- 无标题文档
查看论文信息

中文题名:

 圆轨道 CBCT 锥束伪影校正算法研究    

姓名:

 张从耀    

学号:

 20121213218    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085409    

学科名称:

 工学 - 电子信息 - 生物医学工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 生物医学工程    

研究方向:

 生物医学工程    

第一导师姓名:

 朱守平    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 郑健    

完成日期:

 2023-06-01    

答辩日期:

 2023-05-30    

外文题名:

 Study of cone-beam artifact correction algorithm for circular orbit CBCT    

中文关键词:

 FDK ; 锥束伪影 ; 计算机断层成像 ; IR-FDK ; GPU 加速    

外文关键词:

 FDK ; cone beam artifacts ; computed tomography ; IR-FDK ; GPU acceleration    

中文摘要:

圆轨道锥束计算机断层成像(Cone-Beam Computed Tomography,CBCT)在医疗和工业领域中广泛应用。大尺寸2D探测器阵列可以极大地减少CBCT设备的扫描时间,提供高的空间分辨率,减少曝光量和获得更高的图像质量,同时也增加了圆轨道锥束CT成像的锥角。FDK(Feldkamp-David-Kress)算法作为目前最常用的锥束CT算法,因其算法结构简单,使用方便,并且对小锥角的图像重建效果较为可观,所以在实际应用中一直保持着主流地位。然而,圆轨道锥束FDK算法不满足精确重建的Tuy-Smith充分条件,因此FDK算法只能进行近似重建,重建图像包含锥束伪影,并且随着锥角的增加而变得愈加严重,主要表现为重建图像沿纵向方向的强度衰减。由于锥束伪影在一定程度上会降低临床诊断性能,所以适当的校正方法是非常有必要的。

本文围绕如何有效地消除大锥角CBCT成像产生的锥束伪影展开研究,具体工作总结如下:

针对如何消除锥束伪影问题,首先对比了几种消除锥束伪影的传统方法,并进行了仿真实验。传统算法包括三种重排算法(P-FDK、T-FDK和C-FDK)、三维加权算法和联合代数迭代重建算法(Simultaneous Algebraic Reconstruction Techniques,SART)。通过使用低对比度Shepp-Logan体模和修正的Defrise仿体进行仿真实验以及实测实验,并将这几种传统校正方法重建结果与FDK算法重建结果作比较。实验得出在进行高对比度物体成像时,传统的T-FDK、C-FDK和三维加权算法无法有效地抑制重建图像的纵向强度衰减及校正图像的失真。SART算法作为一种迭代重建算法,虽然可以有效地校正锥束伪影,但重建时间过长,无法满足临床需求。

针对上述传统算法的出现的问题,本文提出了一种基于FDK的迭代重建算法(IR-FDK),IR-FDK算法不需要额外的修正项,也不需要添加任何额外的轨迹来补充圆形轨迹,并进行了仿真实验和实测实验。利用Defrise、头模型仿真实验和猴子下肢扫描实测数据对IR-FDK算法进行了性能测试,将IR-FDK算法与FDK、三维加权算法、SART算法作比较,利用均方误差(Mean Square Error,MSE)、结构相似性指标(Structure Similarity Index Measure,SSIM)和结构相异性指标(Structure Dissimilarity Index Measure,DSSIM)三个指标得出本文提出的IR-FDK算法可以有效地补偿重建图像的纵向强度衰减及校正图像失真,特别是在大锥角情况下。在锥束伪影校正方面,IR-FDK算法是明显优于FDK算法、加权算法和C-FDK等重排算法。在重建时间方面,IR-FDK算法通过较少的迭代次数可以获得与SART算法相当的效果。

基于CUDA技术对IR-FDK算法进行加速。详细介绍了CUDA的基本理论知识以及CUDA的编程模型,并描述了IR-FDK算法的加速过程。对加速前后的IR-FDK算法进行评估,得出加速后的IR-FDK算法单次迭代的平均计算速度可提升160倍左右。

外文摘要:

Cone-Beam Computed Tomography (CBCT) is widely used in medical and industrial applications. The FDK (Feldkamp-David-Kress) algorithm is the most commonly used cone-beam CT algorithm, because of its simple structure, easy to use, and its effectiveness in reconstructing images with small cone angles. The FDK algorithm, as the most commonly used cone-beam CT algorithm, has maintained its mainstream position in practical applications because of its simple structure, ease of use, and relatively impressive image reconstruction results for small cone angles. However, the cone-beam FDK algorithm does not satisfy the Tuy-Smith sufficient condition for accurate reconstruction, so the FDK algorithm can only perform approximate reconstruction, and the reconstructed image contains cone-beam artifacts, which become more serious with the increase of cone angle, mainly in the form of intensity decay along the longitudinal direction of the reconstructed image. Since the cone-beam artifacts degrade the clinical diagnostic performance to a certain extent, appropriate correction methods are necessary.

 

In this thesis,we focus on how to effectively eliminate the cone beam artifacts generated by CBCT imaging with large cone angles, and the specific work is summarized as follows

 

1. To address the problem of how to eliminate cone-beam artifacts, several traditional methods for eliminating cone-beam artifacts are first compared and simulated are conducted. The conventional algorithms include three rearrangement algorithms (P-FDK, T-FDK and C-FDK), 3D weighting algorithm and Simultaneous Algebraic Reconstruction Techniques (SART). Simulation experiments are conducted using low-contrast Shepp-Logan volume models and modified Defrise affine bodies, and the reconstruction results of these traditional correction methods are compared with those of the FDK algorithm. It was concluded that the conventional T-FDK, C-FDK and 3D weighting algorithms could not effectively suppress the longitudinal intensity attenuation of the reconstructed images and correct the image distortion when performing high-contrast object imaging, and the SART algorithm, as an iterative reconstruction algorithm, could effectively correct the cone beam artifacts, but the reconstruction time was too long to meet the clinical needs.

 

To address the problems arising from the above traditional algorithms, an iterative reconstruction algorithm based on FDK (IR-FDK) is proposed in this paper. The IR-FDK algorithm does not require additional correction terms or add any additional trajectories to complement the circular trajectories, and simulation experiments and real measurement experiments are conducted. The performance of the IR-FDK algorithm was tested using Defrise, head model simulation experiments and monkey lower limb scan real measurement data, and the IR-FDK algorithm was compared with FDK, 3D weighting algorithm and SART algorithm, and the three indexes of MSE, SSIM and DSSIM were used to conclude that the IR-FDK algorithm proposed in this paper can effectively compensate the longitudinal intensity attenuation of the reconstructed image and The proposed IR-FDK algorithm can effectively compensate the longitudinal intensity attenuation of the reconstructed image and correct the image distortion, especially in the case of large cone angle. The simulation and measurement experiments show that the IR-FDK algorithm is significantly better than the FDK algorithm, the weighted algorithm and the C-FDK rearrangement algorithm in terms of cone beam artifact correction. In terms of reconstruction time, the IR-FDK algorithm can obtain comparable results with the SART algorithm by a smaller number of iterations.

 

3. The acceleration of IR-FDK algorithm based on CUDA technology. The basic theoretical knowledge of CUDA and the programming model of CUDA are introduced in detail, and the acceleration process of the IR-FDK algorithm is described. The IR-FDK algorithm before and after the acceleration is evaluated, and it is concluded that the average computational speed of the accelerated IR-FDK algorithm can be improved by about 160 times for a single iteration.

 

参考文献:
[1]曾更生. 医学图像重建[M]. 高等教育出版社,2010.
[2]Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm[J]. Josa a, 1984, 1(6): 612-619.
[3]王琛. 圆轨道锥束滤波反投影重建算法研究[D].中国工程物理研究院,2020.
[4]Baba R, Konno Y, Ueda K, et al. Comparison of flat-panel detector and image-intensifier detector for cone-beam CT[J]. Computerized Medical Imaging and Graphics, 2002, 26(3): 153-158.
[5]Siewerdsen J H, Moseley D J, Burch S, et al. Volume CT with a flat‐panel detector on a mobile, isocentric C‐arm: pre‐clinical investigation in guidance of minimally invasive surgery[J]. Medical Physics, 2005, 32(1): 241-254.
[6]Gupta R, Cheung A C, Bartling S H, et al. Flat-panel volume CT: fundamental principles, technology, and applications[J]. Radiographics, 2008, 28(7): 2009-2022.
[7]Kalender W A. X-ray computed tomography[J]. Physics in Medicine & Biology, 2006, 51(13): R29.
[8]Jaffray D A, Siewerdsen J H, Wong J W, et al. Flat-panel cone-beam computed tomography for image-guided radiation therapy[J]. International Journal of Radiation Oncology Biology Physics, 2002, 53(5): 1337-1349.
[9]Oldham M, Létourneau D, Watt L, et al. Cone-beam-CT guided radiation therapy: A model for on-line application[J]. Radiotherapy and Oncology, 2005, 75(3): 271. E1-271. E8.
[10]Flohr T, Prokop M, Becker C, et al. A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage[J]. European radiology, 2002, 12: 1497-1503.
[11]Patel S, Dawood A, Ford T P, et al. The potential applications of cone beam computed tomography in the management of endodontic problems[J]. International Endodontic Journal, 2007, 40(10): 818-830.
[12]Tyndall D A, Rathore S. Cone-beam CT diagnostic applications: caries, periodontal bone assessment, and endodontic applications[J]. Dental Clinics of North America, 2008, 52(4): 825-841.
[13]Hassan B, van der Stelt P, Sanderink G. Accuracy of three-dimensional measurements obtained from cone beam computed tomography surface-rendered images for cephalometric analysis: influence of patient scanning position[J]. The European Journal of Orthodontics, 2009, 31(2): 129-134.
[14]Kak A C, Slaney M. Principles of computerized tomographic imaging[M]. Society for Industrial and Applied Mathematics, 2001..
[15]Grass M, Köhler T, Proksa R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories[J]. Physics in Medicine & Biology, 2001, 46(6): 1595.
[16]Mori S, Endo M, Komatsu S, et al. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT[J]. Physics in Medicine & Biology, 2006, 51(16): 3953.
[17]Chen Z, Calhoun V D, Chang S. Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula[J]. Applied Optics, 2008, 47(32): 6033-6039.
[18]Grimmer R, Oelhafen M, Elstrøm U, et al. Cone‐beam CT image reconstruction with extended range[J]. Medical Physics, 2009, 36(7): 3363-3370.
[19]Tang X, Hsieh J, Hagiwara A, et al. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory[J]. Physics in Medicine & Biology, 2005, 50(16): 3889.
[20]徐聪聪. 稀疏角度锥束CT重建算法研究[D].电子科技大学,2020.
[21]Gomi T, Koshida K, Miyati T. Development of a cone angle weighted three-dimensional image reconstruction algorithm to reduce cone-beam artefacts[J]. Dentomaxillofacial Radiology, 2006, 35(6): 398-406.
[22]Chen Z, Calhoun V D, Chang S. Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula[J]. Applied Optics, 2008, 47(32): 6033-6039.
[23]Turbell H. Cone-beam reconstruction using filtered backprojection[D]. Linköping University Electronic Press, 2001.
[24]Grass M, Köhler T, Proksa R. 3D cone-beam CT reconstruction for circular trajectories[J]. Physics in Medicine & Biology, 2000, 45(2): 329.
[25]Grass M, Kohler T, Proksa R. Weighted hybrid cone beam reconstruction for circular trajectories[C]//2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No. 00CH37149). IEEE, 2000, 2: 15/1-15/2 vol. 2.
[26]Li L, Xing Y, Chen Z, et al. A curve-filtered FDK (C-FDK) reconstruction algorithm for circular cone-beam CT[J]. Journal of X-ray Science and Technology, 2011, 19(3): 355-371.
[27]Shi D. Successful suppression of cone beam artifacts using iterative reconstruction algorithm[C]//2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). IEEE, 2014: 1-3.
[28]Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography[J]. Journal of Theoretical Biology, 1970, 29(3): 471-481.
[29]Andersen A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm[J]. Ultrasonic imaging, 1984, 6(1): 81-94.
[30]Jiang M, Wang G. Convergence of the simultaneous algebraic reconstruction technique (SART)[J]. IEEE Transactions on Image Processing, 2003, 12(8): 957-961.
[31]Byrne C L. Strong underrelaxation in the multiplicative algebraic reconstruction technique (MART) for inconsistent systems[C]//1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference. IEEE, 1993: 1637-1641.
[32]Shepp L A, Vardi Y. Maximum likelihood reconstruction for emission tomography[J]. IEEE Transactions on Medical Imaging, 1982, 1(2): 113-122.
[33]Hudson H M, Larkin R S. Accelerated image reconstruction using ordered subsets of projection data[J]. IEEE Transactions on Medical Imaging, 1994, 13(4): 601-609.
[34]Park J C, Song B, Kim J S, et al. Fast compressed sensing‐based CBCT reconstruction using Barzilai‐Borwein formulation for application to on‐line IGRT[J]. Medical Physics, 2012, 39(3): 1207-1217.
[35]Maaß C, Dennerlein F, Noo F, et al. Comparing short scan CT reconstruction algorithms regarding cone-beam artifact performance[C]//IEEE Nuclear Science Symposuim & Medical Imaging Conference. IEEE, 2010: 2188-2193.
[36]Hsieh J. Two-pass algorithm for cone-beam reconstruction[C]//Medical Imaging 2000: Image Processing. SPIE, 2000, 3979: 533-540.
[37]Minnema J, Van Eijnatten M, Der Sarkissian H, et al. Efficient high cone-angle artifact reduction in circular cone-beam CT using deep learning with geometry-aware dimension reduction[J]. Physics in Medicine & Biology, 2021, 66(13): 135015.
[38]Grangeat P. Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform[C]//Mathematical Methods in Tomography: Proceedings of a Conference held in Oberwolfach, Germany, 5–11 June, 1990. Springer Berlin Heidelberg, 1991: 66-97.
[39]Grangeat P P, Le Masson P, Melennec P, et al. Evaluation of the 3-D Radon transform algorithm for cone beam reconstruction[C]//Medical Imaging V: Image Processing. SPIE, 1991, 1445: 320-331.
[40]张剑,陈志强.三维锥形束CT成像FDK重建算法发展综述[J].中国体视学与图像分析,2005.
[41]闫国瑞. 三维计算机断层成像快速重建算法研究及实现[J]. 毕业生, 2009.
[42]Defrise M, Clack R. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection[J]. IEEE Transactions on Medical Imaging, 1994, 13(1): 186-195.
[43]Clack R, Defrise M. Cone-beam reconstruction by the use of Radon transform intermediate functions[J]. JOSA A, 1994, 11(2): 580-585.
[44]Rodet T, Noo F, Defrise M. The cone‐beam algorithm of Feldkamp, Davis, and Kress preserves oblique line integrals[J]. Medical Physics, 2004, 31(7): 1972-1975.
[45]Schaller S, Flohr T, Steffen P. New efficient Fourier-reconstruction method for approximate image reconstruction in spiral cone-beam CT at small cone angles[C]. Medical Imaging 1997: Physics of Medical Imaging. SPIE, 1997, 3032: 213-224.
[46]张銮. 基于平板探测器的锥束CT重建技术研究[D].中北大学,2010.
[47]Quan G, Sun T, Deng Y. Fast reconstruction method based on common unified device architecture (CUDA) for micro-CT[J]. Journal of Innovative Optical Health Sciences, 2010, 3(01): 39-43.
[48]Mueller K, Yagel R. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic reconstruction technique (SART) using 2-D texture mapping hardware[J]. IEEE Transactions on Medical Imaging, 2000, 19(12): 1227-1237.
[49]Wang G, Lin T H, Cheng P C. Error analysis on a generalized Feldkamp's cone-beam computed tomography algorithm[J]. Scanning. 2006, 17(6): 361-370.
[50]Mueller K, Xu F. Practical considerations for GPU-accelerated CT[C]. IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006. IEEE, 2006: 1184-1187.
[51]Sharp G C, Kandasamy N, Singh H, et al. GPU-based streaming architectures for fast cone-beam CT image reconstruction and demons deformable registration[J]. Physics in Medicine & Biology, 2007, 52(19): 5771.
[52]Scherl H, Keck B, Kowarschik M, et al. Fast GPU-based CT reconstruction using the common unified device architecture (CUDA)[C]//2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007, 6: 4464-4466.
[53]Yan G, Tian J, Zhu S, et al. Fast cone-beam CT image reconstruction using GPU hardware[J]. Journal of X-ray Science and Technology, 2008, 16(4): 225-234.
[54]Cheng C, Parhi K K. High-Throughput VLSI Architecture for FFT Computation[J]. Circuits & Systems II Express Briefs IEEE Transactions on. 2007, 54(10): 863-867.
[55]Nukada A, Maruyama Y, Matsuoka S. High performance 3-D FFT using multiple CUDA GPUs[C]. 2012.
[56]Lindholm E, Nickolls J, Oberman S, et al. NVIDIA Tesla: A Unified Graphics and Computing Architecture[J]. IEEE Micro. 2008, 28(2): 39-55.
[57]Siddon R L. Fast calculation of the exact radiological path for a three‐dimensional CT array[J]. Medical Physics, 1985, 12(2): 252-255.
中图分类号:

 R31    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式