- 无标题文档
查看论文信息

中文题名:

 MicroRNA-9调控的酪氨酸酶报告基因的构 建及其光声成像研究    

姓名:

 周琳    

学号:

 1412122944    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 1072    

学科名称:

 生物医学工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 生物材料与细胞工程    

第一导师姓名:

 王福    

第一导师单位:

 西安电子科技大学    

完成日期:

 2017-06-21    

外文题名:

 The construction and photoacoustic imaging of tyrosinase reporter gene regulated by microRNA-9    

中文关键词:

 miR-9 ; 5-Aza-2’-deoxycytidine ; 酪氨酸酶 ; 报告基因 ; 光声成像    

外文关键词:

 miR-9 ; 5-Aza-2’-deoxycytidine ; tyrosinase ; report gene ; photoacoustic imaging    

中文摘要:

MicroRNA (miRNA) 是一类内生的、长度约为20~24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNA也可以调节同一个基因。最近的研究表明,microRNA-9(miR-9)作为miRNA的一种,在细胞生长、分化、免疫和凋亡等多个过程中起着重要作用。在很多癌细胞中,miR-9的表达受到抑制,如多种乳腺癌细胞系。传统检测microRNAs表达的方法主要包括Northern杂交、实时定量PCR和基因芯片等技术。然而,这些检测手段常常耗时耗力,并且需要重复制备样本和进行侵入性检测。近年来,分子影像技术的快速发展使得在体、无创、实时研究microRNAs成为可能。光声成像是近年来发展起来的一种非入侵式和非电离式的新型生物医学成像方法。生物组织产生的光声信号携带了组织的光吸收特征信息,通过探测光声信号能重建出组织中的光吸收分布图像。光声成像结合了纯光学组织成像中高选择特性和纯超声组织成像中深穿透特性的优点,可得到高分辨率和高对比度的组织图像。因此,无损光声成像作为一种新兴的医学影像技术,能够在一定的深度下获得足够高的分辨率和图像对比度,图像传递的信息量大,可以提供形态及功能信息,在生物医学应用领域具有广阔的应用前景。酪氨酸酶是黑色素合成的关键酶,而黑色素是一种非常适合于光声成像的介质,无毒、稳定且生物亲和性好。利用酪氨酸酶报告基因光声成像系统来检测miR-9的表达变化,在癌症治疗及其临床应用领域具有重要意义。 本研究主要是利用酪氨酸酶的产物黑色素吸光能力强且生物相容性好的性质,开发监测miR-9表达的酪氨酸酶新型分子探针,利用光声成像分别在细胞水平和动物水平非侵入性监测内源性miR-9的表达变化及甲基化药物5-aza-2’-deoxycytidine刺激下miR-9的表达变化,从而实现miR-9的无创监测,为miRNA在活体表达水平的无创性监测提供了新的成像工具。 一、利用基因克隆技术构建酪氨酸酶报告基因TYR及含有三段miR-9靶序列的酪氨酸酶报告基因TYR-3×PT,通过单独将两种报告基因质粒转染进细胞,以及报告基因质粒与miR-9共转染,检测酪氨酸酶活性和黑色素含量变化,以验证报告基因对内源性和外源性miR-9表达的响应;二、在细胞水平和小鼠体内分别进行光声成像:对于转染了不同浓度质粒的293T细胞、共转同等浓度质粒和不同浓度的miR-9的293T细胞、加药前后处理的A549细胞分别进行3D手持扫描和仿体断层扫描的光声成像;将加药前后处理的A549细胞分别注射在小鼠大腿根部进行光声断层成像。 成功构建了miR-9调控的酪氨酸酶报告基因探针TYR-3×PT,能够监测miR-9的表达水平变化。在一定范围内,酪氨酸酶活性和黑色素含量随报告基因转染浓度的增加而增大,miR-9的抑制作用也随其转染浓度的增大而增强。去甲基化药物5-Aza-2’-deoxycytidine促进了A549细胞内miR-9的表达。光声成像能够检测出由质粒和miR-9的不同转染浓度导致的信号差异,以及药物刺激前后,在小鼠体内和体外的信号差异。 酪氨酸酶报告基因TYR-3×PT适合作为做光声成像的介质,利用靶向miR-9的酪氨酸酶报告基因和光声设备,能够在细胞水平和动物水平检测miR-9的表达变化,为miRNA在活体表达水平的无创性监测提供了新的成像手段。

外文摘要:

MicroRNAs (miRNAs), a class of small RNAs including 22~24 nucleotides, are significant regulators of many cellular functions. One miRNA can have many target genes, also different miRNAs can target a same gene. Recent studies have identified microRNA-9 (miR-9) as one such miRNA plays an important role in cell growth, differentiation, neurogenesis, immunity and apoptosis. MiR-9 is decreased in many types of cancer, such as many breast cancer cell lines. Conventional detection methods, such as northern blot, Real-time PCR or microarray, have been used to assess miRNA expression. However, these techniques are labor-intensive and time-consuming, and require the fixation or lysis of cells. Recent remarkable advances in molecular imaging techniques have provided the capability of noninvasive repeated quantitative imaging of miRNAs in living animals. Photoacoustic imaging (PAI), a novel nonionizing and noninvasive modality on ac of optical absorption excitation and ultrasonic detection, provides high-resolution optical contrast information in deep tissues and breaking through resolution restrictions of pure optical imaging techniques, which is gaining attention in the field of medical imaging. It is highly sensitive to melanin, one of the principal absorbers in skin, and tyrosinase is the key enzyme in ge of generation of melanin. Melanin is a very suitable contrast agent for PAI, which is non-toxic, stable and has good biological compatibility. Using tyrosinase report gene and photoacoustic imaging as a system to detect the expression of miR-9, is of great significance of cancer treatment and its clinical application.

 

The goal of this research is to monitor the change of miR-9 expression noninvasively in vivo using photoacoustic imaging and new molecular probes. 5-aza-2'-deoxycytidine can influence the expression of miR-9 in A549 cells. As the product of tyrosinase, melanin has strong absorption ability and good biocompatibility properties, the tyrosinase gene and miR-9 target sequence were synthesized into a new photoacoustic molecular probes which expression is regulated by miR-9. Combine the probes with light sound equipment to monitor the change of miR-9 expression.

 

First, build tyrosinase report gene, detect melanin expression in vitro and validate report gene targeting to miR-9: using gene synthesis plas TYR, TYR-3×PT; Two plass were transfected into 293T cells at a certain concentration gradient, respectively, then detect tyrosinase activity and melanin content; miR-9 and TYR-3×PT were simultaneously transfected into 293T cells at a certain concentration gradient, then detect tyrosinase activity and melanin content. Second, photoacoustic imaging is performed with EP tubes, phantom and mice, respectively: 293T cells transfected with different concentrations of plas, 293T cells transfected with the same concentration of plas and different concentrations of miR-9, and A549 cells transfected by plas before and after dosing were uted 3D photoacoustic handheld scanning with EP tube and photoacoustic tomography imaging with phantom; The mices which thighs were rapidly injected with A549 cells transfected with plas before and after dosing implemented 3D photoacoustic handheld scan and photoacoustic tomography imaging.

 

Successful build the tyrosinase report gene targeting miR-9, miR-9 can inhibit tyrosinase report gene expression. Within a certain range, the report gene expression increases with the increased concentration of its transfection, miR-9 inhibition also along with the increase of its transfection concentration increased. To methylation drug 5-Aza-2'-deoxycytidine promoted the expression of A549 cells miR-9. Photoacoustic imaging to detect the plas and miR-9 different transfection concentration signal caused by the differences, and drugs before, during and after the stimulus signal differences in mice in vivo and in vitro.

 

We proved that tyrosinase report gene is suitable for photoacoustic imaging. Using tyrosinase report gene targeted miR-9 and photoacoustic equipment, change of miR-9 expression can be detected in A549 cells before and after 5-Aza-2'-deoxycytidine stimulus.

参考文献:
[1] Baselvanagaite L. Clinical approaches to genetic mental retardation[J]. Israel Medical Association Journal Imaj, 2008, 10(11):821-826.
[2] Nagy C, Turecki G. Transgenerational epigenetic inheritance: an open discussion[J]. Epigenomics, 2015, 7(5):781-790.
[3] Canterbury E, Duraiappah A K, Naeem S, et al. Translating the histone code[J]. Science, 2013, 293(5532):1074-1080.
[4] Chiurazzi P, Schwartz C E, Gecz J, et al. XLMR genes: 2007[J]. European Journal of Human Genetics, 2008, 16: 422-434.
[5] Xu P, Vernooy S Y, Guo M, et al. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism[J]. Current Biology Cb, 2003, 13(9):790-795.
[6] Lee R C, Feinbaum R L, Ambros V. The C. elegans heteroonic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854.
[7] Baumberger N, Baulcombe D C. Arabidopsis ARGONAUTE1 Is an RNA Slicer that ively recruits microRNAs and short interfering RNAs[J]. Proceedings of the National Academy of Sciences, 2005, 102(33):11928-11933.
[8] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297.
[9] Lovat F, Valeri N, Croce C M. MicroRNAs in the pathogenesis of cancer[J]. Seminars in Oncology, 2011, 38:724-733.
[10] Wilting S M, Snijders P J, Verlaat W, et al. Altered microRNA expression associated with omosomal changes contributes to cervical carcinogenesis[J]. Oncogene, 2013, 32(1):106-116.
[11] Cai Y, Yu X, Hu S. A brief review on the mechanisms of miRNA regulation[J]. 基因组蛋白质组与生物信息学报, 2009, 7(4):147-154.
[12] Borchert G M, Lanier W, Davidson B L. RNA polymerase III transcribes human microRNAs[J]. Nature Structural & Molecular Biology, 2006, 13(12):1097-1101.
[13] Han J, Lee Y, Yeom K H, et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex[J]. 2006, 125(5):887-901.
[14] Lund E, Güttinger S, Calado A, et al. Nuclear export of microRNA precursors[J]. Science, 2004, 303(5654):95-98.
[15] Hutvágner G, Mclachlan J, Pasquinelli A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J]. Science, 2001, 293(5531):834-838.
[16] Omura N, Li C P, Li A, et al. Genome-wide profiling at methylated promoters in pancreatic adenocarcinoma[J]. Cancer Biology & Therapy, 2008, 7(7):1146-1156.
[17] Mott J L, Kobayashi S, Bronk S F, et al. mir-29 Regulates Mcl-1 Protein Expression and Apoptosis[J]. Oncogene, 2007, 26(42):6133-6140.
[18] Bommer, Guido T, Gerin, et al. Article p53-Mediated Activation of miRNA34 Candidate Tumor-Suppressor Genes[J]. Current Biology Cb, 2007, 17(15):1298-1307.
[19] Asangani I A, Rasheed S A K, Nikolova D A, et al. MicroRNA-21 (miR-21) post-tranionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene, 2008, 27(15):2128-2136.
[20] Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster[J]. Nature Genetics, 2006, 38(9):1060-1065.
[21] Zhang Z, Li Z, Gao C, et al. MiR-21 plays a pivotal role in gastric cancer pathogenesis and progression[J]. Laboratory investigation; a journal of technical methods and pathology, 2008, 88(12):1358-1366.
[22] Xia J, Chen L, Jian W, et al. MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-κB signaling[J]. Journal of Translational Medicine, 2014, 12(1):33-45.
[23] Li T, Lu Y Y, Zhao X D, et al. MicroRNA-296-5p increases proliferation in gastric cancer through repression of Caudal-related homeobox 1[J]. Oncogene, 2014, 33(6):783-793.
[24] Jun D, Wan L, Xiaojun X, et al. MicroRNA-506 inhibits gastric cancer proliferation and invasion by directly targeting Yap1[J]. Tumor Biology, 2015, 36(9):6823-6831.
[25] Wu Q, Yang Z, Xia L, et al. Methylation of miR-129-5p CpG island modulates multi-drug resistance in gastric cancer by targeting ABC transporters[J]. Oncotarget, 2014, 5(22):11552-11563.
[26] Ma F, Song H, Guo B, et al. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1[J]. Oncotarget, 2015, 6(19):17404-17416.
[27] Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proceedings of the National Academy of Sciences, 2004, 101(101):2999-3004.
[28] Sevignani C, Calin G A, Nnadi S C, et al. MicroRNA genes are frequently located near mouse cancer susceptibility loci[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(19):8017-8022.
[29] Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer[J]. Journal of Pathology, 2008, 214(1):17-24.
[30] Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells[J]. Cancer Research, 2007, 67(4):1424-1429.
[31] He L, He X, Lim LP, de Stanchina E, et al. A microRNA component of the p53 tumour suppressor network[J]. Nature, 2007, 447(7148):1130-1134.
[32] Sylvestre Y, Guire V D, Querido E, et al. An E2F/miR-20a Autoregulatory Feedback Loop[J]. Journal of Biological Chemistry, 2007, 282(4):2135-2148.
[33] Löffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer[J]. Blood, 2007, 110(4):1330-1333.
[34] Muralidhar B, Goldstein L D, Ng G, et al. Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels[J]. The Journal of Pathology, 2007, 212(4):368-377.
[35] Fabrizio B, Francesco N, Matteo M, et al. A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer[J]. Embo Molecular Medicine, 2011, 3(8):495-503.
[36] Boeri M, Verri C, Conte D, et al. MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer[J]. Proceedings of the National Academy of Sciences, 2011, 108(9):3713-3718.
[37] Szafranska A E, Davison T S, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma[J]. Oncogene, 2007, 26(30):4442-4452.
[38] Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with 'antagomirs'[J]. Nature, 2005, 438(7068):685-689.
[39] Scott G K, Mattie M D, Berger C E, et al. Rapid alteration of microRNA levels by histone deacetylase inhibition[J]. Cancer Research, 2006, 66(3):1277-1281.
[40] Arora H, Qureshi R, Jin S, et al. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1[J]. Experimental & Molecular Medicine, 2011, 43(5):298-304.
[41] Meng F, Henson R, Lang M, et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines[J]. Gastroenterology, 2006, 130(7):2113-2129.
[42] Lee K M, Choi E J, Kim I A. microRNA-7 increases radiosensitivity of human cancer cells with activated EGFR-associated signaling[J]. Radiotherapy & Oncology, 2011, 101(1):171-176.
[43] Jemal A, Bray F, Center M M, et al. Global cancer statistics, 2012[J]. Ca A Cancer Journal for Clinicians, 2011, 61(2):69-90.
[44] D'Arcangelo M, Hirsch F R. Clinical and comparative utility of afatinib in non-small cell lung cancer[J]. Biologics Targets & Therapy, 2014, 8(default):183-192.
[45] Hoffman P C, Mauer A M, Vokes E E. Lung cancer[J]. Lancet, 2000, 355(9202):479-485.
[46] Peng G, Yin Z, Li X, et al. Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues[J]. Journal of Experimental & Clinical Cancer Research, 2012, 31(1):54-62.
[47] Sun Y, Su B, Zhang P, et al. Expression of miR-150 and miR-3940-5p is reduced in non-small cell lung, carcinoma and correlates with clinicopathological features[J]. Oncology Reports, 2013, 29(2):704-712.
[48] Zhu W, Liu X, He J, et al. Overexpression of members of the microRNA-183 family is a risk factor for lung cancer: a case control study[J]. BMC Cancer, 2011, 11(1):393-403.
[49] Foss K M, Sima C, Ugolini D, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer[J]. Journal of Thoracic Oncology Official Publication of the International Association for the Study of Lung Cancer, 2011, 6(3):482-488.
[50] Shen J, Todd N W, Zhang H, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer[J]. Laboratory investigation; a journal of technical methods and pathology, 2011, 91(4):579-587.
[51] Scagliotti G V, Parikh P, Pawel J V, et al. Phase III Study Comparing Cisplatin Plus Gemcitabine With Cisplatin Plus Pemetrexed in Chemotherapy-Naive Patients With Advanced-Stage Non–Small-Cell Lung Cancer[J]. Journal of Clinical Oncology, 2008, 26(21):3543-3551.
[52] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3):189-198.
[53] Lebanony D, Benjamin H, Gilad S, et al. Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma[J]. Journal of Clinical Oncology Official Journal of the American Society of Clinical Oncology, 2009, 27(12):2030-2037.
[54] Landi M T, Zhao Y, Rotunno M, et al. MicroRNA expression differentiates histology and predicts survival of lung cancer[J]. Clinical Cancer Research, 2010, 16(2):430-441.
[55] Del V V, Cantaloni C, Cucino A, et al. miR-205 Expression levels in nonsmall cell lung cancer do not always distinguish adenocarcinomas from squamous cell carcinomas[J]. American Journal of Surgical Pathology, 2011, 35(2):268-275.
[56] Ranade A R, Cherba D, Sridhar S, et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer[J]. Journal of Thoracic Oncology, 2010, 5(8):1273-1278.
[57] Li Z H, Zhang H, Yang Z G, et al. Prognostic significance of serum microRNA-210 levels in nonsmall-cell lung cancer[J]. Journal of International Medical Research, 2013, 41(5):1437-1444.
[58] Wei J, Gao W, Zhu C J, et al. Identification of plasma microRNA-21 as a biomarker for early detection and chemosensitivity of non-small cell lung cancer[J]. 癌症, 2011, 30(6):407-414.
[59] Franchina T, Amodeo V, Bronte G, et al. Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non-small cell lung cancer[J]. Journal of Cellular Physiology, 2014, 229(1):97–99.
[60] Chen G, Umelo I A, Lv S, et al. MiR-146a inhibits cell growth, cell migration and induces apoptosis in non-small cell lung cancer cells[J]. Plos One, 2013, 8(3):60317-60325.
[61] Deo M, Yu J, Chung K, et al. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides[J]. Developmental Dynamics, 2006, 235(9):2538-2545.
[62] Shibata M, Nakao H, Kiyonari H, et al. MicroRNA-9 regulates neurogenesis in mouse telencephalon by targeting multiple tranion factors[J]. Journal of Neuroscience, 2011, 31(9):3407-3422.
[63] Otaegi G, Pollock A, Hong J, et al. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords[J]. Journal of Neuroscience, 2011, 31(3):809-818.
[64] Bonev B, Pisco A, Papalopulu N. MicroRNA-9 reveals regional diversity of neural progenitors along the anterior-posterior axis[J]. Developmental Cell, 2011, 20(1):19-32.
[65] Plaisance V, Abderrahmani A, Perretmenoud V, et al. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells[J]. Journal of Biological Chemistry, 2006, 281(37):26932-26942.
[66] Packer A N, Xing Y, Harper S Q, et al. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease[J]. Journal of Neuroscience, 2008, 28(53):14341-14346.
[67] Zhao C, Sun G Q, Li S, et al. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination[J]. Nature Structural & Molecular Biology, 2009, 16(4):365-371.
[68] Guo L, Yong P, Zhe H, et al. MicroRNA-9 inhibits ovarian cancer cell growth through regulation of NF-kappaB1[J]. Febs Journal, 2009, 276(19):5537-5546.
[69] Wan H Y, Guo L M, Liu T, et al. Regulation of the tranion factor NF-κB1 by microRNA-9 in human gastric adenocarcinoma[J]. Molecular Cancer, 2010, 9(1):16-26.
[70] Chao T F, Zhang Y, Yan X Q, et al. MiR-9 regulates the expression of CBX7 in human glioma[J]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao Acta Academiae Medicinae Sinicae, 2008, 30(3):268-274.
[71] Rotkrua P, Akiyama Y, Hashimoto Y, et al. MiR-9 downregulates CDX2 expression in gastric cancer cells[J]. International Journal of Cancer, 2011, 129(11):2611-2620.
[72] Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Research, 2005, 65(16):7065-7070.
[73] Ma L, Young J, Prabhala H, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis[J]. Nature Cell Biology, 2010, 12(3):247-256.
[74] Lujambio A, Calin G A, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36):13556-13561.
[75] Heller G, Weinzierl M, Noll C, et al. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers[J]. Clinical Cancer Research, 2012, 18(6):1619-1629.
[76] Xiong H, Chen Z F, Liang Q C, et al. Inhibition of DNA methyltransferase induces G2 cell cycle arrest and apoptosis in human colorectal cancer cells via inhibition of JAK2/STAT3/STAT5 signalling[J]. Journal of Cellular & Molecular Medicine, 2009, 13(9b):3668-3679.
[77] Kutty R K, Samuel W, Jaworski C, et al. MicroRNA expression in human retinal pigment epithelial (ARPE-19) cells: Increased expression of microRNA-9 by N-(4-Hydroxyphenyl)retinae[J]. Molecular Vision, 2010, 16(160-62):1475-1486.
[78] Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer[J]. Journal of Pathology, 2008, 214(1):17-24.
[79] Yanaihara N, Caplen N, Bowman E, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis[J]. Cancer Cell, 2006, 9(3):189-198.
[80] Iorio M V, Ferracin M, Liu C G, et al. MicroRNA gene expression deregulation in human breast cancer[J]. Cancer Research, 2005, 65(16):7065-7070.
[81] Nikiforova M N, Tseng G C, Steward D, et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility[J]. Journal of Clinical Endocrinology & Metabolism, 2008, 93(5):1600-1608.
[82] Blasberg R G, Gelovani-Tjuvajev J. In vivo molecular‐genetic imaging[J]. Journal of Cellular Biochemistry, 2002, 87(Supplement 39):172-183.
[83] Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36 (1):113-120.
[84] Bolus N E, George R, Washington J, et al. PET/MRI: the blended-modality choice of the future[J]. Journal of Nuclear Medicine Technology, 2009, 37(2):63-71.
[85] Wehrl H F, Judenhofer M S, Wiehr S, et al. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36(1):56-68.
[86] Massoud T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light[J]. Genes & Development, 2003, 17(5):545-580.
[87] Sauter A W, Wehrl H F, Kolb A, et al. Combined PET/MRI: one step further in multimodality imaging[J]. Trends in Molecular Medicine, 2010, 16(11):508-515.
[88] Marsden P K, Strul D, Keevil S F, et al. Simultaneous PET and NMR[J]. British Journal of Radiology, 2002, 75 Spec No(suppl_9):53-59.
[89] Martinezmöller A, Souvatzoglou M, Delso G, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data[J]. Journal of Nuclear Medicine, 2009, 50(4):520-526.
[90] Gusev V E, Karabutov A A. Laser optoacoustics[J]. Nasa Sti/recon Technical Report A, 1991, 93-112.
[91] Razansky D, Distel M, Vinegoni C, et al. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo[J]. Nature Photonics, 2009, 3(7):412-417.
[92] Li L, Lungu Z G, Stoica G, et al. Photoacoustic imaging of lacZ gene expression in vivo[J]. Journal of Biomedical Optics, 2007, 12(2):504-507.
[93] Yao J, Wang L V. Tyrosinase-catalyzed melanin as a contrast agent for photoacoustic tomography[J]. Proc Spie, 2011, 7899(1): 1-6.
[94] Cánovas F G, Garcíacarmona F, Sánchez J V, et al. The role of pH in the melanin biosynthesis pathway[J]. Journal of Biological Chemistry, 1982, 257(15):8738-8744.
[95] Körner A, Pawelek J. Mammalian Tyrosinase Catalyzes Three Reactions in the Biosynthesis of Melanin[J]. Science, 1982, 217(4565):1163-1165.
[96] Zhang Y, Hong H, Cai W, et al. Photoacoustic imaging[J]. Cold Spring Harbor Protocols, 2011, 2011(9):3912-3924.
[97] Jathoul A P, Laufer J, Ogunlade O, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter[J]. Nature Photonics, 2015, 9(4):239-246.
[98] Krumholz A, Vanvicklechavez S J, Yao J, et al. Photoacoustic microscopy of tyrosinase reporter gene in vivo[J]. Journal of Biomedical Optics, 2011, 16(8):503-507.
[99] Laufer J, Zhang E, Beard P, et al. In vivo photoacoustic imaging of tyrosinase expressing tumours in mice[J]. 2012, 8223(1):16-21.
[100] Paproski R J, Heinmiller A, Wachowicz K, et al. Multi-wavelength photoacoustic imaging of inducible tyrosinase reporter gene expression in xenograft tumors[J]. Scientific Reports, 2014, 4(4):5329-5336.
[101] Qin C, Cheng K, Chen K, et al. Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging[J]. Scientific Reports, 2013, 3(12):1490-1498.
[102] Feng H, Xia X, Li C, et al. TYR as a multifunctional reporter gene regulated by the Tet-on system for multimodality imaging: anin vitrostudy[J]. Scientific Reports, 2015, 3(12):40-50.
[103] Zhang R, Fan Q, Yang M, et al. Engineering Melanin Nanoparticles as an Efficient Drug-Delivery System for Imaging-Guided Chemotherapy[J]. Advanced Materials, 2015, 27(34):5063-5069.
中图分类号:

 11    

馆藏号:

 11-34558    

开放日期:

 2017-12-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式