- 无标题文档
查看论文信息

中文题名:

 基于CPM的超短波传输系统波形设计与应用研究    

姓名:

 王英    

学号:

 20011210564    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 110503    

学科名称:

 军事学 - 军队指挥学 - 军事通信学    

学生类型:

 硕士    

学位:

 军事学硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 军队指挥学    

研究方向:

 智能隐蔽通信与信息处理    

第一导师姓名:

 孙锦华    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-03-13    

答辩日期:

 2023-05-30    

外文题名:

 Research on Waveform Design and Application of Ultrashort Wave Transmission System Based on CPM    

中文关键词:

 超短波通信 ; 连续相位调制 ; 串行级联系统 ; 单载波频域均衡 ; FPGA    

外文关键词:

 Ultra-short wave communication ; CPM ; Serially concatenated system ; SC-FDE ; FPGA    

中文摘要:

       超短波通信具有稳定性高、抗毁性强以及适用功率较小的发射机等特点,得以广泛应用于军事通信和民营广播等多个无线通信领域。随着现代无线通信技术的发展,频带资源愈加紧缺,针对通信带宽和功率都受到一定限制的超短波传输系统,一方面考虑选用优良的调制方式,并联合采用高性能的信道编码技术,另一方面需要考虑对抗无线信道中的多径干扰,由此实现高效且高可靠性的信息传输。

       基于上述背景,本文以具有高功效和高谱效的连续相位调制(Continue Phase Modulation, CPM)技术为核心进行波形设计,并实现了高阶CPM调制的FPGA设计,为基于CPM的超短波传输波形的应用提供了支撑。

       首先,本文详细介绍了CPM的关键技术,包括CPM信号的定义及相位状态,利用CPM信号的Rimoldi分解模型推导了CPM信号的最大似然序列检测,并对影响CPM系统性能的多种信号参数进行仿真与分析。基于此,本文研究了级联卷积码系统的编码与译码原理,在给出软输入软输出译码算法推导的基础上,设计了编码与CPM的串行级联系统(Serially Concatenated Continue Phase Modulation, SCCPM),编码类型包括卷积码和Turbo码,进一步利用扩展Turbo译码器能够同时输出系统位软信息和校验位软信息的特点,提出了基于扩展Turbo译码器与CPM串行级联系统的二次迭代译码算法,该算法有效利用了扩展Turbo译码器与CPM译码器之间的软信息,降低了信息传输过程中的损失,通过对Turbo-CPM系统采用传统译码算法与二次迭代译码算法的仿真与分析,得出结论:二次迭代译码算法在复杂度仅增加一次迭代的基础上,提高了系统的误码性能,保证了传输的可靠性。

       针对多径干扰的问题,本文引入单载波频域均衡技术(Single Carrier Frequency Domain Equalization, SC-FDE),与多载波技术相比,该技术不易受到频偏的影响且具有较低的峰均比,在研究了CPM信号的Laurent分解及其次优化检测算法的基础上,设计了基于Laurent分解的SCCPM信号的SC-FDE系统,通过仿真分析可以看出该系统以较低复杂度达到了对抗多径干扰的目的。

       最后,本文对八进制CPM系统的调制及解调算法进行FPGA设计实现,联合仿真波形验证了设计方案的可行性与正确性,并分析了处理速率与资源占用情况,为高阶CPM信号的实际应用提供参考。

外文摘要:

Ultra-short wave communication has the characteristics of high stability, strong survivability and low power transmitter, making it a popular choice in many wireless communication fields such as military communication and private broadcasting. The frequency band resources are becoming ever more scarce as modern wireless communication technology advances. For the ultra-short wave transmission system with limited communication bandwidth and power, on the one hand, it is considered to select excellent modulation mode and jointly adopt high-performance channel coding technology. On the other hand, it is necessary to consider how to combat multipath interference in wireless channels, so as to achieve efficient and reliable information transmission.

 

Based on the above background, this thesis focuses on CPM technique with high efficiency and spectral efficiency for waveform design, and implements FPGA design for high-order CPM modulation, providing support for the application of CPM based ultra-short wave transmission waveform.

 

Firstly, the key techniques of CPM are introduced in detail, including the definition and phase state of CPM signal. Using Rimoldi decomposition model of CPM signal, maximum likelihood sequence detection of CPM is deduced. And several signal parameters that affect the performance of CPM system are simulated and analyzed. Secondly, the encoding and decoding principle of concatenated convolution code system is studied. Based on the deduction of soft input and soft output decoding algorithm, a serial concatenated system for encoding and CPM is designed, in which the encoding types include convolution code and Turbo code. Further utilizing the feature that the extended Turbo decoder can output both the systematic bit soft-output and the parity bit soft-output at the same time, a quadratic iterative decoding algorithm decoding algorithm based on the extended Turbo decoder and CPM serial concatenated system is presented. The algorithm effectively utilizes the soft information between the extended Turbo decoder and CPM decoder, and reduces the loss of information transmission. Simulating and analyzing the Turbo-CPM system with both the traditional decoding algorithm and the quadratic iterative decoding algorithm, we arrive at the conclusion that the latter improves the bit error rate performance of the system and guarantees transmission reliability by only increasing complexity by one iteration.

For the problem of multipath interference, SC-FDE technology is introduced, which is not easily affected by frequency offset and has a low peak-to-average power ratio. On the basis of studying the Laurent decomposition of CPM signal and its suboptimal detection algorithm, the SC-FDE system of SCCPM signal based on Laurent decomposition is designed. Through simulation analysis, it can be seen that the system achieves the purpose of combating multipath interference with low complexity.

 

Finally, the modulation and demodulation algorithm of octal CPM system is designed and implemented with FPGA. Verification of the design scheme's feasibility and correctness is achieved through joint simulation, with the processing rate and resource occupation being analyzed to provid reference for the practical application of higher-order CPM signals.

参考文献:
[1] 何荣涛. 超短波收发信机的网格编码调制技术研究与实现[D]. 北京邮电大学, 2017.
[2] 阮奇. 数字通信系统中的同步技术研究[D]. 西安电子科技大学, 2019.
[3] 范乃公. 低复杂度CPM解调算法及其鲁棒性研究[D]. 西安电子科技大学, 2021.
[4] 兰笑. SOQPSK信号的频域均衡技术研究[D]. 西安电子科技大学, 2019.
[5] Anderson J B, Aulin T, Sundberg C E. Digital Phase Modulation[M]. New York, Plenum, 1986.
[6] Laurent P A. Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses[J]. IEEE Transactions on Communications, 1986, 34(2): 150-160.
[7] Mengali U, Morelli M. Decomposition of M-ary CPM signals into PAM waveforms[J]. IEEE Transactions on Information Theory, 1995, 41(5): 1265:1275.
[8] Rimoldi B E. A Decomposition Approach to CPM[J]. IEEE Transactions on Information Theory, 1988, 34(2): 260-270.
[9] Svensson A. Reduced state sequence detection of full response continuous phase modulation[J]. Electronics Letters, 1990, 26(10): 652-654.
[10] Forney G D. Concatenated codes[M]. Cambridge:MIT Press, 1966.
[11] Benedetto S, Divasalar D, Montorsi G, et al. Serial concatenation of interleaved codes: performance analysis, design, and iterative decoding[J]. IEEE Transactions on Information Theory, 1998, 44(3): 909-926.
[12] Victor F. Szeto, Subbarayan Pasupathy. Iterative decoding of serially concatenated convolutional codes and MSK[J]. IEEE Communications Letters, 1999, 3(9): 272-274.
[13] Moqvist P, Aulin T M. Serially concatenated continuous phase modulation with iterative decoding[J]. IEEE Transcations on Communications, 2001, 49(11): 1901-1915.
[14] Narayanan K R, Stuber G L. Performance of trellis coded CPM with iterative demodulation and decoding[C]. //Global Telecommunications Conference, 1999, 5: 2346-2351.
[15] Brutel C, Boutros J, Belveze F. Serial encoding and iterative detection of continuous phase modulations[C]. //Global Telecommunications Conference, 1999, 5: 2375-2379.
[16] Singh M, Wassell I J. SOVA decoding of concatenated convolutional encoders and CPM scheme over AWGN and fading channels[C]. //IEEE International Conference on Personal Wireless Communications, 2000: 152-156.
[17] 薛睿,赵旦峰,张英. 新型Turbo-CPM系统接收机的设计[J]. 吉林大学学报, 2010, 40(6): 1724-1728.
[18] 刘蒙蒙. 串行级联CPM系统的关键技术研究[D]. 西安电子科技大学, 2020.
[19] 包建荣,詹亚锋,陆建华. 高效联合LDPC编码递归MSK调制[J]. 清华大学学报, 2010, 50(1): 104-107.
[20] 黄云. 低信噪比下串行级联CPM系统的迭代检测技术研究[D]. 西安电子科技大学, 2020.
[21] Gottfried Y, Davidson J. Non-coherent iterative demodulation and decoding of serially concatenated continuous phase modulation[C]. //22nd Convention of Electrical and Electronics Engineers in Israel, 2002: 186-188.
[22] Scanavino B, Monotorsi G, Benedetto S, et al. Convergence properties of iterative decoders working at bit and symbol level[C]. //IEEE Global Telecommunications Conference, 2001(2): 1037-1041.
[23] Grant A, Convergence of on-binary iterative decoding[C], //IEEE Global Telecommunications Conference, 2001(2): 1058-1062.
[24] Colavolpe G, Ferrari G, Raheli R. Reduced-state BCJR-type algorithms[J]. IEEE Journal on Selected Areas in Communications, 2001, 19(5): 848-859.
[25] Chung K, Chugg K M, Heo J. Reduced state adaptive SISO algorithms for serially concatenated CPM over frequency-selective fading channels[C]. //IEEE Global Telecommunications Conference, 2001(3): 1162-1166.
[26] 孙锦华,李建东,金力军. 串行级联CPM的一种简化状态SISO迭代译码算法[J]. 中国科学E辑,2007, 37(8): 1055-1065.
[27] Jun Tan, Stuber G L. Frequency-domain equalization for continuous phase modulation[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2479-2490.
[28] 胡小菲. 基于连续相位调制的单载波频域均衡宽带无线传输技术研究[D]. 西安电子科技大学, 2013.
[29] Pancaldi F, Vitetta G M. Equalization algorithms in the frequency domain for continuous phase modulations[J]. IEEE Transactions on Communications, 2006, 54(4): 648-658.
[30] Ozgul B, Koca M, Delic H. Double Turbo Equalization of Continuous Phase Modulation with Frequency Domain Processing[J]. IEEE Transactions on Communications, 2009, 57(2): 423-429.
[31] 李强,严庆,罗胜. 基于符号频域均衡的CPM迭代检测算法[J]. 电子与信息学报, 2011, 33(7): 1550-1555.
[32] Hassan E S, Zhu X,Khamy S E, et al. A Chaotic Interleaving Scheme for the Continuous Phase Modulation Based Single-Carrier Frequency-Domain Equalization System[J]. Wireless personal communications: 2012, 62(1): 183-199.
[33] Park C H, Heathr. W, Rappaport T S. Frequency-Domain Channel Estimation and Equalization for Continuous-Phase Modulations With Superimposed Pilot Sequences[J]. IEEE Transactions on Vehicular Technology, 2009, 58(9): 4903-4908.
[34] 付涛. 连续相位调制单载波频域均衡关键技术研究[D]. 浙江大学, 2010.
[35] 王肖远. 基于FPGA的高速CPM数据传输系统[D]. 西安电子科技大学, 2009.
[36] 廖聪. CPM同步和检测算法研究及其FPGA实现[D]. 重庆大学, 2012.
[37] 张茹. CPM低复杂度序列检测算法及其FPGA实现[D]. 中国工程物理研究院, 2015.
[38] 孙浩. 非递归连续相位调制技术的研究与FPGA实现[D]. 西安电子科技大学, 2017.
[39] 刘子龙. CPM信号解调算法研究[D]. 郑州大学, 2021.
[40] 张理勇. 连续相位调制系统解调算法研究与FPGA实现[D]. 国防科学技术大学, 2012.
[41] 孙锦华. 低复杂度的跳频连续相位调制传输技术研究[D]. 西安电子科技大学, 2007.
[42] 朱岩.GMSK信号维特比解调算法研究及其在信道衰落下性能分析[J]. 电子质量, 2022, No.420(03): 6-12.
[43] 李多烨. 连续相位信号的调制解调技术研究及其FPGA实现[D]. 电子科技大学, 2013.
[44] Amruta J.Mandwale, Altaf O.Mulani. Different Approaches For Implementation of Viterbi decoder on reconfigurable platform[C]. //2015 International conference on pervasive computing, 2015: 1-4.
[45] 刘东华. Turbo码原理与应用技术[M]. 电子工业出版社, 2004.
[46] 王新梅,肖国镇. 纠错码原理与方法[M]. 西安电子科技大学出版社. 2001: 504-533.
[47] 刘东华. Turbo码关键技术及Turbo原理的应用研究[D]. 中国人民解放军国防科学技术大学, 2003.
[48] 王雪梅. 低信噪比短突发通信中高精度Turbo同步算法的研究[D]. 西安电子科技大学, 2014.
[49] 谢顺钦. 低信噪比下Multi-h CPM的接收关键技术研究[D]. 中国工程物理研究院, 2017.
[50] 徐坚. 基于连续相位调制的SC-FDMA技术的研究[D]. 西安电子科技大学, 2011.
[51] Huemer M, Witschnig H, Hausner J. Unique Word Based Phase Tracking Algorithms for SC/FDE-Systems[C]. //2003 IEEE Global Telecommunications Conference, 2003(1): 70-74.
[52] Falconer D, Ariyavisitakul S L, Benyamin A,et al.Frequency domain equalization for single-carrier broadband wireless systems[J]. Commu. Magazine, IEEE, 2002, 40(4): 58-66.
[53] 柴光磊. CPM信号低复杂度解调方法研究[D]. 西安电子科技大学, 2015.
[54] 王冰. 连续相位调制低复杂度解调算法研究[D]. 电子科技大学, 2018.
[55] 李建东,郭梯云,邬国扬. 移动通信(第四版)[M]. 西安电子科技大学出版社. 2006.
[56] 孙锦华,刘鹏,吴小钧. 联合旋转平均周期图和解调软信息的载波同步方法[J]. 电子与信息学报, 2013, 35(09): 2200-2205.
[57] 朱吉利. 空间通信中高效编码SOQPSK技术的研究与实现[D]. 西安电子科技大学, 2013.
中图分类号:

 TN92    

馆藏号:

 58440    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式