- 无标题文档
查看论文信息

中文题名:

 集成SiPM与高分辨TDC的紧凑型时域荧光寿命检测系统    

姓名:

 马蔚    

学号:

 20121223238    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 电子信息硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 电子信息    

研究方向:

 生物医学工程    

第一导师姓名:

 朱守平    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 郑健    

完成日期:

 2023-06-16    

答辩日期:

 2023-05-30    

外文题名:

 Compact time-domain fluorescence lifetime detection system integrating SiPM and high resolution TDC    

中文关键词:

 荧光寿命检测 ; 时间数字转换器 ; 时间相关单光子计数 ; 现场可编程门阵列 ; 硅光电倍增管 ; 峰值检波    

外文关键词:

 Fluorescence lifetime detection ; TDC ; TCSPC ; FPGA ; SiPM ; peak detection    

中文摘要:

时域光学信息在生命科学领域中向来具有重要价值,许多成像方法都依赖时域检测系统提供的信息来作为成像依据。由于荧光寿命不受强度、荧光团浓度和光漂白效应等因素的影响,使得近几十年来面向荧光寿命的时域检测系统不断地进步,衍生出了各种新颖的生物医学应用,并揭示出了许多新的发现。然而,传统的检测系统体积较大,检测方式单一,成本较高,一定程度上限制了其适用性。这些问题使得搭建低成本、小型化、高精确度且性能可靠的系统成为一个十分有意义的课题。

本文主要设计开发了一种面向荧光寿命检测的时域光学检测系统。在经典的时间相关单光子计数技术基础上,系统采用简捷高效的全数字时间数字转换器(TDC)替代复杂的模拟时间数字转换器(TAC/ADC)结构。在满足单光子检测灵敏度的情况下,用小体积且低成本的硅光电倍增管(SiPM)替代大尺寸且高成本的光电倍增管(PMT)作为探测器,构建紧凑、高性价比的检测系统。主要工作分为以下几个方面:

1、时间数字转换器的研究及设计实现。从基本的时间间隔测量原理出发,研究了模拟TDC和数字TDC的演变过程,TDC核心参数,以及典型TDC实现原理。并且基于时钟内插法原理,分别在Altera CycloneIV和Xilinx Kintex7系列现场可编程门阵列(FPGA)上自主设计开发了全数字TDC,对于后者通过优化设计解决了延迟链跨时钟区域时出现的延迟时间跳变问题。开发完成的两种TDC都经过了核心参数的测试,在Altera CycloneIV和Xilinx Kintex7上分别实现了87.72 ps和42.55 ps的时间分辨率,平均精度分别达到41.8ps和37.1ps,动态范围可以根据需求自由调整,非线性程度处于可以接受的水平,并通过后期矫正算法来优化。

2、单光子探测模块的设计与实现。针对传统单光子探测器体积大、成本高的问题,通过测试分析了PM3325和H7422-40在进行单光子计数时的信号特点,验证了SiPM可以在应用中替代PMT。并且针对已经实现的检测系统进行了紧凑型设计,将探测器模块集成在一块80mm×93mm大小的PCB电路中,添加了配合FPGA使用易用性设计,此外还通过峰值检波法优化了比较器电路,在提升系统性能的同时实现了小型化与低成本化。

3、荧光寿命检测系统的搭建与实验验证。整合搭建完整的荧光寿命检测系统,通过测试验证了其功能,并展开了荧光寿命检测实验。实验测试了吲哚菁绿(ICG)的荧光寿命,测试结果为0.54ns,与真实结果相差约3.8%。

外文摘要:

The time-domain optical information has always been of great value in the field of life science. Many imaging methods rely on the information provided by the time-domain detection system as the imaging basis. Because fluorescence lifetime is not affected by intensity, fluorophore concentration and light bleaching effect, the time-domain detection system oriented to fluorescence lifetime has been developed continuously in recent decades, resulting in a variety of novel biomedical applications and many new discoveries. However, the large size, single detection method and high cost of the traditional detection system limit its applicability to a certain extent. These problems make the construction of low cost, small, high accuracy and reliable performance system become a very meaningful topic.

 

This thesis mainly designs and develops a time-domain optical detection system for fluorescence lifetime detection. Based on the classical time-dependent single photon counting technique, the system uses a simple and efficient all-digital TDC to replace the complex traditional TAC/ADC structure. Under the condition that the sensitivity of single photon detection is satisfied, the compact and low-cost detection system is constructed by replacing the large size and high cost PMT detector with a small size and low cost SiPM array. The main work is divided into the following aspects:

 

1. Research, design and implementation of time digital converter. Based on the basic time interval measurement principle, the evolution process of analog TDC and digital TDC, the core parameters of TDC, and the typical implementation principle of TDC are studied. Moreover, based on the principle of clock interpolation, an all-digital TDC was independently designed and developed on Altera CycloneIV and Xilinx Kintex7 series FPGA respectively. For the latter, the problem of delay time hopping occurred when the delay chain crossed the clock region was solved through optimization design. The two developed TDCS have been tested on the core parameters. The time resolution of 87.72ps and 42.55ps has been achieved on Altera CycloneIV and Xilinx Kintex7, and the average accuracy has reached 41.8ps and 37.1ps, respectively. The dynamic range can be adjusted freely according to the demand, the degree of nonlinearity is at an acceptable level, and is optimized by the late correction algorithm.

 

2. Design and implementation of single photon detection module. Aiming at the problems of large volume and high cost of traditional single photon detectors, the signal characteristics of PM3325 and H7422-40 in single photon counting were analyzed through testing, and SiPM could replace PMT in application. The detector module is integrated into an 80mm×93mm PCB circuit, and the design of ease of use with FPGA is added. In addition, the peak detection method is used to optimize the comparator circuit, which not only improves the system performance but also realizes miniaturization and low cost.

 

Establishment and experimental verification of fluorescence lifetime detection system. Integrated and built a complete fluorescence lifetime detection system, its function was verified by testing, and the fluorescence lifetime detection experiment was carried out. The fluorescence lifetime of indocyanine green (ICG) was measured by experiment, and the result was 0.54ns, which was 3.8% different from the real result.

参考文献:
[1]Yankelevich DR, Ma D, Liu J, Sun Y, Sun Y, Bec J, et al. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging[J]. Rev Sci Instrum, 2014, 85: 034303.
[2]Nedbal J, Visitkul V, Ortiz-Zapater E, Weitsman G, Chana P, Matthews DR, et al. Time-domain microfluidic fluorescence lifetime flow cytometry for high throughput Forster resonance energy transfer screening[J]. Cytometry A, 2015, 87: 104-18.
[3]Becker W. Fluorescence lifetime imaging – techniques and applications[J]. J. Microscopy, 2012, 247: 119.
[4]屈军乐, 牛憨笨, 郭宝平. 荧光寿命成像显微技术[J]. 应用激光, 1997, 3: 100.
[5]刘立新, 屈军乐, 林子扬, 陈丹妮, 郭宝平, 牛憨笨. 荧光寿命成像及其在生物医学中的应用[J]. 深圳大学学报(理工版), 2005, 22: 133.
[6]Meyer-Almes F. J. Fluorescence lifetime based bioassays[J]. Methods and Applications in Fluorescence, 2017, 5: 042002.
[7]刘超, 周燕, 王新伟, 刘育梁. 荧光寿命成像技术及其研究进展[J]. 激光与光电子学进展, 2011, 48(11): 111101.
[8]林丹樱, 马万云. 活细胞内的单分子荧光成像方法[J]. 物理, 2007, 36: 783.
[9]黄茹, 周小明. 荧光相关光谱在生物化学领域中的应用[J]. 激光生物学报, 2013, 22: 289.
[10]Cao R, Pankayatselvan V, Houston JP. Cytometric sorting based on the fluorescence lifetime of spectrally overlapping signals[J]. Opt Express, 2013, 21: 14816-31.
[11]Li W, Vacca G, Castillo M, Houston KD, Houston JP. Fluorescence lifetime excitation cytometry by kinetic dithering[J]. Electrophoresis, 2014, 35: 1846-54.
[12]Petersen KJ, Peterson KC, Muretta JM, Higgins SE, Gillispie GD, Thomas DD. Fluorescence lifetime plate reader: resolution and precision meet highthroughput[J]. Rev Sci Instrum, 2014, 85: 113101.
[13]Sands B, Jenkins P, Peria WJ, Naivar M, Houston JP, Brent R. Measuring and sorting cell populations expressing isospectral fluorescent proteins with different fluorescence lifetimes[J]. PLoS ONE, 2014, 9: e109940.
[14]Cao R, Jenkins P, Peria W, Sands B, Naivar M, Brent R, et al. Phasor plotting with frequency-domain flow cytometry[J]. Opt Express, 2016, 24: 14596-607.
[15]Li W, Houston KD, Houston JP. Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry[J]. Sci Rep, 2017, 7: 40341.
[16]Esposito A, Venkitaraman AR. Enhancing biochemical resolution by hyperdimensional imaging microscopy[J]. Biophys J, 2019, 116: 1815-22.
[17]Trinh AL, Ber S, Howitt A, Valls PO, Fries MW, Venkitaraman AR, et al. Fast single-cell biochemistry: theory, open source microscopy and applications[J]. Methods Appl Fluoresc, 2019, 7: 044001.
[18]Brodwolf R, Volz-Rakebrand P, Stellmacher J, Wolff C, Unbehauen M, Haag R, et al. Faster, sharper, more precise: Automated Cluster-FLIM in preclinical testing directly identifies the intracellular fate of theranostics in live cells and tissue[J]. Theranostics, 2020, 10: 6322-36.
[19]Karpf S, Riche CT, Di Carlo D, Goel A, Zeiger WA, Suresh A, et al. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates[J]. Nat Commun, 2020, 11:2062.
[20]Stringari C, Sierra R, Donovan PJ, Gratton E. Label-free separation of human embryonic stem cells and their differentiating progenies by phasor fluorescence lifetime microscopy[J]. J Biomed Opt, 2012, 17: 046012.
[21]Lee DH, Li X, Ma N, Digman MA, Lee AP. Rapid and label-free identification of single leukemia cells from blood in a high-density microfluidic trapping array by fluorescence lifetime imaging microscopy[J]. Lab Chip, 2018, 18: 1349- 58.
[22]Li X, Lee AP. High-throughput microfluidic single-cell trapping arrays for biomolecular and imaging analysis[J]. Methods Cell Biol, 2018, 148: 35-50.
[23]Shen N, Riedl JA, Carvajal Berrio DA, Davis Z, Monaghan MG, Layland SL, et al. A flow bioreactor system compatible with real-time two-photon fluorescence lifetime imaging microscopy[J]. Biomed Mater, 2018, 13: 024101.
[24]Alturkistany F, Nichani K, Houston KD, Houston JP. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry[J]. Cytometry A, 2019, 95: 70-79.
[25]Bower AJ, Sorrells JE, Li J, Marjanovic M, Barkalifa R, Boppart SA. Tracking metabolic dynamics of apoptosis with high-speed two-photon fluorescence lifetime imaging microscopy[J]. Biomed Opt Express, 2019, 10: 6408-21.
[26]Cong A, Pimenta RML, Lee HB, Mereddy V, Holy J, Heikal AA. Two-photon fluorescence lifetime imaging of intrinsic NADH in three-dimensional tumor models[J]. Cytometry A, 2019, 95: 80-92.
[27]Silva SF, Domingues JP, Morgado AM. Can we use rapid lifetime determination for fast, fluorescence lifetime based, metabolic imaging Precision and accuracy of double-exponential decay measurements with low total counts[J]. PLoS ONE, 2019, 14: e0216894.
[28]Smith JT, Yao R, Sinsuebphon N, Rudkouskaya A, Un N, Mazurkiewicz J, et al. Fast fit-free analysis of fluorescence lifetime imaging via deep learning[J]. Proc Natl Acad Sci USA, 2019, 116: 24019-30.
[29]Yakimov BP, Gogoleva MA, Semenov AN, Rodionov SA, Novoselova MV, Gayer AV, et al. Label-free characterization of white blood cells using fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and erythrophagocytosis [Invited][J]. Biomed Opt Express, 2019, 10: 4220-36.
[30]Yao R, Ochoa M, Yan P, Intes X. Net-FLICS: fast quantitative wide-field fluorescence lifetime imaging with compressed sensing - a deep learning approach[J]. Light Sci Appl, 2019, 8: 26.
[31]Gohar AV, Cao R, Jenkins P, Li W, Houston JP, Houston KD. Subcellular localization-dependent changes in EGFP fluorescence lifetime measured by time-resolved flow cytometry[J]. Biomed Opt Express, 2013, 4: 1390-400.
[32]Poland SP, Krstajic N, Monypenny J, Coelho S, Tyndall D, Walker RJ, et al. A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging[J]. Biomed Opt Express, 2015, 6: 277-96.
[33]Suzuki M, Sakata I, Sakai T, Tomioka H, Nishigaki K, Tramier M, et al. A highthroughput direct fluorescence resonance energy transfer-based assay for analyzing apoptotic proteases using flow cytometry and fluorescence lifetime measurements[J]. Anal Biochem, 2015, 491: 10-7.
[34]Guzman C, Oetken-Lindholm C, Abankwa D. Automated high-throughput fluorescence lifetime imaging microscopy to detect protein-protein interactions[J]. J Lab Autom, 2016, 21: 238-45.
[35]Lo CH, Vunnam N, Lewis AK, Chiu TL, Brummel BE, Schaaf TM, et al. An innovative high-throughput screening approach for discovery of small molecules that inhibit TNF receptors[J]. SLAS Discov, 2017, 22: 950-61.
[36]Schaaf TM, Peterson KC, Grant BD, Bawaskar P, Yuen S, Li J, et al. High-throughput spectral lifetime-based fret screening in living cells to identify small-molecule effectors of SERCA[J]. SLAS Discov, 2017, 22: 262-73.
[37]Sambrano J, Chigaev A, Nichani KS, Smagley Y, Sklar LA, Houston JP. Evaluating integrin activation with time-resolved flow cytometry[J]. J Biomed Opt, 2018, 23: 1-10.
[38]Schaaf TM, Li A, Grant BD, Peterson K, Yuen S, Bawaskar P, et al. Redshifted FRET biosensors for high-throughput fluorescence lifetime screening[J]. Biosensors, 2018.
[39]Hirmiz N, Tsikouras A, Osterlund EJ, Richards M, Andrews DW, Fang Q. Highly multiplexed confocal fluorescence lifetime microscope designed for screening applications[J]. IEEE J Selected Topics Quantum Electron, 2020, 27: 1-9.
[40]Nichani K, Li J, Suzuki M, Houston JP. Evaluation of Caspase-3 activity during apoptosis with fluorescence lifetime-based cytometry measurements and phasor analyses[J]. Cytometry A, 2020, 97: 1265-1275.
[41]Rohilla S, Kramer B, Koberling F, Gregor I, Hocke AC. Multi-target immunofluorescence by separation of antibody cross-labelling via spectralFLIM-FRET[J]. Sci Rep, 2020, 10: 3820.
[42]Wei Y, Larson NR, Angalakurthi SK, C. Russell middaugh, improved fluorescence methods for high-throughput protein formulation screening[J]. SLAS Technol, 2018, 23: 516-28.
[43]Kalytchuk S, Wang Y, Polakova K, Zboril R. Carbon dot fluorescence-lifetimeencoded anti-counterfeiting[J]. ACS Appl Mater Interfaces, 2018, 10: 29902-8.
[44]Aric Bitton, Jesus Sambrano, Samantha Valentino and Jessica P. Houston. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues Front[J]. Optics and Photonics, 2021, Vol 9.
[45]Microscopy Techniques. 1 ed. Advances in Biochemical Engineering/Biotechnology[M].Berlin Heidelberg, Springer, 2005.
[46]Houston JP, Naivar MA, Jenkins P, Freyer JP. Capture of fluorescence decay times by flow cytometry[J]. Curr Protoc Cytom, 2012, 50: 1.25.1-1.25.21.
[47]Feng Y F, Qian S Q, Kong J H. Research on a narrow pulse peak voltage detection and hold circuit[J]. Instrumentation Technology, 2017(7): 5-7, 45.
[48]Shapiro J H, Reinhold R W, Park D. Performance analyses for peak-detecting laser radars[J]. Proceedings of SPIE, 1986, 0663: 38-56.
[49]Lai J C, Jiang H J, Yan W, et al. Range uncertainty distribution of direct-detection laser radar with a peak-detecting routine[J]. Optik, 2013, 124 (21).
[50]W. Becker Advanced Time-Correlated Single Photon Counting Techniques[M]. Berlin Heidelberg, Springer, 2005.
[51]Kintex-7 FPGAs Data Sheet:DC and AC Switching Characteristics[J]. DS182, 2018, August, 7.
[52]Mattada MP, Guhilot H. Time-to-digital converters—A comprehensive review[J]. Int J Circ Theor Appl, 2021, 49: 778–800.
[53]刘雄波, 林丹樱, 吴茜茜, 严伟. 荧光寿命显微成像技术及应用的最新研究进展[J]. 物理学报, 2018, Vol 67, 178701.
[54]Stephan Henzler Time-to-Digital Converters[M]. Springer Science+Business Media B.V . 2010
[55]L. M. Bollinger. Measurement of the Time Dependence of Scintillation Intensity by a Delayed Coincidence Method[J]. Review of Scientific Instruments, 1961, 32(9): 1044-1050.
[56]Koechlin. A new method for the study of ultra-short scintillations[J]. Compt Rend, 1961, 252: 391-393.
[57]W. R. Ware. Fluorescence lifetime measurements by time correlated single photon counting[D]. Minneapolis: Minnesota Univ, 1969.
[58]J. S. Massa, A. M. Wallace, G. S. Buller, et al. Laser Depth measurement based on time-correlated single-photon counting[J]. Optical Letters, 1997, 22(8): 543-545.
[59]Wolfgang Becker, Karsten Konig. Picosecond Fluorescence Lifetime Microscopy by TCSPC Imaging[J]. SPIE BIOS, 2001, 4262: 414-419.
[60]A. Mccarthy, R. J. Collins, N. J. Krichel, et al. Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting[J]. Applied Optics, 2009, 48(32): 6241-6251.
[61]Michael S. Roberts, Yuri Dancik. Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics. 2011, 77: 468-488.
[62]A. Farina, S. Tagliabue, L. D. Sieno, E. Martinenghi, T. Durduran, S. Arridge, F. Martelli, A. Torricelli, A. Pifferi and A. D .Mora. Time-Domain Functional Diffuse Optical Tomography System Based on Fiber-Free Silicon Photomultipliers[J]. Appl. Sci. 2017, 7, 1235.
[63]A. Lyons, F. Tonolini, A. Boccolini, A. Repetti, R. Henderson, Y. Wiaux and D. Faccio. Computational time-of-flight diffuse optical tomography[J]. Nature Photonics, 2019, Vol 13, 575–579.
[64]韩炳冬. 皮秒时间相关单光子计数光谱仪数据采集系统研制[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2005.
[65]程颖, Abdulla S., Chorvatd. J. R.等. 基于多维TCSPC技术的心肌细胞Ca2+动力学研究[J]. 深圳大学学报(理工版), 2008, No.96(04): 369-375.
[66]王瀚基. 基于时间相关单光子计数技术的激光测距实验研究[D]. 哈尔滨工业大学, 2011.
[67]郭立泉, 张玉钧, 殷高方等. 基于荧光寿命法的溶解氧检测系统设计[J]. 传感器与微系统, 2011, 30(10): 109-111.
[68]卢奕名. 基于多维TCSPC的时域乳腺DOT/DFT系统[D]. 天津大学, 2014.
[69]鞠明泽. 多通道荧光寿命检测系统研究[D]. 长春理工大学, 2018.
[70]Vincent J. Kitsmiller, Chris Campbell. Optimizing sensitivity and dynamic range of silicon photomultipliers for frequency-domain near infrared spectroscopy[J]. Biomedical Optics Express, 2020, Vol 11, 5373.
戴庆达. 基于FPGA的高性能多通道TDC设计技术研究[D]. 天津大学, 2020.
中图分类号:

 R31    

开放日期:

 2023-12-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式