- 无标题文档
查看论文信息

中文题名:

 基于变分模型的图像分割方法研究    

姓名:

 赵文秀    

学号:

 1707110344    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 博士    

学位:

 理学博士    

学校:

 西安电子科技大学    

院系:

 数学与统计学院    

专业:

 数学    

研究方向:

 图像分割    

第一导师姓名:

 王卫卫    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-06-19    

答辩日期:

 2023-05-29    

外文题名:

 Research on Image Segmentation Method Based on Variational Model    

中文关键词:

 图像分割 ; 选择性分割 ; 全局分割 ; 变分方法 ; 平滑模型 ; 阈值化 ; 即插即用去噪器 ; 边缘检测    

外文关键词:

 Image segmentation ; selective segmentation ; global segmentation ; variational method ; smoothing model ; thresholding ; plug and play denoiser ; edge detection    

中文摘要:

       图像分割是图像处理中的一个基本问题, 是基于图像模式识别和图像理解的基础.图像分割已广泛应用于目标检测、医学诊断、对象追踪、智能交通等领域. 选择性分割和全局分割是两种常用的图像分割方法. 前者是将感兴趣的区域或目标从背景中分离出来, 后者是将所有前景目标从背景中分离出来. 近年来, 研究人员提出了大量的图像分割模型和算法. 其中, 基于变分模型的图像分割方法由于具有良好的数学理论基础受到广泛关注. 本文重点设计了选择性图像分割和全局图像分割的变分模型, 具体成果如下: 
       1)提出一个新的变分图像平滑模型和一个活动轮廓模型来进行选择性图像分割. 该方法包括两个阶段. 第一阶段是预处理步骤, 目的是平滑给定的图像, 从而减少噪声或杂乱背景对分割的影响. 第二阶段是对预处理后的图像进行选择性分割. 具体来说, 在第一阶段, 提出了一个保边的加权变分平滑模型, 该模型能较好地保留图像边缘, 滤除噪声和小尺度细节. 在第二阶段, 设计了一个改进的活动轮廓模型来实现选择性分割. 模型使用全局稀疏梯度场来刻画图像边缘, 因为它比传统的梯度算子对噪声具有更强的鲁棒性. 此外, 使用一组标记点来构造初始轮廓, 可以获得更有效和更准确地分割. 在真实医学图像上的大量实验表明, 所提出的平滑模型可以极大地促进第二阶段的处理, 并且无论在视觉评价还是定量评价方面, 所提方法的分割效果都显著优于相关方法. 
       2)提出了一个基于阈值的选择性分割方法. 为了方便阈值选择, 提出了一个新的图像平滑模型. 平滑模型由正则项和保真项组成, 其中正则项是基于一个训练好的即插即用去噪神经网络, 保真项引入依赖于目标区域内一组标记点的权重. 该平滑模型能在保护目标区域的同时, 有效地平滑其它区域. 大量的实验表明, 新的平滑模型有利于阈值选择和阈值分割, 得到的分割结果无论在视觉上还是定量评价上都明显优于相关的选择性分割方法. 
       3)提出了一个基于边缘和区域信息的全局分割方法, 该方法能有效分割噪声强、强度不均匀的图像. 首先使用一个现有的去噪器对原始图像进行预处理获得一幅平滑图像, 以避免噪声和弱边缘对后期边缘检测的影响. 然后对预处理后的平滑图像给出一个全局分割活动轮廓模型. 该模型包含三个保真项: 一个基于边缘的保真项和两个基于区域的保真项. 基于边缘的保真项是一个依赖平滑图像梯度的边缘停止函数, 驱使活动轮廓在目标的边界停止演化. 基于全局区域的保真项旨在最小化平滑图像与局部拟合图像之间的差异,而基于局部区域的保真项则考虑图像的点拟合. 为了保证水平集函数的光滑化, 采用高斯滤波对水平集函数进行正则化. 实验结果表明, 该模型对噪声和强度不均匀有很强的鲁棒性; 与相关的分割模型相比, 所提模型的分割精度有显著优势.  

外文摘要:

    Image segmentation is a fundamental problem in image processing, and is the foundation of image based pattern recognition and image understanding. Image segmentation has been widely used in target detection, medical diagnosis, object tracking, intelligent transportation and other fields. Selective segmentation and global segmentation are two popular image segmentation tasks. The former one aims to separate the target regions or objects of interest from the background, while the later one aims to separate all objects from the background. In recent years, a large number of models and algorithms have been proposed. Among them, the variational models have been widely attended because of good mathematical explanation. In this thesis, we focus on designing variational models for selective image segmentation and global image segmentation. The specific achievements are as follows.
    1) A new variational image smoothing model and an active contour model are proposed for selective image segmentation. The proposed method consists of two stages. The first stage is a preprocessing step, which aims to smooth the given image, thus reducing influence of noise, or cluttered background on the segmentation. The second stage performs selective segmentation on the preprocessed image. For the first stage, a weighted variational smoothing model is proposed, which can preserve the edge of the image well and filter out noise and small scale details. For the second stage, a modified active contour model is designed to achieve selective segmentation. In the proposed active contour model, the global sparse gradient field is used to depict image edges, because it is more robust to noise than the traditional gradient operator. In addition, we use a set of marker points to construct the initial contour, which leads to more effective and accurate segmentation. Extensive experiments on real medical images show that, the proposed smoothing model can greatly facilitate the second stage, and the segmentation performance of the proposed method is significantly superior to relevant methods in terms of either visual assessment or quantitative evaluation. 
    2) A thresholding based selective segmentation method is proposed. To facilitate threshold selection, we propose a new image smoothing model. The smoothing model consists of a regularization term and a fidelity term, where the regularization term is based on a trained plug and play denoising neural network, and the fidelity term introduces weights dependent on a set of marker points in the target region. The smoothing model can effectively smooth out other regions while protecting the  target region. Extended experiments show that the new smoothing model effectively facilitate the threshold selection and the threshold segmentation, and the obtained segmentation results are significantly superior to that obtained by relevant selective segmentation methods in both visual and quantitative evaluation.
    3) Based on edge and region information, we present a global segmentation method, which can effectively segment images with strong noise and intensity inhomogeneity. First, an existing denoiser is applied to the original image to obtain a smooth image, hoping to reduce the influence of the noise and weak edges on the later edge detection. Then, an active contour model is given for global segmentation of the smoothed image. The model consists of three fidelity terms: one edge based and two region based. The edge based fidelity term is an edge stop function depending on the gradients of the smoothed image, forcing the active contour stop evolving at the boundary of the target. The global region-based fidelity term aims to minimized the discrepancy between the smoothed image and its local fitting image, while local region-based fidelity term considers pointwise image fitting. In order to ensure the smoothness of the level set function, Gaussian filter is used to regularize the level set function. Extended experiments show that the model has good robustness to noise and intensity inhomogeneity. Compared with relevant segmentation models, the proposed model also has significant advantages in segmentation accuracy.

参考文献:
[1]李钢. 偏微分与变分技术在图像分割中的应用研究[M]. 北京理工大学出版社.
[2]章毓晋. 图像分割[M]. 北京: 科学出版社, 2001.
[3]夏良正. 数字图像处理[M]. 南京: 东南大学出版社, 2002.
[4]Garcia A, Orts S, Oprea S, et al. A review on deep learning techniques applied to semantic segmentation[J]. arXiv preprint arXiv:1704.06857, 2017.
[5]Guo Y, Liu Y, Georgiou T, et al. A review of semantic segmentation using deep neural networks[J]. International journal of multimedia information retrieval, 2018, 7: 87-93.
[6]Hafiz A M, Bhat G M. A survey on instance segmentation: state of the art[J]. International journal of multimedia information retrieval, 2020, 9(3): 171-189.
[7]Gu W, Bai S, Kong L. A review on 2D instance segmentation based on deep neural networks[J]. Image and Vision Computing, 2022: 104401.
[8]Zhang J, Yang K, Ma C, et al. Bending reality: Distortion-aware transformers for adapting to panoramic semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 16917-16927.
[9]Kirillov A, He K, Girshick R, et al. Panoptic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 9404-9413.
[10]Liu C, Dong F, Zhu S, et al. New variational formulations for level set evolution without reinitialization with applications to image segmentation[J]. Journal of Mathematical Imaging and Vision, 2011, 41: 194-209.
[11]Min H, Jia W, Wang X F, et al. An intensity-texture model based level set method for image segmentation[J]. Pattern Recognition, 2015, 48(4): 1547-1562.
[12]Rahman A, Ali H, Badshah N, et al. A selective segmentation model using dual-level set functions and local spatial distance[J]. IEEE Access, 2022, 10: 22344-22358.
[13]Spencer J, Chen K, Duan J. Parameter-free selective segmentation with convex variational methods[J]. IEEE Transactions on Image Processing, 2018, 28(5): 2163-2172.
[14]Yuheng S, Hao Y. Image segmentation algorithms overview[J]. arXiv preprint arXiv:1707.02051, 2017.
[15]Minaee S, Boykov Y Y, Porikli F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021.
[16]Zaitoun N M, Aqel M J. Survey on image segmentation techniques[J]. Procedia Computer Science, 2015, 65: 797-806.
[17]Ramesh K K D, Kumar G K, Swapna K, et al. A review of medical image segmentation algorithms[J]. EAI Endorsed Transactions on Pervasive Health and Technology, 2021, 7(27): e6-e6.
[18]Pantofaru C, Hebert M. A comparison of image segmentation algorithms[R]. Technical Report CMU-RI-TR-05-40, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (September 2005), 2005.
[19]Milletari F, Navab N, Ahmadi S A. V-net: Fully convolutional neural networks for volumetric medical image segmentation[C]//2016 fourth international conference on 3D vision (3DV). IEEE, 2016, 565-571.
[20]Wang G, Li W, Zuluaga M A, et al. Interactive medical image segmentation using deep learning with image-specific fine tuning[J]. IEEE transactions on medical imaging, 2018, 37(7): 1562-1573.
[21]Hesamian M H, Jia W, He X, et al. Deep learning techniques for medical image segmentation: achievements and challenges[J]. Journal of digital imaging, 2019, 32: 582-596.
[22]Gu Z, Cheng J, Fu H, et al. Ce-net: Context encoder network for 2d medical image segmentation[J]. IEEE transactions on medical imaging, 2019, 38(10): 2281-2292.
[23]Ngo T A, Lu Z, Carneiro G. Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance[J]. Medical image analysis, 2017, 35: 159-171.
[24]Kang Y, Yamaguchi K, Naito T, et al. Multiband image segmentation and object recognition for understanding road scenes[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1423-1433.
[25]Li L, Qian B, Lian J, et al. Traffic scene segmentation based on RGB-D image and deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(5): 1664-1669.
[26]Wang Z, Jensen J R, Im J. An automatic region-based image segmentation algorithm for remote sensing applications[J]. Environmental Modelling and Software, 2010, 25(10): 1149-1165.
[27]Yuan K, Zhuang X, Schaefer G, et al. Deep-learning-based multispectral satellite image segmentation for water body detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7422-7434.
[28]Razmjooy N, Estrela V V, Loschi H J. A survey of potatoes image segmentation based on machine vision[M]//Applications of Image Processing and Soft Computing Systems in Agriculture. IGI Global, 2019: 1-38.
[29]Abbasgholipour M, Omid M, Keyhani A, et al. Color image segmentation with genetic algorithm in a raisin sorting system based on machine vision in variable conditions[J]. Expert Systems with Applications, 2011, 38(4): 3671-3678.
[30]Lin K, Zhao H, Lv J, et al. Face detection and segmentation based on improved mask R-CNN[J]. Discrete dynamics in nature and society, 2020, 2020: 1-11.
[31]Ghazali K H B, Ma J, Xiao R. An innovative face detection based on skin color segmentation[J]. International Journal of Computer Applications, 2011, 34(2): 6-10.
[32]Xu J, Wang L, Shi Z. A switching weighted vector median filter based on edge detection[J]. Signal Processing, 2014, 98: 359-369.
[33]Yang X, Liu M, Xu J, et al. Image segmentation and recognition algorithm of greenhouse whitefly and thrip adults for automatic monitoring device[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 164-170.
[34]Sobel I E. Camera models and machine perception[M]. Stanford University, 1970.
[35]Marr D, Hildreth E. Theory of edge detection[J]. Proceedings of the Royal Society of London. Series B. Biological Sciences, 1980, 207(1167): 187-217.
[36]Canny J F. Finding Edges and Lines in Images[R]. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1983.
[37]Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models[J]. International journal of computer vision, 1988, 1(4): 321-331.
[38]Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International journal of computer vision, 1997, 22(1): 61-79.
[39]Adams R, Bischof L. Seeded region growing[J]. IEEE Transactions on pattern analysis and machine intelligence, 1994, 16(6): 641-647.
[40]Hojjatoleslami S A, Kittler J. Region growing: a new approach[J]. IEEE Transactions on Image processing, 1998, 7(7): 1079-1084.
[41]Cheevasuvit F, Maitre H, Vidal-Madjar D. A robust method for picture segmentation based on a split-and-merge procedure[J]. Computer Vision, Graphics, and Image Processing, 1986, 34(3): 268-281.
[42]Strasters K C, Gerbrands J J. Three-dimensional image segmentation using a split, merge and group approach[J]. Pattern Recognition Letters, 1991, 12(5): 307-325.
[43]Roerdink J B T M, Meijster A. The watershed transform: Definitions, algorithms and parallelization strategies[J]. Fundamenta informaticae, 2000, 41(1-2): 187-228.
[44]Romero R, Reinoso J F. An updated review on watershed algorithms[J]. Soft computing for sustainability science, 2018: 235-258.
[45]Al S S, Kalyankar N V. Image segmentation by using threshold techniques[J]. arXiv preprint arXiv:1005.4020, 2010.
[46]范九伦. 灰度图像阈值分割法[M]. 科学出版社, 2019.
[47]Lee S U, Chung S Y, Park R H. A comparative performance study of several global thresholding techniques for segmentation[J]. Computer Vision, Graphics, and Image Processing, 1990, 52(2): 171-190.
[48]Yen J C, Chang F J, Chang S. A new criterion for automatic multilevel thresholding[J]. IEEE Transactions on Image Processing, 1995, 4(3): 370-378.
[49]Otsu N. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1): 62-66.
[50]Kapur J N. Maximum-entropy models in science and engineering[M]. John Wiley $\&$ Sons, 1989.
[51]Guo Y, Zhu W, Jiao P, et al. Multi-object extraction from topview group-housed pig images based on adaptive partitioning and multilevel thresholding segmentation[J]. Biosystems Engineering, 2015, 135: 54-60.
[52]Wang R, Li C, Wang J, et al. Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images[J]. Journal of neuroscience methods, 2015, 241: 30-36.
[53]Sharma P, Suji J. A review on image segmentation with its clustering techniques[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(5): 209-218.
[54]许晓丽. 基于聚类分析的图像分割[M]. 北京大学出版社, 2020.
[55]Burney S M A, Tariq H. K-means cluster analysis for image segmentation[J]. International Journal of Computer Applications, 2014, 96(4).
[56]Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum, 1981.
[57]Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J]. Pattern recognition, 2007, 40(3): 825-838.
[58]Gong M, Liang Y, Shi J, et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation[J]. IEEE transactions on image processing, 2012, 22(2): 573-584.
[59]Lei T, Liu P, Jia X, et al. Automatic fuzzy clustering framework for image segmentation[J]. IEEE Transactions on Fuzzy Systems, 2019, 28(9): 2078-2092.
[60]Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905.
[61]Boykov Y, Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[J]. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(9): 1124-1137.
[62]Grady L, Schwartz E L. Isoperimetric graph partitioning for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(3): 469-475.
[63]田萱,王亮,孟祥光. 基于深度学习的图像语义分割技术[M]. 海洋出版社, 2019.
[64]Liu X, Song L, Liu S, et al. A review of deep-learning-based medical image segmentation methods[J]. Sustainability, 2021, 13(3): 1224.
[65]Minaee S, Boykov Y Y, Porikli F, et al. Image segmentation using deep learning: A survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021.
[66]Ghosh S, Das N, Das I, et al. Understanding Deep Learning Techniques for Image Segmentation[J]. ACM Computing Surveys (CSUR), 2019, 52(4): 1-35.
[67]Tian D, Han Y, Wang B, et al. Review of object instance segmentation based on deep learning[J]. Journal of Electronic Imaging, 2022, 31(4): 041205-041205.
[68]Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440.
[69]Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.
[70]Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[71]Peng S, Jiang W, Pi H, et al. Deep snake for real-time instance segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020: 8533-8542.
[72]He K, Gkioxari G, Dollár P, et al. Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2017: 2961-2969.
[73]Li Y, Zhao H, Qi X, et al. Fully convolutional networks for panoptic segmentation[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021: 214-223.
[74]Cohen L D. On active contour models and balloons[J]. CVGIP: Image understanding, 1991, 53(2): 211-218.
[75]Xu C, Prince J L. Snakes, shapes, and gradient vector flow[J]. IEEE Transactions on image processing, 1998, 7(3): 359-369.
[76]Xu C, Prince J L. Generalized gradient vector flow external forces for active contours[J]. Signal processing, 1998, 71(2): 131-139.
[77]Jifeng N, Chengke W, Shigang L, et al. NGVF: An improved external force field for active contour model[J]. Pattern Recognition Letters, 2007, 28(1): 58-63.
[78]Li B, Acton S T. Active contour external force using vector field convolution for image segmentation[J]. IEEE transactions on image processing, 2007, 16(8): 2096-2106.
[79]Zhu S, Gao R. A novel generalized gradient vector flow snake model using minimal surface and component-normalized method for medical image segmentation[J]. Biomedical Signal Processing and Control, 2016, 26: 1-10.
[80]Xie W, Duan J , Shen L, et al. Open snake model based on global guidance field for embryo vessel location[J]. IET Computer Vision, 2018, 12(2):129-137.
[81]Caselles V, Catté F, Coll T, et al. A geometric model for active contours in image processing[J]. Numerische mathematik, 1993, 66(1): 1-31.
[82]Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach[J]. IEEE transactions on pattern analysis and machine intelligence, 1995, 17(2): 158-175.
[83]Caselles V, Kimmel R, Sapiro G. Geodesic active contours[J]. International journal of computer vision, 1997, 22(1): 61-79.
[84]Mumford D B, Shah J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Communications on pure and applied mathematics, 1989,42(5):577-685.
[85]Chan T F, Vese L A. Active contours without edges[J]. IEEE Transactions on image processing, 2001, 10(2): 266-277.
[86]Vese L A, Chan T F. A multiphase level set framework for image segmentation using the Mumford and Shah model[J]. International journal of computer vision, 2002, 50(3): 271-293.
[87]Tsai A, Yezzi A, Willsky A S. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J]. IEEE transactions on Image Processing, 2001, 10(8): 1169-1186.
[88]Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007: 1-7.
[89]Li C, Xu C, Gui C, et al. Level set evolution without re-initialization: a new variational formulation[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, 2005, 1: 430-436.
[90]Li C, Xu C, Gui C, et al. Distance regularized level set evolution and its application to image segmentation[J]. IEEE transactions on image processing, 2010, 19(12): 3243-3254.
[91]Zhang K, Song H, Zhang L. Active contours driven by local image fitting energy[J]. Pattern recognition, 2010, 43(4): 1199-1206.
[92]Wang L, Chang Y, Wang H, et al. An active contour model based on local fitted images for image segmentation[J]. Information sciences, 2017, 418: 61-73.
[93]Ji Z, Xia Y, Sun Q, et al. Active contours driven by local likelihood image fitting energy for image segmentation[J]. Information Sciences, 2015, 301: 285-304.
[94]Li C, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[J]. IEEE transactions on image processing, 2011, 20(7): 2007-2016.
[95]Miao J, Huang T Z, Zhou X, et al. Image segmentation based on an active contour model of partial image restoration with local cosine fitting energy[J]. Information Sciences, 2018, 447: 52-71.
[96]Wang X F, Huang D S, Xu H . An efficient local Chan–Vese model for image segmentation[J]. Pattern Recognition, 2010, 43(3):603-618.
[97]Liu S, Peng Y. A local region-based Chan–Vese model for image segmentation[J]. PATTERN RECOGNITION, 2012, 45(7):2769-2779.
[98]Krinidis S, Chatzis V. Fuzzy energy-based active contours[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2747-2755.
[99]Mondal A, Ghosh S, Ghosh A. Robust global and local fuzzy energy based active contour for image segmentation[J]. Applied Soft Computing, 2016, 47: 191-215.
[100]Fang J, Liu H, Liu J, et al. Fuzzy region-based active contour driven by global and local fitting energy for image segmentation[J]. Applied Soft Computing, 2021, 100: 106982.
[101]Fang J, Liu H, Zhang L, et al. Fuzzy region-based active contours driven by weighting global and local fitting energy[J]. IEEE Access, 2019, 7: 184518-184536.
[102]Zhao F, Xie X. An overview of interactive medical image segmentation[J]. Annals of the BMVA, 2013, 2013(7): 1-22.
[103]Chen K, Debroux N, Le Guyader C. A survey of topology and geometry-constrained segmentation methods in weakly supervised settings[J]. Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision, 2021: 1-46.
[104]Ghani N A S M, Jumaat A K. Selective Segmentation Model for Vector-Valued Images[J]. Journal of Information and Communication Technology, 2022, 21(2): 149-173.
[105]Kapuriya B R, Pradhan D, Sharma R. Geometric constraints based selective segmentation for vector valued images[C]//2020 International Conference on Computer Communication and Informatics (ICCCI), IEEE, 2020, 1-5.
[106]Zhang J, Chen K, Yu B, et al. A local information based variational model for selective image segmentation[J]. Inverse Problems Imaging, 2014, 8(1): 293-320.
[107]Jumaat A K, Chen K. Three-dimensional convex and selective variational image segmentation model[J]. Malaysian Journal of Mathematical Sciences, 2020, 14(3): 437-450.
[108]Tang Z, Zhang J, Gui W. Selective search and intensity context based retina vessel image segmentation[J]. Journal of medical systems, 2017, 41(3): 47.
[109]Wang X, Li S, Li J, et al. An adaptive and selective segmentation model based on local and global image information[J]. International Journal of Modelling, Identification and Control, 2017, 28(2): 114-124
[110]Gout C, Le Guyader C, Vese L. Segmentation under geometrical conditions using geodesic active contours and interpolation using level set methods[J]. Numerical algorithms, 2005, 39(1): 155-173.
[111]Le Guyader C, Gout C. Geodesic active contour under geometrical conditions: theory and 3D applications[J]. Numerical algorithms, 2008, 48(1): 105-133.
[112]nts Using an Active Contour Approach[J]. Commun. Comput. Phys., 2010, 7(4):759-778.
[113]Rada L, Chen K. Improved selective segmentation model using one level-set[J]. Journal of Algorithms $\&$ Computational Technology, 2013, 7(4): 509-540.
[114]Ali H, Faisal S, Chen K, et al. Image-selective segmentation model for multi-regions within the object of interest with application to medical disease[J]. The Visual Computer, 2021, 37(5): 939-955.
[115]Rada L, Chen K. A new variational model with dual level set functions for selective segmentation[J]. Communications in Computational Physics, 2012, 12(1): 261-283.
[116]Rada L, Ali H, Khan H N A. A Selective Segmentation Model for Inhomogeneous Images[C]//International Symposium on Intelligent Computing Systems. Springer, Cham, 2018: 123-136.
[117]Roberts M, Chen K, Irion K L. A convex geodesic selective model for image segmentation[J]. Journal of Mathematical Imaging and Vision, 2019, 61(4): 482-503.
[118]Spencer J, Chen K. A convex and selective variational model for image segmentation[J]. Communications in Mathematical Sciences, 2015, 13(6): 1453-1472.
[119]Mohammed Z F, Abdulla A A. Thresholding-based white blood cells segmentation from microscopic blood images[J]. UHD Journal of Science and Technology, 2020, 4(1): 9-17.
[120]Chen J, Guan B, Wang H, et al. Image thresholding segmentation based on two dimensional histogram using gray level and local entropy information[J]. IEEE Access, 2017, 6: 5269-5275.
[121]Liu C, Ng M K P, Zeng T. Weighted variational model for selective image segmentation with application to medical images[J]. Pattern Recognition, 2018, 76: 367-379.
[122]Taha A A, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool[J]. BMC medical imaging, 2015, 15(1): 1-28.
[123]Wu T, Gu X, Wang Y, et al. Adaptive total variation based image segmentation with semi-proximal alternating minimization[J]. Signal Processing, 2021, 183: 108017.
[124]Chang H H, Zhuang A H, Valentino D J, et al. Performance measure characterization for evaluating neuroimage segmentation algorithms[J]. Neuroimage, 2009, 47(1): 122-135.
[125]Dice L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297-302.
[126]Jaccard P. The distribution of the flora in the alpine zone[J]. New phytologist, 1912, 11(2): 37-50.
[127]Fenster A, Chiu B. Evaluation of segmentation algorithms for medical imaging[C]//2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2006: 7186-7189.
[128]Gerig G, Jomier M, Chakos M. Valmet: A new validation tool for assessing and improving 3D object segmentation[C]//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2001: 4th International Conference Utrecht, The Netherlands, October 14–17, 2001 Proceedings 4. Springer Berlin Heidelberg, 2001: 516-523.
[129]Udupa J K, LeBlanc V R, Zhuge Y, et al. A framework for evaluating image segmentation algorithms[J]. Computerized medical imaging and graphics, 2006, 30(2): 75-87.
[130]Ma J, He J, Yang X. Learning geodesic active contours for embedding object global information in segmentation CNNs[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 93-104.
[131]Xie Y, Zhang J, Lu H, et al. SESV: Accurate medical image segmentation by predicting and correcting errors[J]. IEEE Transactions on Medical Imaging, 2020, 40(1): 286-296.
[132]Ding Y, Liu J, Xu X, et al. Uncertainty-aware training of neural networks for selective medical image segmentation[C]//Medical Imaging with Deep Learning. PMLR, 2020: 156-173.
[133]Wu H, Chen S, Chen G, et al. FAT-Net: Feature adaptive transformers for automated skin lesion segmentation[J]. Medical Image Analysis, 2022, 76: 102327.
[134]Nguyen T N A, Cai J, Zhang J, et al. Robust interactive image segmentation using convex active contours[J]. IEEE Transactions on Image Processing, 2012, 21(8): 3734-3743.
[135]Mabood L, Ali H, Badshah N, et al. Active contours textural and inhomogeneous object extraction[J]. Pattern Recognition, 2016, 55: 87-99.
[136]Zhang R, Feng X, Yang L, et al. Global sparse gradient guided variational Retinex model for image enhancement[J]. Signal Processing: Image Communication, 2017, 58: 270-281.
[137Zhang R, Feng X, Yang L, et al. A global sparse gradient based coupled system for image denoising[J]. Computers $\&$ Mathematics with Applications, 2019, 78(11): 3692-3711.
[138]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: nonlinear phenomena, 1992, 60(1-4): 259-268.
[139]Ekeland I, Temam R. Convex analysis and variational problems[M]. Society for Industrial and Applied Mathematics, 1999.
[140]Cai X, Chan R, Zeng T. A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding[J]. SIAM Journal on Imaging Sciences, 2013, 6(1): 368-390.
[141]David G. Singular sets of minimizers for the Mumford-Shah functional[M]. Springer Science $\&$ Business Media, 2006.
[142]Osher S, Fedkiw R P. Level set methods and dynamic implicit surfaces[M]. New York: Springer, 2005.
[143]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics, 1988, 79(1): 12-49.
[144]Soler L, Hostettler A, Agnus V, Charnoz A, Fasquel J, Moreau J, Osswald A, Bouhadjar M, Marescaux J. 3D image reconstruction for comparison of algorithm database: A patient specific anatomical and medical image database. IRCAD, Strasbourg, France, Tech. Rep (2010).
[145]Zhang K, Zuo W, Zhang L. FFDNet: Toward a fast and flexible solution for CNN-based image denoising[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4608-4622.
[146]Jia X, Liu S, Feng X, et al. Focnet: A fractional optimal control network for image denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 6054-6063.
[147]Venkatakrishnan S V, Bouman C A, Wohlberg B. Plug-and-play priors for model based reconstruction[C]//2013 IEEE Global Conference on Signal and Information Processing. IEEE, 2013: 945-948.
[148]Sreehari S, Venkatakrishnan S V, Wohlberg B, et al. Plug-and-play priors for bright field electron tomography and sparse interpolation[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 408-423.
[149]MacQueen J. Classification and analysis of multivariate observations[C]//5th Berkeley Symp. Math. Statist. Probability. 1967: 281-297.
[150]Tikhonov A N. On the solution of ill-posed problems and the method of regularization[C]//Doklady Akademii Nauk. Russian Academy of Sciences, 1963, 151(3): 501-504.
[151]Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]//2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05). IEEE, 2005, 2: 60-65.
[152]Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on image processing, 2007, 16(8): 2080-2095.
[153]Alpert S, Galun M, Brandt A, et al. Image segmentation by probabilistic bottom-up aggregation and cue integration[J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 34(2): 315-327.
[154]Bai W, Shi W, de Marvao A, et al. A bi-ventricular cardiac atlas built from 1000+ high resolution MR images of healthy subjects and an analysis of shape and motion[J]. Medical image analysis, 2015, 26(1): 133-145.
[155]Ma Jun, Ge Cheng, Wang Yixin, An Xingle, Gao Jiantao, Yu Ziqi, Zhang Minqing, Liu Xin, Deng Xueyuan, Cao Shucheng, Wei Hao, Mei Sen, Yang Xiaoyu, Nie Ziwei, Li Chen, Tian Lu, Zhu Yuntao, Zhu Qiongjie, Dong Guoqiang, He Jian. . COVID-19 CT Lung and Infection Segmentation Dataset. Medical Image Analysis. (2020) Zenodo.
[156]Zheng X, Wang Y, Wang G, et al. Fast and robust segmentation of white blood cell images by self-supervised learning[J]. Micron, 2018, 107: 55-71.
[157]Xu H, Wang G. GALBF: Geodesic-Aided LBF method[C]. Proceedings of 2011 International Conference on Electronic and Mechanical Engineering and Information Technology. IEEE, 2011, 1: 368-372.
[158]Ozturk N, Ozturk S. A new effective hybrid segmentation method based on C-V and LGDF. SIViP 2021,15:1313–1321
[159]Li D, Bei L, Bao J, et al. Image contour detection based on improved level set in complex environment[J]. Wireless Networks, 2021, 27(7): 4389-4402.
[160]Fang J, Liu H, Zhang L, et al. Region-edge-based active contours driven by hybrid and local fuzzy region-based energy for image segmentation[J]. Information Sciences, 2021, 546: 397-419.
[161]Parameswaran S, Luo E, Nguyen T Q. Patch matching for image denoising using neighborhood-based collaborative filtering[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(2): 392-401.
[162]Liu T, Yuan Z, Sun J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern analysis and machine intelligence, 2010, 33(2): 353-367.
中图分类号:

 O29    

馆藏号:

 56109    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式