- 无标题文档
查看论文信息

中文题名:

 艾里涡旋光束在复杂介质中的传输及相互作用研究    

姓名:

 杨小锦    

学号:

 1705110061    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科名称:

 理学 - 物理学 - 光学    

学生类型:

 博士    

学位:

 理学博士    

学校:

 西安电子科技大学    

院系:

 物理学院    

专业:

 物理学    

研究方向:

 艾里涡旋光束在复杂介质中的传输及相互作用研究    

第一导师姓名:

 吴振森    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 白璐    

完成日期:

 2023-06-27    

答辩日期:

 2023-05-31    

外文题名:

 The propagation and interaction of Airy vortex beams in complex media    

中文关键词:

 艾里涡旋光束 ; ABCD矩阵 ; 手征介质 ; 反射透射 ; GH位移    

外文关键词:

 Airy vortex Beam ; ABCD matrix ; Chiral medium ; Reflection and transmission ; GH shift    

中文摘要:

艾里光束是实验上观测到的第一类自加速光波,在艾里光束的基础上通过相位调制引入涡旋项可得到艾里涡旋光束。艾里涡旋光束具有无衍射、自愈以及横向自加速特性,并且携带轨道角动量(OAM),其在光学捕获、光通信、表面等离激元、光子弹等方面有着广泛应用。本文针对艾里涡旋光束在介质中传输及相互作用的基础理论研究为艾里涡旋光束的光场调控及其在光通信、传感等领域的应用提供了理论支持。

本文采用矩阵光学法和矢量角谱表示法对艾里涡旋光束的波场进行描述,研究了不同类型艾里涡旋光束通过自由空间和手征介质的传输变换规律,以及艾里涡旋光束入射各向同性分层介质和手征介质的反射与透射特性,并分析了艾里涡旋光束入射石墨烯-氮化硼(hBN)异质结构产生的古斯-汉欣(GH)位移。主要研究成果如下:

1. 基于惠更斯-菲涅耳衍射积分公式,推导出傍轴条件下艾里涡旋光束在自由空间中传输的解析表达式。分析了不同模阶数的艾里涡旋光束在自由空间中的传输特性(包括光场强度和相位分布以及涡旋位置对光场强度分布的影响)。结果表明,在初始输入平面,受光学涡旋的影响,涡旋中心周围的光场呈暗中空分布;模阶数对光束的抛物线运动轨迹没有影响;在传输过程中,模阶数越大,光束保持无衍射传输的距离越长,维持艾里形状的能力越强。

2. 基于平面波角谱展开方法,研究了艾里涡旋光束斜入射介质分界面的反射与透射特性。在入射场模阶数为0时,推导出由角谱展开的高阶光场模组成的反射场和透射场的解析表达式。数值分析了不同波束入射角下几何光场模和高阶光场模对实际场的影响;以及衰减因子和光束宽度对光场强度分布和布鲁斯特角附近光束位移的影响。同时还讨论了光束在左手材料(LHM)中的成像问题。最后,对模阶数为1的艾里涡旋光束通过界面后幅度、相位以及轨道角动量态的变化进行了数值模拟。

3. 基于平面波角谱展开方法,研究了艾里涡旋光束斜入射电介质板的反射与透射特性。推导出模阶数为0的入射场通过介质板后反射场、内场和透射场的解析表达式。对光束通过介质板后幅度、相位变化以及介质板参数对光场的影响进行了模拟。不同于艾里光束斜入射介质分界面的情况,斜入射电介质板后角谱展开的各阶光场模对实际场的贡献与介质板折射率有关;由于光束在介质板内多次反射、透射,透射光束的相位相对于入射光束也发生了变化。反射场和透射场峰值强度随介质板光学厚度呈周期性变化。由于艾里光束是宽波束,不同于平面波,在临界角入射时能量不能被全部反射出去,会存在部分泄漏。最后,采用数值方法分析模阶数为1的艾里涡旋光束通过介质板后幅度、相位以及轨道角动量态的变化。研究结果可为光学薄膜的设计和优化提供理论支持。

4. 研究了模阶数为1的艾里涡旋光束在手征介质中的传输以及反射与透射特性。手征介质中电磁波以左旋圆偏振波和右旋圆偏振波的形式存在。基于矢量角谱表示方法,将艾里涡旋光束展开为沿不同方向传播的平面波叠加,结合电磁场边界条件,对艾里涡旋光束斜入射非手征-手征介质分界面的反射与透射场进行了计算。分析了不同介质参数下反射场与透射场的强度和相位分布。基于惠更斯-菲涅耳衍射积分公式,研究了傍轴条件下双曲余弦艾里涡旋(CAiV)光束在手征介质中的传输特性。数值分析了双曲余弦因子对光束强度分布、传输轨迹、坡印廷矢量和角动量密度的影响。双曲余弦因子的引入为艾里涡旋光束在手征介质中传输的操控提供了一个新的自由度,在不改变光束传输轨迹的条件下,可以通过改变双曲余弦因子控制光束的强度特征以满足实际应用需求,实现激光器的优化设计。

5. 基于平面波角谱展开方法,推导出艾里涡旋光束入射石墨烯-hBN异质结构反射产生的空间GH位移的解析解。通过模拟石墨烯-hBN异质结构在不同波长和入射角下的反射率,选取了合适的波长和入射角来获得较大的GH位移。数值分析了石墨烯-hBN异质结构的费米能级、弛豫时间、石墨烯层数、hBN厚度以及艾里涡旋光束的衰减因子和涡旋的位置对空间GH位移的影响。结果表明,布鲁斯特角的位置主要取决于石墨烯-hBN异质结构的弛豫时间和hBN厚度,在布鲁斯特角位置确定的情况下,通过调节费米能级可以实现对GH位移方向和幅度的有效控制。可控的GH位移可用于光开光、生物传感、表面等离子体共振成像探测、介质参数测量等应用。

外文摘要:

Airy beams represent the first experimentally observed class of self-accelerating optical waves. Airy vortex beams can be obtained by introducing vortex terms through phase modulation. Airy vortex beams possess diffraction-free, self-healing and transverse self-accelerating properties, and carry orbital angular momentum (OAM). Airy vortex beams have been utilized in a variety of applications such as in optical trapping, optical communication, surface plasmon polariton and optical bullets. The study of propagation and interaction of Airy vortex beams in complex media provides theoretical supports for the application in the modulation of optical fields, optical communication and sensing.

 

The wave field descriptions of Airy vortex beams are obtained using matrix optics method and plane-wave angular spectrum representation. The propagation properties of different types of Airy vortex beams through free space and chiral medium are investigated. The reflection and transmission of Airy vortex beams incident on isotropic layered medium and chiral medium are analyzed, and the spatial GH shift of the Airy vortex beam impinging on graphene-hBN heterostructure is presented. The research results are as follows:

 

1. Under paraxial approximation, the analytical propagation expressions of the Airy vortex beams in free space are obtained by the Huygens-Fresnel diffraction integral formula and ABCD matrix. The propagation properties (including the intensity distribution, phase distribution, and the effect of vortex position on the intensity distribution) of Airy beams, first-order Airy vortex beams, and second-order Airy vortex beams are compared. It is found that with the increase of the propagation distance, the larger the topological charge, the stronger the ability of the beam to maintain shape, and the longer the propagation distance to keep diffraction-free.

 

2. Based on the plane-wave angular spectrum expansion, the reflection and transmission of an Airy vortex beam oblique impinging on a dielectric surface is presented. When the topological charge of the incident field is 0, the analytical expressions for the reflected and transmitted fields comprising of beam modes are derived. The contribution of the geometrically beam field, the first order beam mode field, the second order beam mode field to the actual beam field with different incident angles are simulated. The influences of decay factor and beam width on the intensity distributions of the incident, reflected, and transmitted beams and the beam shift of the reflected beam near the Brewster angle are studied. Meanwhile, an Airy beam incident from air to the left-handed material (LHM) is discussed. Finally, the amplitude, phase and orbital angular momentum states of an Airy vortex beam with topological charge l=1 passing through the interface are numerically simulated.

 

3. Based on the plane-wave angular spectrum expansion, the reflection and transmission of an Airy vortex beam incident in a dielectric slab are investigated. For the topological charge of the incident field is 0, the analytical expressions of the reflected field, internal field as well as transmitted field in each region are obtained. The change of intensity and phase distributions of the Airy beam passing through the slab and the influence of the parameters of the dielectric slab on the optical field are simulated. Different from the case of Airy beam oblique incident on the dielectric interface, the contribution of each order beam mode field to the actual beam field is related to the refractive index of the dielectric slab. Because the beam undergoes multiple reflection transmission in the dielectric slab, the phase of the transmitted beam is also changed with respect to the incident beam. The peak intensity of the reflected and transmitted beams varies periodically with the optical thickness of the dielectric slab. Different from the plane wave, the Airy beam has a finite width, so the energy cannot be reflected out completely at critical angle, and there will be partial leakage. Finally, the amplitude, phase and orbital angular momentum states of an Airy vortex beam with topological charge l=1 passing through the dielectric slab are analyzed numerically. The results can provide theoretical support for the design and optimization of optical films.

 

4. The propagation, reflection and transmission of an Airy vortex beam in a chiral medium is presented. Airy vortex beams split into the left circularly polarized vortex (LCPV) beams and the right circularly polarized vortex (RCPV) beams in the chiral medium. Based on the plane-wave angular spectrum expansion, Airy vortex beams are expanded into the superposition of plane waves with different transverse wave vectors. Combined with the boundary conditions, the reflection and transmission of the Airy vortex beams incident in an interface separating an isotropic achiral medium and an isotropic chiral medium are investigated. The influences of the parameters of the media on the intensity and phase distributions of the reflected and transmitted fields are analyzed. Based on the Huygens-Fresnel diffraction integral formula and ABCD transfer matrix, the paraxial propagation of the cosh-Airy vortex (CAiV) beams in a chiral medium is investigated. We numerically simulate the intensity distribution, propagation trajectory, peak intensity, main lobe’s intensity, Poynting vector, and angular momentum of the CAiV beams with different cosh parameters in a chiral medium. The introduction of the cosh parameters provides a new degree of freedom for manipulating the propagation of the CAiV beams in a chiral medium. Without the propagation trajectory changed, one can control intensity distribution, the main lobe’s intensity and peak intensity of the CAiV beams in the chiral medium by adjusting the cosh parameters to meet the actual usage and optimized design of lasers.

 

5. Based on the angular spectrum expansion, a full analytical theory for the spatial GH shifts of the Airy vortex beams impinging on graphene-hBN heterostructure is presented. By simulating the reflectance of the graphene-hBN heterostructure with different wavelength and incident angle, the appropriate wavelength and incident angle are obtained to enhance the GH shift. The influences of graphene-hBN heterostructure parameters (including Fermi energy, relaxation time, layer numbers of graphene, and hBN thickness) and incident Airy vortex beam parameters (including vortex position and decay factor) on the spatial GH shifts are analyzed in detail. The magnitude and sign of GH shifts at a certain Brewster angle can be controlled effectively by tuning the Fermi energy. The controlled GH shifts can be used in optical switch, biosensing, surface plasmon resonance imaging probing and precision measurement.

参考文献:
[1] Berry M V, Balazs N L. Nonspreading wave packets[J]. Am J Phys, 1979, 47(3): 264-267.
[2] Besieris I M, Shaarawi A M. A note on an accelerating finite energy Airy beam[J]. Opt Lett, 2007, 32(16): 2447-2449.
[3] Siviloglou G A, Broky J, Dogariu A, et al. Observation of accelerating Airy beams[J]. Phys Rev Lett, 2007, 99(21): 213901.
[4] Siviloglou G A, Christodoulides D N. Accelerating finite energy Airy beams[J]. Opt Lett, 2007, 32(8): 979-981.
[5] Zhang Z, Hu Y, Zhao J, et al. Research progress and application prospect of Airy beams[J]. Chinese Science Bulletin (Chinese Version), 2013, 58(34): 3513.
[6] Hu Y, Siviloglou G A, Zhang P, et al. Self-accelerating Airy Beams: Generation, Control, and Applications[M]. New York Springer, 2012: 1-46.
[7] 柯熙政, 宋强强, 王姣. 衰减因子和横向尺度对Airy光束三大特性的影响[J]. 红外与激光工程, 2017, 46(9): 922003.
[8] Unnikrishnan K, Rau A R P. Uniqueness of the Airy packet in quantum mechanics[J]. Am J Phys, 1996, 64(8): 1034-1035.
[9] Efremidis N K, Chen Z, Segev M, et al. Airy beams and accelerating waves: an overview of recent advances[J]. Optica, 2019, 6(5): 686-701.
[10] Berry M V, Upstill C: IV Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns, Wolf E, editor, Progress in Optics: Elsevier, 1980: 257-346.
[11] Kravtsov Y A, Orlov Y I. Caustics, catastrophes, and wave fields[J]. Soviet Physics Uspekhi, 1983, 26(12): 1038-1058.
[12] Penciu R S, Paltoglou V, Efremidis N K. Closed-form expressions for nonparaxial accelerating beams with pre-engineered trajectories[J]. Opt Lett, 2015, 40(7): 1444-1447.
[13] Siviloglou G A, Broky J, Dogariu A, et al. Ballistic dynamics of Airy beams[J]. Opt Lett, 2008, 33(3): 207-209.
[14] Hu Y, Zhang P, Lou C, et al. Optimal control of the ballistic motion of Airy beams[J]. Opt Lett, 2010, 35(13): 2260-2262.
[15] Efremidis N K. Airy trajectory engineering in dynamic linear index potentials[J]. Opt Lett, 2011, 36(15): 3006-3008.
[16] Broky J, Siviloglou G A, Dogariu A, et al. Self-healing properties of optical Airy beams[J]. Opt. Express, 2008, 16(17): 12880–12891.
[17] Bouchal Z, Wagner J, Chlup M. Self-reconstruction of a distorted nondiffracting beam[J]. Opt Commun, 1998, 151(4): 207-211.
[18] Gu Y, Gbur G. Scintillation of Airy beam arrays in atmospheric turbulence[J]. Opt Lett, 2010, 35(20): 3456-3458.
[19] Chu X. Evolution of an Airy beam in turbulence[J]. Opt Lett, 2011, 36(14): 2701-2703.
[20] 柯熙政, 张林. 部分相干艾里光在大气湍流中的光束扩展与漂移[J]. 光子学报, 2017, 46(1): 0101003.
[21] Shvedov V G, Rode A V, Izdebskaya Y V, et al. Giant Optical Manipulation[J]. Phys Rev Lett, 2010, 105(11): 118103.
[22] Zhang Z, Cannan D, Liu J, et al. Observation of trapping and transporting air-borne absorbing particles with a single optical beam[J]. Optics Express, 2012, 20(15): 16212-16217.
[23] Ashkin A. Acceleration and Trapping of Particles by Radiation Pressure[J]. Phys Rev Lett, 1970, 24(4): 156-159.
[24] Baumgartl J, Hannappel G M, Stevenson D J, et al. Optical redistribution of microparticles and cells between microwells[J]. Lab on a Chip, 2009, 9(10): 1334-1336.
[25] Baumgartl J, Mazilu M, Dholakia K. Optically mediated particle clearing using Airy wavepackets[J]. Nature Photonics, 2008, 2(11): 675-678.
[26] Zhang P, Prakash J, Zhang Z, et al. Trapping and guiding microparticles with morphing autofocusing Airy beams[J]. Opt Lett, 2011, 36(15): 2883-2885.
[27] Chong A, Renninger W H, Christodoulides D N, et al. Airy–Bessel wave packets as versatile linear light bullets[J]. Nature Photonics, 2010, 4(2): 103-106.
[28] Abdollahpour D, Suntsov S, Papazoglou D G, et al. Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes[J]. Phys Rev Lett, 2010, 105(25): 253901.
[29] Panagiotopoulos P, Papazoglou D G, Couairon A, et al. Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets[J]. Nature communications, 2013, 4: 2622.
[30] Eichelkraut T J, Siviloglou G A, Besieris I M, et al. Oblique Airy wave packets in bidispersive optical media[J]. Opt Lett, 2010, 35(21): 3655-3657.
[31] Zhong W-P, Belić M R, Huang T. Three-dimensional finite-energy Airy self-accelerating parabolic-cylinder light bullets[J]. Phys Rev A, 2013, 88(3): 033824.
[32] Salandrino A, Christodoulides D N. Airy plasmon a nondiffracting surface wave[J]. Opt Lett, 2010, 35(12): 2082-2084.
[33] Li L, Li T, Wang S M, et al. Plasmonic Airy Beam Generated by In-Plane Diffraction[J]. Phys Rev Lett, 2011, 107(12): 126804.
[34] Zhang P, Wang S, Liu Y, et al. Plasmonic Airy beams with dynamically controlled trajectories[J]. Opt Lett, 2011, 36(16): 3191-3193.
[35] Minovich A, Klein A E, Janunts N, et al. Generation and Near-Field Imaging of Airy Surface Plasmons[J]. Phys Rev Lett, 2011, 107(11): 116802.
[36] Minovich A E, Klein A E, Neshev D N, et al. Airy plasmons: non-diffracting optical surface waves[J]. Laser & Photonics Reviews, 2014, 8(2): 221-232.
[37] Polynkin P, Kolesik M, Moloney J V, et al. Curved Plasma Channel Generation Using Ultraintense Airy Beams[J]. Science, 2009, 324(5924): 229-232.
[38] Vettenburg T, Dalgarno H I, Nylk J, et al. Light-sheet microscopy using an Airy beam[J]. Nat Methods, 2014, 11(5): 541-544.
[39] Mathis A, Courvoisier F, Froehly L, et al. Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams[J]. Appl Phys Lett, 2012, 101(7): 071110.
[40] Manousidaki M, Papazoglou D G, Farsari M, et al. Abruptly autofocusing beams enable advanced multiscale photo-polymerization[J]. Optica, 2016, 3(5): 525-530.
[41] Ament C, Polynkin P, Moloney J V. Supercontinuum Generation with Femtosecond Self-Healing Airy Pulses[J]. Phys Rev Lett, 2011, 107(24): 243901.
[42] Efremidis N K. Accelerating beam propagation in refractive-index potentials[J]. Phys Rev A, 2014, 89(2): 023841.
[43] Sztul H I, Alfano R R. The Poynting vector and angular momentum of Airy beams[J]. Optics Express, 2008, 16(13): 9411-9416.
[44] 栗建兴, 藏维平. 真空中激光传输及其加速电子研究[D]. 天津: 南开大学, 2011.
[45] 程振, 楚兴春, 赵尚弘等. 艾里光束的远场特性及其演化规律[J]. 红外与激光工程, 2015, 44(10): 2906-2911.
[46] 赵子宇, 臧维平. 激光对米氏微粒的光学微操控与光束在克尔非线性介质中传播的研究[D]. 天津: 南开大学, 2016.
[47] 吴云龙, 聂劲松, 邵立等. 用傅里叶分析法研究艾里光束远场传播特性[J]. 光子学报, 2017, 46(3): 88-99.
[48] 吴云龙, 聂劲松. 艾里光束及其衍生光束传播特性和相互作用研究[D]. 湖南长沙: 国防科技大学, 2017.
[49] Chen R, Yin C, Chu X, et al. Effect of Kerr nonlinearity on an Airy beam[J]. Phys Rev A, 2010, 82(4): 043832.
[50] Kaminer I, Segev M, Christodoulides D N. Self-Accelerating Self-Trapped Optical Beams[J]. Phys Rev Lett, 2011, 106(21): 213903.
[51] Zhuang F, Du X Y, Ye Y Q, et al. Evolution of Airy beams in a chiral medium[J]. Opt Lett, 2012, 37(11): 1871-1873.
[52] Zhou G, Chen R, Chu X. Propagation of Airy beams in uniaxial crystals orthogonal to the optical axis[J]. Optics Express, 2012, 20(3): 2196-2205.
[53] Ji X, Eyyuboğlu H T, Ji G, et al. Propagation of an Airy beam through the atmosphere[J]. Optics Express, 2013, 21(2): 2154-2164.
[54] Eyyuboğlu H T, Sermutlu E. Partially coherent Airy beam and its propagation in turbulent media[J]. Applied Physics B, 2013, 110(4): 451-457.
[55] Wen W, Chu X. Beam wander of partially coherent Airy beams[J]. Journal of Modern Optics, 2014, 61(5): 379-384.
[56] Zhang Y, Belic M R, Zhang L, et al. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential[J]. Optics Express, 2015, 23(8): 10467-10480.
[57] Li H H, Wang J G, Tang M M, et al. Propagation of the Airy beam along the optical axis of a uniaxial medium[J]. Journal of Modern Optics, 2017, 64(21): 2363-2369.
[58] Liu B, Zhan K, Yang Z. Propagation dynamics of finite-energy Airy beams in competing nonlocal nonlinear media[J]. J Opt Soc Am B, 2018, 35(11): 2794.
[59] Wang L, Ji X, Deng Y, et al. Self-focusing effect on the characteristics of Airy beams[J]. Opt Commun, 2019, 441: 190-194.
[60] Wang L, Ji X, Li X, et al. Focusing and self-healing characteristics of Airy array beams propagating in self-focusing media[J]. Applied Physics B, 2019, 125(9): 165.
[61] Suarez R a B, Gesualdi M R R. Propagation of Airy beams with ballistic trajectory passing through the Fourier transformation system[J]. Optik, 2020, 207: 163764.
[62] Cheng H, Zang W, Zhou W, et al. Analysis of optical trapping and propulsion of Rayleigh particles using Airy beam[J]. Optics Express, 2010, 18(19): 20384-20394.
[63] 程华, 田建国. 光束在均匀材料和微结构材料中的传播、操控及应用研究[D]. 天津: 南开大学, 2011.
[64] W. Lu J C, And Z. Lin. Driving a dielectric cylindrical particle with a one dimensional Airy beam: a rigorous full wave solution[J]. Progress In Electromagnetics Research, 2011, 115: 409-422.
[65] 杨阳, 藏维平. 艾利光束消逝场对米氏小球的操控与捕获[D]. 天津: 南开大学, 2013.
[66] 马振新, 王海凤, 刘仲之等. 艾里光束的产生及对微小粒子的操作[J]. 光学仪器, 2016, 38(2): 134-144.
[67] Cao Z, Zhai C. Scattering of one-dimensional Airy beam light sheet with finite energy by a sphere[J]. Appl Opt, 2017, 56(12): 3491-3496.
[68] Cao Z, Zhai C. Angular scattering of an Airy beam light sheet by a concentric sphere[J]. J Quant Spectros Radiat Transfer, 2017, 202: 31-36.
[69] Lu W, Chen H, Liu S, et al. Rigorous full-wave calculation of optical forces on dielectric and metallic microparticles immersed in a vector Airy beam[J]. Optics Express, 2017, 25(19): 23238-23253.
[70] Song N, Li R, Sun H, et al. Optical radiation force on a dielectric sphere of arbitrary size illuminated by a linearly polarized Airy light-sheet[J]. J Quant Spectros Radiat Transfer, 2020, 245: 106853.
[71] Song N, Wei B, Li R, et al. Optical torque on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet[J]. J Quant Spectros Radiat Transfer, 2020, 256: 107327.
[72] Sun H, Li R, Song N, et al. Optical resonance scattering of a dielectric sphere of arbitrary size illuminated by polarized Airy beams[J]. J Quant Spectros Radiat Transfer, 2020, 245: 106858.
[73] Li H H, Wang J G, Tang M M, et al. Propagation properties of cosh-Airy beams[J]. Journal of Modern Optics, 2017, 65(3): 314-320.
[74] Li H H, Wang J G, Tang M M, et al. Phase transition of cosh-Airy beams in inhomogeneous media[J]. Opt Commun, 2018, 427: 147-151.
[75] Zhou G Q, Chu X X, Chen R P, et al. Self-healing properties of cosh-Airy beams[J]. Laser Physics, 2019, 29(2): 025001.
[76] Zhou Y M, Xu Y Q, Zhou G Q. Beam Propagation Factor of a Cosh-Airy Beam[J]. Applied Sciences, 2019, 9(9): 1817.
[77] Zhou G Q, Chen R P, Chu X X. Propagation of cosh-Airy beams in uniaxial crystals orthogonal to the optical axis[J]. Optics and Laser Technology, 2019, 116: 72-82.
[78] Ng J, Lin Z, Chan C T. Theory of optical trapping by an optical vortex beam[J]. Phys Rev Lett, 2010, 104(10): 103601.
[79] Dholakia K, Čižmár T. Shaping the future of manipulation[J]. Nature Photonics, 2011, 5(6): 335-342.
[80] Gibson G, Courtial J, Padgett M J. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456.
[81] Wang J, Yang J-Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496.
[82] 柯熙政, 王姣. 涡旋光束的产生、传输、检测及应用[M]. 北京: 科学出版社, 2018.
[83] 柯熙政, 吕宏, 武京治. 基于光轨道角动量的光通信数据编码研究进展[J]. 量子电子学报, 2008, 25(4): 385-392.
[84] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.
[85] 吕宏, 柯熙政. 涡旋光场轨道角动量用于空间光量子通信研究[D]. 陕西西安: 西安理工大学, 2011.
[86] 葛甜, 柯熙政. 利用光纤产生涡旋光束的理论与实验研究[D]. 陕西西安: 西安理工大学, 2018.
[87] Ke X, Wang S. Design of Photonic Crystal Fiber Capable of Carrying Multiple Orbital Angular Momentum Modes Transmission[J]. Optics and Photonics Journal, 2020, 10(4): 49-64.
[88] 柯熙政, 李亚星. 分数阶拉盖尔高斯光束轨道角动量的实验研究[J]. 激光与光电子学进展, 2015, 52(8): 080501.
[89] 柯熙政, 陈云, 张颖. 高阶轨道角动量模场传输光纤的设计研究[J]. 激光与光电子学进展, 2019, 56(2): 020601.
[90] 柯熙政, 胥俊宇. 涡旋光束轨道角动量干涉及检测的研究[J]. 中国激光, 2016, 43(9): 0905003.
[91] 柯熙政, 薛璞. 轨道角动量叠加态的产生及其检验[J]. 红外与激光工程, 2018, 47(4): 0417007.
[92] Ke X, Zhao J. Analysis on characteristic of Laguerre-Gaussian beams with topological charges of arithmetic progression[J]. Optik, 2019, 183: 302-310.
[93] 柯熙政, 石欣雨. 高阶径向拉盖尔-高斯光束叠加态的实验研究[J]. 红外与激光工程, 2018, 47(12): 1207002.
[94] Ke X, Wang J, Wang M, et al. Diffraction characteristics of a Laguerre–Gaussian beam through a Maksutov–Cassegrain optical system[J]. Appl Opt, 2018, 57(10): 2570-2576.
[95] Wang J, Ke X, Wang M. Evolution of phase singularities of Laguerre-Gaussian Schell-model vortex beam[J]. Journal of Optics, 2020, 22(11): 115602.
[96] Ke X, Li J. Using MCMA-MUK algorithm to suppress crosstalk in orbital angular momentum multiplexing communication system[J]. Optical Review, 2021, 28(4): 331-341.
[97] Ke X, Cui N. Experimental research on phase diversity method for correcting vortex beam distortion wavefront[J]. Applied Physics B, 2020, 126(4): 66.
[98] 柯熙政, 郭新龙. 用光束轨道角动量实现相位信息编码[J]. 量子电子学报, 2015, 32(1): 8.
[99] 吕宏, 柯熙政. 光阑对暗中空涡旋光束轨道角动量的影响[J]. 中国科学:物理学、力学、天文学, 2011, 41(8): 10.
[100] Ke X, Chen S. Reconfigurable orbital angular momentum exchange assisted by dual-area mirror[J]. Optical Engineering, 2020, 59(11): 116104.
[101] 谢炎辰, 梁静远, 柯熙政等. 无线光通信系统轨道角动量技术研究进展[J]. 激光与光电子学进展, 2023, 60(21): 2100005.
[102] 刘辉, 陈子阳, 蒲继雄. 分数阶涡旋光束的轨道角动量的测量[J]. 光电子.激光, 2009, 20(11): 1478-1482.
[103] 丁攀峰, 蒲继雄. 离轴拉盖尔-高斯涡旋光束传输中的光斑演变[J]. 物理学报, 2012, 61(6): 198-203.
[104] 欧军, 江月松. 光束轨道角动量的传输理论和通信应用研究[D]. 北京: 北京航空航天大学, 2015.
[105] Ou J, Jiang Y, Zhang J, et al. Reflection of Laguerre-Gaussian beams carrying orbital angular momentum: a full Taylor expanded solution[J]. J Opt Soc Am A, 2013, 30(12): 2561-2571.
[106] Yun Zhu Y Z, Licheng Zhang L Z, And Yixin Zhang A Y Z. Spiral spectrum of Airy–Schell beams through non-Kolmogorov turbulence[J]. Chinese Optics Letters, 2016, 14(4): 042101-42105.
[107] Zhu Y, Zhang Y, Hu Z. Spiral spectrum of Airy beams propagation through moderate-to-strong turbulence of maritime atmosphere[J]. Optics Express, 2016, 24(10): 10847-10857.
[108] Li H, Wang J, Tang M, et al. Polarization-dependent effects of an Airy beam due to the spin-orbit coupling[J]. J Opt Soc Am A, 2017, 34(7): 1114-1118.
[109] 王亚坤, 台玉萍, 李新忠. 艾里涡旋光束的多空间维度自由调控[J]. 光子学报, 2022, 51(1): 0151116.
[110] Mazilu M, Baumgartl J, Cizmar T, et al. Accelerating vortices in Airy beams[J]. Proc. of SPIE, 2009, 7430: 74300C.
[111] Dai H T, Liu Y J, Luo D, et al. Propagation properties of an optical vortex carried by an Airy beam: experimental implementation[J]. Opt Lett, 2011, 36: 1617-1619.
[112] Suarez R a B, Neves A a R, Gesualdi M R R. Generation and characterization of an array of Airy-vortex beams[J]. Opt Commun, 2020, 458: 124846.
[113] Gao M, Wang G, Yang X, et al. Goos-Hänchen and Imbert-Fedorov shifts of off-axis Airy vortex beams[J]. Optics Express, 2020, 28(20): 28916-28923.
[114] Fang Z X, Chen Y, Ren Y X, et al. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam[J]. Optics Express, 2018, 26(6): 7324-7335.
[115] Xie J T, Zhang J B, Ye J R, et al. Paraxial propagation of the first-order chirped Airy vortex beams in a chiral medium[J]. Optics Express, 2018, 26(5): 5845-5856.
[116] 潘婧, 王豪, 付星等. 艾里涡旋及其衍生光场[J]. 量子电子学报, 2022, 39(1): 50-63.
[117] Dai H T, Liu Y J, Luo D, et al. Propagation dynamics of an optical vortex imposed on Airy beam[J]. Opt Lett, 2010, 35: 4075-4077.
[118] Deng D M, Chen C D, Li H G, et al. Propagation of an Airy vortex beam in uniaxial crystals[J]. Applied Physics B, 2012, 110(3): 433-436.
[119] Wang L Y, Zhang J B, Feng L Y, et al. Propagation properties of chirped Airy vortex beams with x-polarization through uniaxial crystals[J]. Chin. Phys. B, 2018, 27(5): 054103.
[120] Yu W H, Zhao R H, Deng F, et al. Propagation of Airy Gaussian vortex beams in uniaxial crystals[J]. Chin. Phys. B, 2016, 25(4): 044201.
[121] Chen Y, Zhao G, Ye F, et al. Nonparaxial propagation properties of the chirped Airy Gaussian vortex beams in uniaxial crystals orthogonal to the optical axis[J]. Chin. Phys. B, 2018, 27(10): 104201.
[122] Liu X Y, Zhao D M. Propagation of a vortex Airy beam in chiral medium[J]. Opt Commun, 2014, 321: 6-10.
[123] Cheng K, Xia J S, Zhong X Q. Propagation Dynamics and Vortex Trajectory of an Airy Vortex Beam in Gradient-index Media[J]. ACTA PHOTONICA SINICA, 2014, 43(9): 0905002-1.
[124] Zhu W, Guan J, Deng F, et al. The propagation properties of the first-order and the second-order Airy vortex beams through strongly nonlocal nonlinear medium[J]. Opt Commun, 2016, 380: 434-441.
[125] Cheng K, Zhong X, Xiang A. Propagation dynamics, Poynting vector and accelerating vortices of a focused Airy vortex beam[J]. Optics & Laser Technology, 2014, 57: 77-83.
[126] Cheng Z, Chu X C, Zhao S H, et al. Study of the Drift Characteristics of Airy Vortex Beam in Atmospheric Turbulence[J]. Chinese Journal of Lasers, 2015, 42(12): 1213002.
[127] Wei B Y, Peng C, Ge S J, et al. Generation of self-healing and transverse accelerating optical vortices[J]. Appl Phys Lett, 2016, 109(12): 121105.
[128] Chen R-P, Chew K-H. Far-field properties of a vortex Airy beam[J]. Laser and Particle Beams, 2012, 31(1): 9-15.
[129] Fang Z X, Chen Y, Ren Y X, et al. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam[J]. Optics Express, 2018, 26(6): 7324.
[130] 闫旭, 郭立新. 自由空间自聚焦Airy相关光场传输特性研究[D]. 陕西西安: 西安电子科技大学, 2019.
[131] Horowitz B R, Tamir T. Lateral Displacement of a Light Beam at a Dielectric Interface[J]. J Opt Soc Am A, 1971, 61(5): 586-594.
[132] Antar Y M, Boerner W M. Gaussian beam interaction with a planar dielectric interface[J]. Can J Phys, 1974, 52: 962-972.
[133] Okuda H, Sasada H. Significant deformations and propagation variations of Laguerre–Gaussian beams reflected and transmitted at a dielectric interface[J]. J Opt Soc Am A, 2008, 25(4): 881-890.
[134] Li H, Honary F, Wu Z, et al. Reflection and transmission of Laguerre-Gaussian beams in a dielectric slab[J]. J. Quant. Spectrosc. Radiat. Transf., 2017, 195: 35-43.
[135] Li H, Wu Z, Shang Q, et al. Reflection and transmission of Laguerre Gaussian beam from uniaxial anisotropic multilayered media[J]. Chin. Phys. B, 2017, 26(3): 034204.
[136] Li H, Honary F, Wang J, et al. Intensity, phase, and polarization of a vector Bessel vortex beam through multilayered isotropic media[J]. Appl Opt, 2018, 57(9): 1967-1976.
[137] Wang M, Zhang H, Liu G, et al. Reflection and transmission of Gaussian beam by a uniaxial anisotropic slab[J]. Optics Express, 2014, 22(3): 3705-3711.
[138] Yan B, Zhang H, Zhang J. Reflection and transmission of Gaussian beam by a chiral slab[J]. Applied Physics B, 2016, 122(6): 174.
[139] Li H, Liu J, Bai L, et al. Deformations of circularly polarized Bessel vortex beam reflected and transmitted by a uniaxial anisotropic slab[J]. Appl Opt, 2018, 57(25): 7353-7362.
[140] Liu J, Li H, Ding W, et al. Comparison of three kinds of polarized Bessel vortex beams propagating through uniaxial anisotropic media[J]. Chin. Phys. B, 2019, 28(9): 094214.
[141] Liu J, Li H, Li R, et al. Reflection and transmission of a Bessel vortex beam by a stratified uniaxial anisotropic slab[J]. J Quant Spectros Radiat Transfer, 2020, 251: 107046.
[142] Ziolkowski R W. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs[J]. Optics Express, 2003, 11(7): 662-681.
[143] Kong J A, Wu B I, Zhang Y. A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability[J]. Microw. Opt. Technol. Lett., 2002, 33(2): 136-139.
[144] Hu Y, Wen S, Zhuo H, et al. Focusing properties of Gaussian beams by a slab of Kerr-type left-handed metamaterial[J]. Optics Express, 2008, 16(7): 4774-4784.
[145] He J, Yi J, He S. Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index[J]. Optics Express, 2006, 14(7): 3024-3029.
[146] Xu Y, Chan C T, Chen H. Goos-Hänchen effect in epsilon-near-zero metamaterials[J]. Scientific Reports, 2015, 5(1): 8681.
[147] Zhen W, Deng D, Guo J. Goos-Hänchen shifts of Gaussian beams reflected from surfaces coated with cross-anisotropic metasurfaces[J]. Optics & Laser Technology, 2021, 135: 106679.
[148] Chremmos I D, Efremidis N K. Reflection and refraction of an Airy beam at a dielectric interface[J]. J Opt Soc Am A, 2012, 29(6): 861-868.
[149] Li Y, Li L, Lu Y, et al. Selective reflection of Airy beam at an interface between dielectric and homogeneous atomic medium[J]. Optics Express, 2013, 21(7): 8311-8319.
[150] Chamorro-Posada P, Sanchez-Curto J, Aceves A B, et al. Widely varying giant Goos-Hänchen shifts from Airy beams at nonlinear interfaces[J]. Opt Lett, 2014, 39(6): 1378-1381.
[151] Ornigotti M. Goos-Hänchen and Imbert-Fedorov shifts for Airy beams[J]. Opt Lett, 2018, 43(6): 1411-1414.
[152] Besieris I M, Shaarawi A M. LOCALIZED MONOCHROMATIC AND PULSED WAVES IN HYPERBOLIC METAMATERIALS[J]. Progress In Electromagnetics Research, 2013, 143: 761–771.
[153] Zhai C, Zhang S. Goos-Hänchen shift of an Airy beam reflected in an epsilon-near-zero metamaterial[J]. Optik, 2019, 184: 234-240.
[154] Gao M, Deng D. Spatial Goos-Hänchen and Imbert-Fedorov shifts of rotational 2-D finite energy Airy beams[J]. Optics Express, 2020, 28(7): 10531-10541.
[155] Zhen W, Deng D. Goos-Hänchen shifts for Airy beams impinging on graphene-substrate surfaces[J]. Optics Express, 2020, 28(16): 24104-24114.
[156] Chen S, Ling X, Shu W, et al. Precision Measurement of the Optical Conductivity of Atomically Thin Crystals via the Photonic Spin Hall Effect[J]. Physical Review Applied, 2020, 13(1): 014057.
[157] Zhou X, Ling X, Luo H, et al. Identifying graphene layers via spin Hall effect of light[J]. Appl Phys Lett, 2012, 101(25): 251602.
[158] Han L, Hu Z, Pan J, et al. High-Sensitivity Goos-Hänchen Shifts Sensor Based on BlueP-TMDCs-Graphene Heterostructure[J]. Sensors, 2020, 20(12): 3605.
[159] Zhou X, Sheng L, Ling X. Photonic spin Hall effect enabled refractive index sensor using weak measurements[J]. Scientific Reports, 2018, 8(1): 1221.
[160] Xu D, He S, Zhou J, et al. Goos–Hänchen effect enabled optical differential operation and image edge detection[J]. Appl Phys Lett, 2020, 116(21): 211103.
[161] Lax M, Louisell W H, Mcknight W B. From Maxwell to paraxial wave optics[J]. Phys Rev A, 1975, 11(4): 1365-1370.
[162] Davis L W. Theory of electromagnetic beams[J]. Phys Rev A, 1979, 19(3): 1177-1179.
[163] Barton J P, Alexander D R. Fifth‐order corrected electromagnetic field components for a fundamental Gaussian beam[J]. J Appl Phys, 1989, 66(7): 2800-2802.
[164] Carter W H. electromagnetic field of a gaussian beam with an elliptical cross section[J]. J Opt Soc Am, 1972, 62(10): 1195-1201.
[165] Stamnes J J. Uniform asymptotic theory of diffraction by apertures[J]. J Opt Soc Am, 1983, 73(1): 96-109.
[166] Leonardmandel, Emilwolf. OPTICAL COHERENCE AND QUANTUM OPTICS[M]. UK: CAMBRIDGE UNIVERSITY PRESS, 1995.
[167] Agrawal G P, Pattanayak D N. Gaussian beam propagation beyond the paraxial approximation[J]. J Opt Soc Am, 1979, 69(4): 575-578.
[168] Chen C G, Konkola P T, Ferrera J, et al. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations[J]. J Opt Soc Am A, 2002, 19(2): 404-412.
[169] 吕百达. 激光光学:光束描述、传输变换与光腔技术物理[M]. 北京: 高等教育出版社, 2003.
[170] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys Rev A, 1992, 45(11): 8185-8189.
[171] Franke-Arnold S, Barnett S M, Yao E, et al. Uncertainty principle for angular position and angular momentum[J]. New Journal of Physics, 2004, 6(1): 103.
[172] Liang Y, Hu Y, Song D, et al. Image signal transmission with Airy beams[J]. Opt Lett, 2015, 40(23): 5686-5689.
[173] Zhang Y C, Song Y J, Chen Z R, et al. Virtual sources for a cosh-Gaussian beam[J]. Opt Lett, 2007, 32(3): 292-294.
[174] Zhao J Y, Zhang P, Deng D M, et al. Observation of self-accelerating Bessel-like optical beams along arbitrary trajectories[J]. Opt Lett, 2013, 38(4): 498-500.
[175] Deng D M, Gao Y M, Zhao J Y, et al. Three-dimensional nonparaxial beams in parabolic rotational coordinates[J]. Opt Lett, 2013, 38(19): 3934-3936.
[176] 屈檀, 吴振森. 复杂介质球对矢量有形波束的散射及操控力研究[D]. 陕西西安: 西安电子科技大学, 2016.
[177] Stuart A, Collins J. Lens-System Diffraction Integral Written in Terms of Matrix Optics[J]. J Opt Soc Am, 1970, 60(9): 1168-1177.
[178] Siegmann A E. Lasers[M]. United States: Univ. Science Books,Mill Valley, CA, 1986.
[179] Born M, Wolf E. Principles of optics[M]. U.K: Cambridge University Press, 1999.
[180] Goos V F, Hänchen H. Ein neuer und fundamentaler Versuch zur Totalreflexion[J]. Ann. Physik, 1947, 436(7-8): 333-346.
[181] Fedorov F I. K teorii polnovo otrazenija[J]. Doklady Akademii Nauk SSSR, 1955, 105: 465-467.
[182] Bliokh K Y, Aiello A. Goos-Hänchen and Imbert-Fedorov beam shifts: An overview[J]. Journal of Optics, 2013, 15(1): 014001.
[183] Aiello A, Woerdman J P. Theory of angular Goos-Hänchen shift near Brewster incidence[J]. arXiv:0903.3730v2 [Physics. optics], 2009.
[184] 邱慧斌, 吴俊杰, 肖东华等. 光由光密介质射向光疏介质时半波损失的条件[J]. 大学物理, 2022, 41(6): 40-46.
[185] Kong J A: Reflection, Transmission, Guidance, and Resonance, Electromagnetic Wave Theory: Harper & Row, 1985: 110-120.
[186] Artmann K. Berechnung der Seitenversetzung des totalreflektierten Strahles[J]. Annalen der Physik, 1948, 437(1-2): 87-102.
[187] Read L a A, Wong M, Reesor G E. Displacement of an electromagnetic beam upon reflection from a dielectric slab[J]. J Opt Soc Am A, 1978, 68(3): 319-322.
[188] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-9.
[189] 范正修. 光学薄膜及其进展[J]. Acta Optica Sinica, 2011, 31(9): 0900131.
[190] 段微波, 刘保剑, 庄秋慧等. 应用于空间遥感系统的红外光学薄膜研究进展[J]. Acta Photonica Sinica, 2022, 51(9): 0951601.
[191] Chew W C. Waves and Fields in Inhomogeneous media[M]. NewYork: IEEE press, 1995.
[192] Born M a X, Wolf E: CHAPTER 1 - BASIC PROPERTIES OF THE ELECTROMAGNETIC FIELD, Born M a X, Wolf E, editor, Principles of Optics (Seventh Edition): Pergamon, 1999: 1-70.
[193] Jaggard D L, Mickelson A R, Papas C H. On Electromagnetic Waves in Chiral Media[J]. Applied Physics, 1979, 18: 211-216.
[194] Zhuang F, Du X Y, Zhao D M. Polarization modulation for a stochastic electromagnetic beam passing through a chiral medium[J]. Opt Lett, 2011, 36(14): 2683-2685.
[195] Hui Y F, Cui Z W, Li Y X, et al. Propagation and dynamical characteristics of a Bessel-Gaussian beam in a chiral medium[J]. J Opt Soc Am A, 2018, 35(8): 1299-1305.
[196] Hua S, Liu Y W, Zhang H J, et al. Propagation of an Airy-Gaussian-Vortex beam in a chiral medium[J]. Opt Commun, 2017, 388: 29-37.
[197] Xie J T, Guo K L, Ye F, et al. Effects of the cosine complex variable function on the Airy-Gaussian and Airy-Gaussian-vortex beams in a chiral medium[J]. OSA Continuum, 2019, 2(2): 424.
[198] Zhou K Z, Zhang J B, Mo H R, et al. Propagation of the chirped-Airy-Gaussian-vortex beams in the chiral medium[J]. Journal of Optics, 2018, 20(7): 075601.
[199] Lakhtakia A. Beltrami Fields in Chiral Media[M]. Singapore: WORLD SCIENTIFIC, 1994.
[200] Post E J, Seeger R J. Formal Structure of Electromagnetics[J]. Am J Phys, 1965, 33(7): 597-597.
[201] Bohren C F. Light scattering by an optically active sphere[J]. Chem Phys Lett, 1974, 29(3): 458-462.
[202] Bassiri S, Papas C H, Engheta N. Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab[J]. J Opt Soc Am A, 1988, 5(9): 1450-1459.
[203] Yan-Feng Lu Y-P H. Reflected and transmitted powers of arbitrarily polarized plane waves at interface between chiral and achiral media[J]. Chin. Phys. B, 2019, 28(2): 24202-024202.
[204] Pang Z H, Zhang J B, Zhong T F, et al. Dynamic Propagation of Quadratically Chirped Airy Beams in the Right-Handed and Left-Handed Material Slabs[J]. IEEE Photonics Journal, 2017, 9(6): 1-11.
[205] Pang Z H, Deng D M. Propagation properties and radiation forces of the Airy Gaussian vortex beams in a harmonic potential[J]. Optics Express, 2017, 25(12): 13635-13647.
[206] Casiraghi C, Hartschuh A, Lidorikis E, et al. Rayleigh Imaging of Graphene and Graphene Layers[J]. Nano Letters, 2007, 7(9): 2711-2717.
[207] Geim A K. Graphene: Status and Prospects[J]. Science, 2009, 324(5934): 1530-1534.
[208] Yankowitz M, Xue J, Leroy B J. Graphene on hexagonal boron nitride[J]. Journal of Physics: Condensed Matter, 2014, 26(30): 303201.
[209] Kumar A, Low T, Fung K H, et al. Tunable Light–Matter Interaction and the Role of Hyperbolicity in Graphene–hBN System[J]. Nano Letters, 2015, 15(5): 3172-3180.
[210] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726.
[211] Dai S, Ma Q, Liu M K, et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial[J]. Nature Nanotechnology, 2015, 10(8): 682-686.
[212] Brar V W, Jang M S, Sherrott M, et al. Hybrid Surface-Phonon-Plasmon Polariton Modes in Graphene/Monolayer h-BN Heterostructures[J]. Nano Letters, 2014, 14(7): 3876-3880.
[213] Zhao B, Zhang Z M. Enhanced Photon Tunneling by Surface Plasmon–Phonon Polaritons in Graphene/hBN Heterostructures[J]. Journal of Heat Transfer, 2016, 139(2): 022701.
[214] Wu J, Jiang L, Guo J, et al. Tunable perfect absorption at infrared frequencies by a graphene-hBN hyper crystal[J]. Optics Express, 2016, 24(15): 17103-17114.
[215] Hajian H, Ghobadi A, Butun B, et al. Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial[J]. Optics Express, 2018, 26(13): 16940-16954.
[216] Deng G, Song X, Dereshgi S A, et al. Tunable multi-wavelength absorption in mid-IR region based on a hybrid patterned graphene-hBN structure[J]. Optics Express, 2019, 27(16): 23576-23584.
[217] Zheng Z, Lu F, Dai X. Tunable reflected group delay from the graphene/hBN heterostructure at infrared frequencies[J]. Results in Physics, 2019, 15: 102681.
[218] Ornigotti M, Aiello A. Goos-Hänchen and Imbert-Fedorov shifts for bounded wavepackets of light[J]. Journal of Optics, 2013, 15(1): 014004.
[219] Grosche S, Ornigotti M, Szameit A. Goos-Hanchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces[J]. Optics Express, 2015, 23(23): 30195-30203.
[220] Pichugin K N, Maksimov D N, Sadreev A F. Goos-Hanchen and Imbert-Fedorov shifts of higher-order Laguerre-Gaussian beams reflected from a dielectric slab[J]. J Opt Soc Am A, 2018, 35(8): 1324-1329.
[221] Aiello A. Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective[J]. New Journal of Physics, 2012, 14(1): 013058.
[222] Guo X, Liu X, Zhu W, et al. Surface plasmon resonance enhanced Goos–Hänchen and Imbert–Fedorov shifts of Laguerre–Gaussian beams[J]. Opt Commun, 2019, 445: 5-9.
[223] Prajapati C, Ranganathan D. Goos-Hanchen and Imbert-Fedorov shifts for Hermite-Gauss beams[J]. J Opt Soc Am A, 2012, 29(7): 1377-1382.
[224] Aiello A, Woerdman J P. Goos–Hänchen and Imbert–Fedorov shifts of a nondiffracting Bessel beam[J]. Opt Lett, 2011, 36(4): 543-545.
[225] Felbacq D, Moreau A, Smaâli R. Goos-Hänchen effect in the gaps of photonic crystals[J]. Opt Lett, 2003, 28(18): 1633-1635.
[226] Lai H M, Chan S W. Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media[J]. Opt Lett, 2002, 27(9): 680-682.
[227] Berman P R. Goos-Hanchen shift in negatively refractive media[J]. Physical Review E, 2002, 66(6): 067603.
[228] Zhou X, Liu S, Ding Y, et al. Precise control of positive and negative Goos-Hänchen shifts in graphene[J]. Carbon, 2019, 149: 604-608.
[229] Chen S, Mi C, Cai L, et al. Observation of the Goos-Hänchen shift in graphene via weak measurements[J]. Appl Phys Lett, 2017, 110(3): 031105.
[230] Lu Z, Zhen W, Wang G, et al. Goos-Hänchen and Imbert-Fedorov shifts of reflected rotating elliptical Gaussian beams from surfaces coated with cross-anisotropic metasurfaces[J]. Results in Physics, 2021, 27: 104548.
[231] Töppel F, Ornigotti M, Aiello A. Goos-Hänchen and Imbert-Fedorov shifts from a quantum-mechanical perspective[J]. New Journal of Physics, 2013, 15(11): 113059.
[232] Dennis M R, Götte J B. The analogy between optical beam shifts and quantum weak measurements[J]. New Journal of Physics, 2012, 14(7): 073013.
[233] Jayaswal G, Mistura G, Merano M. Weak measurement of the Goos-Hänchen shift[J]. Opt Lett, 2013, 38(8): 1232-1234.
[234] Song H, Fu S, Zhang Q, et al. Large spatial shifts of reflective beam at the surface of graphene/hBN metamaterials[J]. Optics Express, 2021, 29(12): 19068-19083.
[235] Liu Z, Lu F, Jiang L, et al. Tunable Goos-Hänchen Shift Surface Plasmon Resonance Sensor Based on Graphene-hBN Heterostructure[J]. Biosensors, 2021, 11(6): 201.
[236] Hanson G W. Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene[J]. J Appl Phys, 2008, 103(6): 064302.
[237] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 2007, 19(2): 026222.
[238] Yan H, Li X, Chandra B, et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J]. Nature Nanotechnology, 2012, 7(5): 330-334.
[239] Zhan T, Shi X, Dai Y, et al. Transfer matrix method for optics in graphene layers[J]. Journal of Physics: Condensed Matter, 2013, 25(21): 215301.
[240] Zhao D, Ke S, Liu Q, et al. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene[J]. Optics Express, 2018, 26(3): 2817-2828.
中图分类号:

 11    

馆藏号:

 56307    

开放日期:

 2023-12-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式