1387 – 1401.
[69] KUTO K, YAMADA Y. Coexistence problem for a prey-predator model with density-dependent diffusion[J]. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71(12) : e2223 – e2232.
[70] KUTO K. A strongly coupled diffusion effect on the stationary solution set of a prey-predator model[J]. Advances in Differential Equations, 2007, 12(2) : 145 – 172.
[71] KUTO K, YAMADA Y. Limiting characterization of stationary solutions for a prey-predator model with nonlinear diffusion of fractional type[J]. Differential Integral Equations, 2009, 22 : 725 – 752.
[72] FRAILE J M, MEDINA P K, L ´OPEZ-G ´OMEZ J, et al. Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation[J]. Journal of Differential Equations,1996, 127(1) : 295 – 319.
[73] GUI C F, LOU Y. Uniqueness and nonuniqueness of coexistence states in the lotka-volterra competition model[J]. Communications on Pure and Applied Mathematics, 1994, 47(12) : 1571 – 1594.
[74] NAKASHIMA K, YAMADA Y. Positive steady states for prey-predator models with cross-diffusion[J]. Advances in Differential Equations, 1996, 1 : 1099 – 1122.
[75] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin : Springer, 1977.
[76] AMANN H. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[J]. SIAM Review, 1976, 18(4) : 620 – 709.
中图分类号:

 O29    

馆藏号:

 57635    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式