- 无标题文档
查看论文信息

中文题名:

 热湿环境下塑封器件内粘弹性与弹性材料的界面力学行为研究    

姓名:

 史兴华    

学号:

 1704110289    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 热湿应力耦合、湿扩散    

第一导师姓名:

 仇原鹰    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-06-20    

答辩日期:

 2023-05-31    

外文题名:

 Study on the Mechanical Behavior of the Interfaces between Viscoelastic and Elastic Materials in Plastic Packaged Devices under Thermal-hygro Environments    

中文关键词:

 塑封器件 ; 热湿环境 ; 方形扁平无引脚封装 ; 粘弹性 ; 分界面 ; 双层板 ; 复应力强度因子    

外文关键词:

 thermo-hygro-mechanical stress ; plastic packaged devices ; QFN ; viscoelasticity ; interface ; bi-layer plate ; stress intensity factor    

中文摘要:

塑封器件是将芯片和基体材料封装在聚合物材料中形成的器件,被广泛应用在航空、航天、航海、汽车、国防军工等领域中。作为塑封器件的主要组成部分,塑封器件内的塑封料与粘结剂等粘弹性材料对热湿环境非常敏感,这使得热湿环境的变化与塑封器件内部界面的应力应变及器件可靠性紧密相关。

目前对于热湿环境下微小塑封器件内热膨胀应力、湿膨胀应力、蒸气应力及合成应力的分析主要是通过理论研究和有限元仿真的手段实现的。受限于塑封器件的尺寸,通过试验定量分析热湿环境下塑封器件内应变数据的研究鲜有报道。为了更深入研究热湿环境对塑封器件的影响,本文首先完善了有限元仿真方法,实现了变化温度下的湿度连续扩散仿真分析,获得了回流焊这一温度变化剧烈且器件容易失效的阶段内的热湿应力。之后,设计制作了一种内嵌有应变片的粘弹性-弹性双层板试验件,通过试验定量研究了热湿环境下粘弹性吸湿聚合物材料与其他弹性材料间的分界面处的应变变化规律。最后,结合理论分析、有限元仿真与试验结果分析了试验件中聚合物材料的湿热性能参数与试验件界面断裂力学性能参数。本文的研究方法与试验结果对于获得热湿环境下微小结构塑封器件内的界面力学行为和提高塑封器件可靠性具有参考意义。

论文的主要研究成果体现在以下几个方面:

(1)提出了一种变化温度下的湿连续扩散仿真方法,并根据热-湿-蒸气压力三者间的对应关系实现了回流焊阶段湿热合成应力分析。在有限元软件中插入命令流动态修改材料参数和器件各节点的相对湿度,实现了含金线的QFN(Quad Flat No-leads Package,方形扁平无引脚封装)器件在包括吸湿阶段和脱湿阶段的变化温度下的湿连续扩散仿真分析。通过建立湿膨胀应力与蒸气应力二者参数间的对应关系,推导了利用热膨胀应力、湿膨胀应力和蒸气应力结果计算合成von-Mises应力的公式。最后探索性地得到了热膨胀应力、湿膨胀应力、蒸气应力及三者合成应力在回流焊阶段全过程的动态变化规律。

(2)提出了一种基于嵌入式应变片的内部界面应变测量方法,设计制作了两种环氧树脂-铜双层板结构试验件,实现了对变化温度和水浴环境下器件界面内部应变的长时段连续测量。采用两种粘弹性吸湿环氧树脂(双酚F标准二缩水甘油醚和3, 4-环氧环己基甲基3, 4-环氧环己氧基甲酸酯)与弹性铜片制作了两种不同的双层板试验件,研究了热湿环境下塑封器件内部粘弹性吸湿材料与弹性材料间界面处的力学特性,揭示了变化温度/干燥环境、恒定温度/水浴环境下界面应变的变化规律。

(3)推导了热湿载荷作用下粘弹性-弹性双层板界面的应力应变解析公式,并基于遗传算法对界面应变曲线进行多参数高次曲线拟合求解,获得了环氧树脂材料吸湿后的时变粘弹性参数。将试验得到的双层板试验件界面处的热应变结果代入双层板热应变公式得到了两种环氧树脂在不同温度下的热膨胀系数。基于遗传算法应用MATLAB软件对双层板试验件的界面应力松弛解析公式进行编程后,通过对双层板试验件吸湿饱和后的界面应变曲线进行拟合求解,得到了试验件中的环氧树脂在热湿环境下的剪切模量和松弛时间。

(4)对环氧树脂-铜双层板进行了界面断裂力学性能参数分析。针对粘弹性-弹性双层板界面出现裂纹的长度、位置以及时间等参数对界面开裂产生的影响,推导了粘弹性-弹性双层板的界面应力强度系数与复应力强度因子,定量表征了吸湿饱和后的DGEBF(Diglycidyl Ether of Bisphenol F,标准二缩水甘油醚)双层板试验件界面处的不同裂纹位置、长度以及时间等参数对界面开裂的影响。

外文摘要:

Plastic packaged devices are widely used in the fields of electronic industry, aviation and navigation, which are made by encapsulating the chip and substrate materials in epoxy molding compounds. As the main materials of plastic packaged devices, polymers are very sensitive to thermal and moisture, which make the reliability of the devices closely related to the thermal-hygro environments.

 

At present, the studies on thermo-mechanical stress, hygro-mechanical stress, vapor stress and total stress of the tiny plastic pacakged devices under thermo-hygro environments are mainly realized by means of theoretical analysis and finite element simulation. There are few reports on the quantitative analysis of the internal strain and stress of plastic packaged devices under thermal-hygro environments through experiments. This dissertation combines theoretical analysis, finite element simulation and experiment to analyze the influences of thermal and moisture on the plastic packaged devices. Firstly, the moisture continuous diffusion under changing temperature is realized in finite element software, and the thermo-hygro mechanical stress during reflow process is obtained. Secondly, a kind of viscoelastic-elastic bi-layer plate test piece is fabricated, the strain variations at the interface between the viscoelastic epoxy resin layer and the elastic copper layer in a thermo-hygro environment are quantitatively studied experimentally. Finally, the thermo-hygro performance parameters of the polymer materials in the test pieces are obtained, and the interface fracture mechanical performances of the test pieces are analyzed.

 

The research content of this dissertation includes the following aspects:

 

(1)A simulation method of moisture continuous diffusion under changing temperature is proposed, and the accuracy of thermo-hygro-mechanical behavior simulation under changing temperature is improved. The moisture continuous diffusion under changing temperature is realized by inserting APDL (ANSYS Parametric Design Language) in the finite element software to modify material parameters and relative humidity of each node of the device model. The correspondence between the hygro-mechanical stress and the vapor stress is compared. According to the superposition principle, a formula for calculating the total von-Mises stress is derived using the results of thermo-mechanical stress, hygro-mechanical stress and vapor stress. The moisture continuous diffusion process in the moisture absorption and desorption stage of the QFN (Quad Flat No-lead Package) device model is analyzed, and the dynamic variations of thermo-mechanical stress, hygro-mechanical stress, vapor stress and their total stress during reflow process are obtained for the first time.

 

(2)A method of using strain gauges to measure the interface strain of the test pieces is proposed, and an kind of epoxy resin-copper bi-layer plate specimen is designed and fabricated,which realizes the interface strain long-term continuous measurement of the devices in a water bath environment. In order to study the mechanical properties of the interfaces inside the plastic packaged devices under thermal-hygro environments, two different bi-layer plates are fabricated by using hygroscopic epoxy resins (diglycidyl ether of bisphenol F (DGEBF) and Cycloaliphatic epoxy resins) and elastic copper plate. By burying the strain gauges on the interface between the epoxy resin layer and the copper layer, the long-term continuous measurement of the interface strains under water bath environment is realized. The experimental data reveals the changing laws of the interface strains under changing temperature/dry environment and constant temperature/water bath environment, respectively.

 

(3)The interface mechanical behaviors of the viscoelastic-elastic bi-layer plate under thermal-hygro environments are theoretically analyzed. The CTEs (coefficients of thermal expansion) of the epoxy resins in the bi-layer plates are solved by combining the experimental data and the theoretical formula. After programming the analytical characterization of the bi-layer plate interface strain based on the genetic algorithm and using MATLAB software, the multi-parameter fitting of the interfacial strain curves of the moisture saturated bi-layer plates is carried out, the shear moduli and relaxation times of the two moisture saturated epoxy resins are obtained.

 

(4)The parameters of interface fracture mechanical properties of the epoxy resin-copper bi-layer plate are analyzed. For the possible effects of the crack length, crack tip position and time at the interface of the viscoelastic-elastic bi-layer plate on the interface cracking, the analytical representations of the stress field and displacement field near the interface crack tip of the viscoelastic-elastic bi-layer plate are established. The numerical expression of the interface stress intensity factor is obtained. The complex stress intensity factor at the interface of the bi-layer plate is obtained based on the linear extrapolation method. Taking the fabricated bi-layer plate as an example, the effects of crack length, crack tip position and time on the interface cracking are theoretically analyzed, respectively.

参考文献:
[1]RAO R T, 黄庆安, 唐洁影. 微系统封装基础[M]. 南京: 东南大学出版社, 2004. 12.
[2]胡永达, 李元勋, 杨邦朝. 微电子封装技术[M]. 北京: 科学出版社, 2015. 2.
[3]顾毅欣, 杨宇军, 张丁等. 基于环氧树脂灌封的三维叠层组件裂纹问题分析与对策研究[J]. 微电子学与计算机, 2017, 34(2): 53-57.
[4]ZAREBSKI J, GORECKI K. A method of the thermal resistance measurements of semiconductor devices with p–n junction[J]. Measurement, 2008, 41(3): 259-265.
[5]HU G J, ROBERTO R, LUAN J, et al. Interface delamination analysis of TQFP package during solder reflow[J]. Microelectronics Reliability, 2010, 50(7): 1014-1020.
[6]KE X, WU J S, CHEN H B, et al. Numerical analysis of interfacial delamination in thin array plastic package[C]. Proceedings of the International Conference on Electronic Packaging Technology & High Density Packaging. Shanghai, China, 2008.
[7]ZHANG Q, PAN K L. Analysis of the Effect of Hygrothermal Stress on Delamination of Plastic Sealed Devices[C]. 23rd International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2022: 1-5.
[8]罗海萍. QFN器件的湿热应力及在无铅回流焊中的可靠性分析[D]. 桂林: 桂林电子科技大学, 2006.
[9]DITTANET P, PEARSON R A, KONGKACHUICHAY P. Thermo-mechanical behaviors and moisture absorption of silica nanoparticle reinforcement in epoxy resins[J]. International Journal of Adhesion and Adhesives, 2017, 78: 74-82.
[10]GARETE A J, LI Z W, TADURAN A. Epoxy molding compound development for improved MSL1 delamination resistance in plastic encapsulated clip bond power package[C]//2020 IEEE 22nd Electronics Packaging Technology Conference (EPTC). IEEE, 2020: 90-94.
[11]PROLONGO S G, ROSARIO G, URENA A. Comparative study on the adhesive properties of different epoxy resins[J]. Intenational Journal of Adhesion and Adhensives, 2006, 26(3): 125-132.
[12]PEARSON R A, YEE A F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide)[J]. Polymer, 1993, 34(17): 3658-3670.
[13]ZHOU H, LIU H Y, ZHOU H M, et al. On adhesive properties of nano-silica/epoxy bonded single-lap joints[J]. Materials & Design, 2016, 95(5): 212-218.
[14]ILYIN S O, BRANTSEVA T V, GORBUNOVA I Y, et al. Epoxy reinforcement with silicate particles: Rheological and adhesive properties – Part I: Characterization of composites with natural and organically modified montmorillonites[J]. Intenational Journal of Adhesion and Adhensives, 2015, 61: 127–136.
[15]HSIEH T H, KINLOCH A J, MASANI K, et al. The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles[J]. Polymer, 2010, 51(26): 6284-6294.
[16]BRAY D J, DITTANET P, GUILD F J, et al. The modelling of the toughening of epoxy polymers via silica nanoparticles: The effects of volume fraction and particle size[J]. Polymer, 2013, 54(26): 7022-7032.
[17]LEE M, PECHT M, HUANG X J, et al. Stress relaxation in plastic molding compounds[C]. Proceedings of the International Symposium on Electronic Materials & Packaging. Taiwan, China, 2002: 37-42.
[18]魏轩. 聚氨酯泡沫材料高温蠕变及应力松弛特性的实验研究[D]. 成都: 西南交通大学, 2016.
[19]FERRY J D. Viscoelastic Properties of Polymers[M]. New Jersey, USA: John Wiley & Sons, 1980.
[20]徐晓庆. 高聚物中间层对夹层玻璃力学特性及断裂机理的影响研究[D]. 北京: 清华大学, 2017.
[21]HU G J, TAY A A O, ZHANG Y W, et al. A study of the effect of viscoelasticity on delamination in a plastic IC package undergoing leadfree solder reflow[C]. Proceedings of the 9th Electronics Packaging Technology Conference. Singapore, 2007: 686-692.
[22]KIM Y, LIU D P, LEE H, et al. Investigation of stress in MEMS sensor device due to hygroscopic and viscoelastic behavior of molding compound[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 2015, 5(7): 945-955.
[23]WANG J J, QIAN Z F, ZOU D Q, et al. Creep behavior of a flip-chip package by both FEM modeling and real time moire interferometry[C]. Proceedings of the Electronic Components and Technology Conference. Seattle, WA, USA, 1998: 1438-1445.
[24]KWATRA A, SAMET D, RAMBHATLA V T, et al. Effect of temperature and humidity conditioning on copper leadframe/mold compound interfacial delamination[J]. Microelectronics Reliability, 2020, 111: 113647.
[25]KRAUS A, BAR-COHEN A. Thermal Analysis and Control of Electronic Equipment[M]. New York, USA: Hemisphere Publishing Corporation, 1983.
[26]王珺. 含湿热的耦合粘弹性本构、断裂及应用[D]. 成都: 西南交通大学, 2002.
[27]EVANS A G, HUTCHINSON J W. The thermomechanical integrity of thin films and multilayers[J]. Acta Metallurgica et Materialia, 1995, 43(7): 2507-2530.
[28]PECHT M G, GOVIND A. In-situ measurements of surface mount IC package deformations during reflow soldering[J]. IEEE Transactions on Components Packaging Manufacturing Technology Part C, 1997, 20(3): 207-212.
[29]GEKTIN V, BAR-COHEN A. Mechanistic figures of merit for die-attach materials[C]. Proceedings of the Conference on Thermal Phenomena in Electronic Systems, I-therm V, Orlando, FL, USA, 1996: 306-313.
[30]徐步陆. 电子封装可靠性研究[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2002.
[31]李志刚. 孔穴不稳定增长导致高聚物电子封装材料——“爆米花”失效的弹塑性理论研究[D]. 太原: 太原理工大学, 2009.
[32]ZHANG X, MENG H R, WANG H H, et al. Effect of thermal misfit stress on steam-driven delamination in electronic packages[J]. Engineering Fracture Mechanics, 2018, 194: 61-72.
[33]肖虹, 蔡少英, 刘涌. 国外塑封微电路的可靠性研究进展[J]. 电子产品可靠性与环境试验, 2000, 12(6): 45-49.
[34]FAN X J, ZHANG G Q, DRIEL W V, et al. Analytical solution for moisture-induced interface delamination in electronic packaging[C]. Proceedings of the 53rd Electronic Components and Technology Conference. New Orleans, Louisiana, USA, 2003: 733-738.
[35]WANG J, LIU R Y, LIU D P, et al. Advancement in simulating moisture diffusion in electronic packages under dynamic thermal loading conditions[J]. Microelectronics Reliability, 2017, 73: 42-53.
[36]FAN X J, ZHANG G Q, ERNST L J. A micromechanics approach for polymeric material failures in microelectronic packaging[C]. Proceedings of the 3rd EuroSimE. Paris, France, 2002: 1-10.
[37]WONG E H, CHAN K C, LIM T B, et al. Non-Fickian moisture properties characterisation and diffusion modeling for electronic packages[C]. Proceedings of the Electronic Components & Technology Conference. the Sheraton Harbor Island Hotel, San Diego, California, USA, 1999: 302-306.
[38]OOTA K, IIDA H, SAKA M. Measurement of water absorption in ball grid array package[J]. IEEE Transactions on Components & Packaging Technologies, 2002, 25(1): 164-168.
[39]SASI A, PRZEMYSLAW G. Simulating Moisture Diffusion in Polymers Using Thermal-Moisture Analogy[C]. Proceedings of the 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems. Montpellier, France, 2016: 1-8.
[40]VERGNAUD J M. Drying of Polymeric and Solid Materials. Modelling and industrial applications[M]. New York, USA: Springer, 1993.
[41]BHATTACHARYYA B K, HUFFMAN W A, JAHSMAN W E, et al. Moisture absorption and mechanical performance of surface mountable plastic packages[C]. Proceedings of the Electronics Components Conference. Los Angeles, CA, USA, 1988: 49-58.
[42]REDDY J N. An Introduction to the Finite Element Method[M]. New York, USA: McGraw-Hill, 2004.
[43]ANSYS. ANSYS Mechanical APDL Theory Reference, Release 15.0[M]. Canonsburg, Pennsylvania, USA: ANSYS Inc., 2013.
[44]SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of Mechanics Physics of Solids, 2000, 48(1): 175-209.
[45]MADENCI E, OTERKUS E. Peridynamic Theory and Its Applications[M]. New York, USA: Springer, 2013.
[46]OTERKUS S, MADENCI E, OTERKUS E, et al. Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics[C]. Proceedings of the IEEE 64th Electronic Components and Technology Conference. Lake Buena Vista, Florida, USA, 2014: 973-982.
[47]JANG C, HAN B, YOON S. Advanced thermal-moisture analogy scheme for anisothermal moisture diffusion problem[J]. Journal of Electronic Packaging, 2008, 130(1): 749-755.
[48]XIE B, FAN X J, SHI X Q, et al. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part I: theory and numerical implementation[J]. Journal of Electronic Packaging, 2009, 031010.
[49]XIE B, FAN X J, SHI X Q, et al. Direct concentration approach of moisture diffusion and whole-field vapor pressure modeling for reflow process-Part II: application to 3D ultrathin stacked-die chip scale packages[J]. Journal of Electronic Packaging, 2009, 031011.
[50]LIU D P, WANG J, LIU R Y, et al. An examination on the direct concentration approach to simulating moisture diffusion in a multi-material system[J]. Microelectronics Reliability, 2016, 60: 109-115.
[51]WONG E H, KOH S W, LEE K H, et al. Advanced moisture diffusion modeling and characterisation for electronic packaging[C]. Proceedings of the 52nd Electronic Components and Technology Conference. San Diego, CA, USA, 2002: 1297-1303.
[52]ZHU L P, MONTHEI D, LAMBIRD G, et al. Moisture diffusion modeling and application in a 3D RF module subject to moisture absorption and desorption loads[J]. 11th Int Conf on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, 2010.
[53]TOMONORI M, TORU I, KIYOSHI M, et al. Warpage analysis of an LCD panel under thermo-mechanical and hygro-mechanical stress[C]. Proceedings of the 8th International Conference on Electronic Materials and Packaging. IEEE, Shanghai, China, 2007: 1-7.
[54]WONG E H. The fundamentals of thermal-mass diffusion analogy[J]. Microelectronics Reliability, 2015, 55(3-4): 588-595.
[55]ROY S. Modeling of anomalous moisture diffusion in polymer composites: a finite element approach[J]. Journal of Composite Materials, 1999, 33(14): 1318-1343.
[56]DONG W Q, CHEN Y M, BAO Y, et al. A validation of dynamic hygrothermal model with coupled heat and moisture transfer in porous building materials and envelopes[J]. Journal of Building Engineering, 2020, 32: 101484.
[57]KUENZEL H M, KARAGIOZIS A, HOLM A. A Hygrothermal Design Tool for Architects and Engineers[M]. Pennsylvania, USA, ASTM International West Conshohocken, 2001.
[58]LIU X W, CHEN Y M, GE H, et al. Numerical investigation for thermal performance of exterior walls of residential buildings with moisture transfer in hot summer and cold winter zone of China[J]. Energy Buildings, 2015, 93(15): 259-268.
[59]GULOGLU G E, HAMIDI Y K, ALTAN M C. Moisture absorption of composites with interfacial storage[J]. Composites Part A: Applied Science and Manufacturing, 2020, 134: 1-9.
[60]TENCER M. Moisture ingress into nonhermetic enclosures and packages. A quasi-steady state model for diffusion and attenuation of ambient humidity variations[C]. Proceedings of the 44th Electronic Components and Technology Conference. Washington, USA, 1994: 196-209.
[61]LUO S J, LEISEN J, WONG C P. Study on mobility of water and polymer chain in epoxy for microelectronic applications[C]. Proceedings of the 51st Electronic Components and Technology Conference. Orlando, FL, USA, 2001: 149-154.
[62]LUO S J, WONG C P, LEISEN J. Fundamental study on moisture absorption in epoxy for electronic application[C]. 2001 International Symposium on Advanced Packaging Materials. Braselton, GA, USA, 2001: 293-298.
[63]农红密. 湿热负载下的PBGA器件内部界面可靠性研究[D]. 桂林: 桂林电子科技大学, 2009.
[64]ARDEBILI H, HILLMAN C, NATISHAN M A E, et al. A comparison of the theory of moisture diffusion in plastic encapsulated microelectronics with moisture sensor chip and weight-gain measurements[J]. IEEE Transactions on Components & Packaging Technologies, 2002, 25(1): 132-139.
[65]SELIGe O, ALPERN P, TILGNER R. Corrosion in plastic packages-sensitive initial delamination recognition[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part B, 1995, 18(2): 353-357.
[66]GALLOWAY J E, MILES B M. Moisture absorption and desorption predictions for plastic ball grid array packages[C]. Proceedings of the 1996 Intersociety Conference on Thermal Phenomena in Electronic Systems. Buena Vista Palace Hotel, Orlando, FL, USA, 1996: 180-186.
[67]TONG T Y, SHEN N H. Whole field vapor pressure modeling of QFN during reflow with coupled hygro-mechanical and thermo-mechanical stresses[C]. Proceedings of the 52nd Electronic Components and Technology Conference, IEEE, San Diego, CA, USA, 2002: 1552-1559.
[68]JOLIFF Y, BELEC L, HEMAN M B, et al. Experimental, analytical and numerical study of water diffusion in unidirectional composite materials – Interphase impact[J]. Computational Materials Science, 2012, 64: 141-145.
[69]ZHANG H J, HONG S. Hygroscopic swelling behavior of molding compound at high temperature[C]. Proceedings of the 12th IEEE Intersociety Conference on Thermal & Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2010: 1-7.
[70]KWAK J B, SEUNGBAE P. Integrated hygro-swelling and thermo-mechanical behavior of mold compound for MEMS package during reflow after moisture preconditioning[J]. Microelectronics International, 2015, 32(1): 8-17.
[71]WONG K J, LOW K O, ISRAR H A, et al. Thickness-dependent non-Fickian moisture absorption in epoxy molding compounds[J]. Microelectronics Reliability, 2016, 65: 160-166.
[72]CHEN L B, CHU H, FAN X J. A convection-diffusion porous media model for moisture transport in polymer composites: Model development and validation[J]. Journal of Polymer Science Part B Polymer Physics, 2015, 53(20): 1440-1449.
[73]WONG E H, TEO Y C, LIM T B. Moisture diffusion and vapour pressure modeling of IC packaging[C]. Proceedings of the 48th Electronic Components and Technology Conference. Seattle, WA, USA, 1998: 1372-1378.
[74]SANDER R. Compilation of Henry's law constants (version 4.0) for water as solvent[J]. Atmospheric Chemistry Physics, 2015, 15(8): 4399-4981.
[75]TEE T Y, ZHONG Z W. Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis[J]. Microelectronics Reliability, 2004, 44(1): 105-114.
[76]TEE T Y, FAN X J, LIM T B. Modeling of whole field vapor pressure during reflow for flip chip BGA and wire bond PBGA packages[C]. Proceedings of the 1st International Workshop on Electronic Materials & Packaging, Singapore, 1999: 1-8.
[77]FAN X J. Modeling of vapor pressure during reflow for electronic packages[J]. Benefiting from thermal and mechanical simulation in micro-electronics. 2000, 75-92.
[78]TAY A A O, LIN T Y. The impact of moisture diffusion during solder reflow on package reliability[C]. Proceedings of the 49th Electronic Components and Technology Conference. San Diego, California, USA, 1999: 830-836.
[79]LAU J H. Ball Grid Array Technology[M]. New York, USA: McGraw-Hill, 1995.
[80]ARDEBILI H, WONG E H, PECHT M. Hygroscopic swelling and sorption characteristics of epoxy molding compounds used in electronic packaging[J]. IEEE Transactions on Components Packaging Technologies, 2003, 26(1): 206-214.
[81]FAN X J, SUHIR E. Moisture Sensitivitiy of Plastic Packages of IC Devices[M]. Boston, MA, USA, Springer, 2010.
[82]TAY A A O, TAN G L, LIM T B. Predicting delamination in plastic IC packages and determining suitable mold compound properties[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part B, 1994, 17(2): 201-208.
[83]AHN S H, KWON Y S. Popcorn phenomena in a ball grid array package[J]. IEEE Transactions on Components Packaging & Manufacturing Technology, 1995, 18(3): 491-495.
[84]LIN R, BLACKSHEAR E, SERISKY P. Moisture induced package cracking in plastic encapsulated surface mount components during solder reflow process[C]. Proceedings of the 26th Annual IEEE International Reliability Physics Symposium, Los Angeles, CA, USA, 1988: 83-89.
[85]LAM D C C, CHONG I T, YUEN M, et al. Influence of defect size on popcorning[C]. Proceedings of the 5th International Conference on Solid-state & Integrated Circuit Technology, IEEE, Beijing, China, 1998: 550-553.
[86]LAM D C C, CHONG I T, TONG P. Parametric analysis of steam driven delamination in electronics packages[J]. IEEE Transactions on Electronics Packaging Manufacturing, 2000, 23(3): 208-213.
[87]王慧明. PBGA电子封装聚合物热-湿力学特性及封装可靠性的研究[D]. 太原: 太原理工大学, 2013.
[88]刘彬. 温度、湿度应力在电气·电子产品失效中的作用[J]. 电子技术与软件工程, 2017, 10(2): 235.
[89]FUNG Y C. International Series on Dynamics. (Book Reviews: Foundations of Solid Mechanics)[J]. Science, 1966, 152.
[90]SIH G H, MICHOPOULOS J G, CHOU S C. Hygrothermoelasticity[M]. Dordrecht, Netherlands, Springer Dordrecht, 1986.
[91]曾丹苓. 工程非平衡热动力学[M]. 北京: 科学出版社, 1991.
[92]GILLAT O, BROUTMAN L. Effect of an external stress on moisture diffusion and degradation in a graphite-reinforced epoxy laminate[J]. Advanced Composite Materials, 1978: 61-83.
[93]MAROM G, BROUTMAN L J. Moisture penetration into composites under external stress[J]. Polymer Composites, 1982, 2(3): 132–136.
[94]赵树峰. 温湿度条件下塑封电子器件力学行为的模拟[D]. 天津: 天津大学, 2005.
[95]ZHAO S F, CHEN X, YAO J Z. Impact of hygroswelling and vapor pressure on delamination[C]. Proceedings of the 7th Electronics Packaging Technology Conference. Shanghai, China, 2006: 773-780.
[96]KIM H S, SONG H G. Investigation of moisture-induced failures of stacked-die package[J]. Microelectronics Reliability, 2007, 47(9-11): 1673-1679.
[97]TANAKA N, KITANO M, KUMAZAWA T, et al. Evaluating IC-package interface delamination by considering moisture-induced molding-compound swelling[J]. IEEE Transactions on Components and Packaging Technologies, 1999, 22(3): 426-432.
[98]TAY A A O, LIN T Y. Influence of temperature, humidity and defect location on delamination in plastic IC packages[J]. IEEE Transactions on Components & Packaging Technologies, 1998, 22(4): 512-518.
[99]TAY A A O, LIN T Y. Influence of temperature, humidity and defect location on delamination in plastic IC packages[C]. Proceedings of the ITherm'98 Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. Seattle, WA, USA, 1998: 179-184.
[100]LIN T Y, TAY A A O. A J-integral criterion for delamination of bi-material interfaces incorporating hygrothermal stress[J]. Advances in Electronic Packaging, 1997: 1421-1428.
[101]WANG J, PARK S. Non-linear finite element analysis on stacked die package subjected to integrated vapor-hygro-thermal-mechanical stress[C]. Proceedings of the 66th Electronic Components and Technology Conference, Las Vegas, NV, USA, 2016: 1394-1401.
[102]YUAN S Y, SHENG Y H, LIU C H, et al. Fluorescence enhancement of perovskite nanocrystals by flexible photonic crystals and its application in optical strain gauge[J]. Applied Physics Letters, 2021, 119(3): 033302.
[103]WANG Y, LEE S, YOKOTA T, et al. A durable nanomesh on-skin strain gauge for natural skin motion monitoring with minimum mechanical constraints[J]. Science advances, 2020, 6(33): 1-9.
[104]ZHU S X, YANG L, WEN J W, et al. In operando measuring circumferential internal strain of 18650 Li-ion batteries by thin film strain gauge sensors[J]. Journal of Power Sources, 2021, 516(31): 230669.
[105]LIU H, MAO X L, YANG Z B, et al. High temperature static and dynamic strain response of PdCr thin film strain gauge prepared on Ni-based superalloy[J]. Sensors Actuators A: Physical, 2019, 298(15): 111571.
[106]BORGHETTI M, SERPELLONIM, SARDINI E. Printed strain gauge on 3D and low-melting point plastic surface by aerosol jet printing and photonic curing[J]. Sensors Actuators A: Physical, 2019, 19(19): 4220.
[107]FUJIMOTO K T, WATKINS J K, PHERO T, et al. Aerosol jet printed capacitive strain gauge for soft structural materials[J]. 2020, 4(1): 1-9.
[108]NESSER H, GRISOLIA J, ALNASSER T, et al. Towards wireless highly sensitive capacitive strain sensors based on gold colloidal nanoparticles[J]. Nanoscale, 2018, 10(22): 10479-10487.
[109]ZHANG C, ZHANG S Y, WANG L F. A sawtooth MEMS capacitive strain sensor for passive telemetry in bearings[J]. IEEE Sensors Journal, 2021, 21(20): 22527-22535.
[110]COLE S, NOVICH K, PHERO T. Characterizing the sensing performance of additively manufactured in-pile strain gauges in high humidity environments[J]. Conference on undergraduate research, 2021.
[111]KHARABET I, HILLMANN S, SCHULZE M H. Development of a contactless inductive strain gauge for monitoring mechanical load in CFRP[C]. Proceedings of the 10th International Symposium on NDT in Aerospace, Dresden, Germany, 2020: 1-8.
[112]BURTON A R, SUN P, LYNCH J P. Bio-compatible wireless inductive thin-film strain sensor for monitoring the growth and strain response of bone in osseointegrated prostheses[J]. Structural Health Monitoring, 2021, 20(3): 749-767.
[113]CHU M, NGUYEN T, PANDEY V, et al. Respiration rate and volume measurements using wearable strain sensors[J]. NPJ digital medicine, 2019, 2 (1): 1-9.
[114]XING Z G, LIN J, MCCOUL D, et al. Inductive strain sensor with high repeatability and ultra-low hysteresis based on mechanical spring[J]. IEEE Sensors Journal, 2020, 20(24): 14670-14675.
[115]HOSSEINI S, HAJGHASSEM H, GHAZANI M F. A sensitive and flexible interdigitated capacitive strain gauge based on carbon nanofiber/PANI/silicone rubber nanocomposite for body motion monitoring[J]. Materials Research Express, 2022, 9(6): 065605.
[116]REN Z Y, XIE H M, JU Y. Determination of the stress and strain fields in porous structures by photoelasticity and digital image correlation techniques[J]. Polymer Testing, 2021, 102: 107315.
[117]MATHEWS J T, KHADERI S N, RAMJI M. Experimental evaluation of the strain intensity factor at the inclusion tip using digital photoelasticity[J]. Optics Lasers in Engineering, 2020, 126: 105855.
[118]MISTRY D, NIKKHOU M, RAISTRICK T, et al. Isotropic liquid crystal elastomers as exceptional photoelastic strain sensors[J]. Macromolecules, 2020, 53(10): 3709-3718.
[119]RAMAIAH J, RAJSHEKHAR G. Dynamic displacement measurement in digital holographic interferometry using eigenspace analysis [J]. Applied Optics, 2021, 60(33): 10468-10476.
[120]ANKUR V, RAJSHEKHAR G. High speed non-destructive testing method using digital holographic interferometry[C]. Proceedings of the ICOL-2019, Singapore: Springer, 2021: 517-520.
[121]TSAREVA A M, MAKAEVA R K, SAFINA D M, et al. Diagnostics of fracture of the blower impeller of gas turbine engine core by using the holographic interferometry[J]. Russian Aeronautics, 2020, 63(2): 362-365.
[122]WAI H O. Electronic speckle interferometry method for stress-strain state (SSS) analysis of aircraft structures[J]. Computational nanotechnology, 2019, 6(1): 19-22.
[123]ZHONG P, LI Z S, YANG H Z, et al. A strain distribution sensing system for bone-implant interfaces based on digital speckle pattern interferometry[J]. Sensors Actuators A: Physical, 2019, 19(2): 365.
[124]DONG C Z, LI K, JIANG Y X, et al. Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry[J]. 2018, 26 (1): 531-543.
[125]LI Z S, ZHONG P, CHEN Y, et al. Simultaneous measurement of three-dimensional deformation based on digital speckle pattern interferometry technology[J]. Optics Communications, 2021, 480(1): 126423.
[126]RI S, TSUDA H, CHANG K. Dynamic deformation measurement by the sampling Moiré method from video recording and its application to bridge engineering[J]. Experimental Techniques, 2020, 44: 313-327.
[127]RI S, SAKA M, NANBARA K, et al. Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets[J]. Experimental Mechanics, 2013, 53(9): 1635-1646.
[128]RI S, YOSHIDA T, TSUDA H, et al. Optical three-dimensional displacement measurement based on moiré methodology and its application to space structures[J]. Optics Lasers in Engineering, 2022, 148: 106752.
[129]YADI M, MORIMOTO Y, UEKIM, et al. In-plane vibration detection using sampling moiré method[J]. Journal of Physics: Photonics, 2021, 3(2): 024005.
[130]FHJIGAKI M, TOMITA D, MURATA Y. Dynamic deflection angle distribution measurement using sampling Moiré method[J]. Journal of the Japanese Society for Experimental Mechanics, 2016, 15(4): 315-319.
[131]CHEN X X, CHANG C, XIANG J N, et al. An optical crack growth sensor using the digital sampling moiré method[J]. Sensors, 2018, 18(10): 3466.
[132]WANG Q H, RI S, TSUDA H, et al. Optical full-field strain measurement method from wrapped sampling Moiré phase to minimize the influence of defects and its applications[J]. Optics Lasers in Engineering, 2018, 110: 155-162.
[133]MAENOSONN A, KOYAMA M, TANAKA Y, et al. Crystallographic selection rule for the propagation mode of microstructurally small fatigue crack in a laminated Ti-6Al-4V alloy: Roles of basal and pyramidal slips[J]. International Journal of Fatigue, 2019, 128: 105200.
[134]WANG Q H, RI S, MAENOSONO A, et al. Data of dynamic microscale strain distributions of Ti-6Al-4V alloys in dwell fatigue tests[J]. Data in brief, 2019, 25: 104338.
[135]WANG Q H, RI S, MAENOSONO A, et al. 1-second-resolved strain mapping in Ti-6Al-4V alloys during dwell fatigue in SEM by video sampling moiré[J]. Mechanics of Materials, 2019, 133: 63-70.
[136]WANG Q H, RI S, ENOMOTO T. Residual thermal strain distribution measurement of underfills in flip chip electronic packages by an inverse approach based on the sampling moiré method[J]. Experimental Mechanics, 2020, 60(5): 611-626.
[137]WANG Q H, RI S, XIA P, et al. Automatic detection of defect positions including interface dislocations and strain measurement in Ge/Si heterostructure from moiré phase processing of TEM image[J]. Optics Lasers in Engineering, 2020, 129: 106077.
[138]KODERA M, WANG Q H, RI S, et al. Characterization technique for detection of atom-size crystalline defects and strains using two-dimensional fast-Fourier-transform sampling Moiré method[J]. Japanese Journal of Applied Physics, 2018, 57(4S): 04FC04.
[139]WANG Q H, RI S, XIA P, et al. Point defect detection and strain mapping in Si single crystal by two-dimensional multiplication moiré method[J]. Nanoscale, 2021, 13(40): 16900-16908.
[140]JAYAKUMAR N, AHMAD A, MEHTA D S, et al. Sampling moiré method: a tool for sensing quadratic phase distortion and its correction for accurate quantitative phase microscopy[J]. Optics Express, 2020, 28(7): 10062-10077.
[141]ZHANG Q, XIE H M, LIU Z W, et al. Sampling moiré method and its application to determine modulus of thermal barrier coatings under scanning electron microscope[J]. Optics Lasers in Engineering, 2018, 107: 315-324.
[142]LI Y Y, ZHANG Q, XIE H M. Fabrication of heat-resistant grids and their application to deformation measurements using a sampling moiré method[J]. Measurement Science Technology, 2021, 32(10): 105008.
[143]WANG Q H, RI S. Sampling Moiré method for full-field deformation measurement: A brief review[J]. Theoretical Applied Mechanics Letters, 2022: 100327.
[144]YUE L, JALBERT J, HEUZEY M C, et al. On the strain measurement for thermoplastics with bi-axial extensometer in thermo-mechanical testing: A case of characterizing temperature and physical aging effects on polycarbonate[J]. Experimental Mechanics, 2022, 62(9): 1-9.
[145]KAN C T, WANG Y S, WANG Y Y, et al. Strain measurement on quasi-Isotropic HTS strand at 77 K by fiber bragg grating and extensometer sensor[J]. IEEE Transactions on Applied Superconductivity, 2019, 30(2): 1-5.
[146]LIM K H, CHEW C M, CHEN P C, et al. New extensometer to measure in vivo uniaxial mechanical properties of human skin[J]. Journal of biomechanics, 2008, 41(5): 931-936.
[147]LIU D M, WANG W H, PANG Z J, et al. Analysis of the Infuence of Different Plastic Packaging Materials on Product Delamination of IC Components[J]. Modern Electronic Technology, 2019, 3(1): 1-5.
[148]TAY A A O, TAN G L, LIM T B. Predicting delamination in plastic IC packages and determining suitable mold compound properties[J]. Packaging and Manufacturing Technology, 1994, 17(2): 201-208.
[149]蒋海华. 封装材料的吸湿特性及湿、热对封装器件可靠性的影响[D]. 桂林: 桂林电子科技大学, 2009.
[150]FAN X J, ZHANG G Q, DRIEL W D V, et al. Mechanism-based delamination prediction during reflow with moisture preconditioning[C]. Proceedings of the International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems. Brussels, Belgium, 2004: 329-335.
[151]FAN X J, ZHANG G Q, DRIEL W D V, et al. Interfacial delamination mechanisms during soldering reflow with moisture preconditioning[J]. IEEE Transactions on Components and Packaging Technologies, 2008, 31(2): 252-259.
[152]彩霞. 高密度电子封装可靠性研究[D]. 上海: 中国科学院研究生院(上海微系统与信息技术研究所), 2002.
[153]GUO T F, CHENG L. Thermal and vapor pressure effects on cavitation and void growth[J]. Journal of Materials Science, 2001, 36(24): 5871-5876.
[154]罗海萍, 杨道国, 李宇君. 热-机械应力和湿气引起QFN器件层间开裂分析[J]. 电子元件与材料, 2006, 25(6): 64-66+70.
[155]WU Y Q, ZHANG K S. Crack propagation in polycrystalline elastic-viscoplastic materials using cohesive zone models[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(4): 509-518.
[156]李志刚, 树学峰. 可压缩条件下超弹性电子封装材料中孔穴的增长问题[J]. 固体力学学报, 2013, 34(5): 487-492.
[157]WONG E H, PARK S. Moisture diffusion modeling – A critical review[J]. Microelectronics Reliability, 2016, 65: 318-326.
[158]KITANO M, NISHIMURA A, KAWAI S. Analysis of package cracking during reflow soldering process[J]. Microelectronics Reliability, 1989, 29(5): 90-95.
[159]ROY A, ELENA G B, GACOUGNOLLE J L, et al. Hygrothermal effects on failure mechanisms of composite/steel bonded joints[J]. ASTM Special Technical Publication, 2000: 353-371.
[160]ESLAMI M R, HETNARSKI R B, IGNACZAK J, et al. Theory of Elasticity and Thermal Stresses[M]. Boston, MA, USA, Springer, 2013.
[161]HSUEH C H, LEE S. Effects of viscous flow on residual stresses in film/substrate systems[J]. Journal of applied physics, 2002, 91(5): 2760-2765.
[162]LIU X, QIU Y Y, WEI Y, et al. A novel thermal-mechanical model and the characteristics of interfacial stress in the laminated structure for flexible electronics[J]. Journal of Physics D: Applied Physics, 2021, 55(7): 074004.
[163]李炳乾. MEMS谐振器件及其相关理论研究[D]. 西安: 西安交通大学, 2000.
[164]白英良, 雷飞, 奥顿等. 聚合物双层微悬臂梁的温度敏感特性研究[J]. 传感器与微系统, 2013, 32(8): 60-62.
[165]王高琦. 双层全瓷固定桥力学性能与结构优化[D]. 济南: 山东大学, 2015.
[166]田新鹏, 李金强, 郭章新等. 复合材料层合板在不同温度场中的热屈曲行为[J]. 太原理工大学学报, 2016, 47(2): 264-269.
[167]郭扬. 基于断裂力学理论的路面界面性能研究[D]. 大连: 大连海事大学, 2016.
[168]任大龙. GFRP板-沥青混合料界面粘结断裂力学性能研究[D]. 南京: 东南大学, 2018.
[169]马卓瑞, 李金强, 冯伟. 含粘弹性层纤维增强层合板的热屈曲及阻尼特性分析[J]. 太原理工大学学报, 2018, 49(5): 724-730.
[170]马卓瑞. 含粘弹性层纤维增强层合板的热屈曲及阻尼特性分析[D]. 太原: 太原理工大学, 2018.
[171]秦勤, 李程, 何流等. 基于非对称双悬臂梁模型优化的双金属板界面结合强度研究[J]. 金属学报, 2020, 56(12): 1617-1628.
[172]胡德义, 贺丹. 基于指数剪切变形理论的层合板湿热分析[J]. 沈阳航空航天大学学报, 2020, 37(6): 9-19.
[173]OTIABA K C, BHATTI R S, EKERE N N, et al. Numerical study on thermal impacts of different void patterns on performance of chip-scale packaged power device[J]. Microelectronics Reliability, 2012, 52(7): 1409-1419.
[174]OTIABA K C, OKEREKE M I, BHATTI R S. Numerical assessment of the effect of void morphology on thermo-mechanical performance of solder thermal interface material[J]. Applied Thermal Engineering, 2014, 64(1-2): 51-63.
[175]KITANO M, NISHIMURA A, KAWAI S, et al. Analysis of package cracking during reflow soldering process[C]. Proceedings of the 26th Annual Proceedings Reliability Physics Symposium. Monterey, CA, USA, 1988: 90-95.
[176]WONG E H, YONG C T, LIM T B. Moisture diffusion and vapour pressure modeling of IC packaging[C]. Proceedings of the 48th Electronic Components and Technology Conference. Seattle, WA, USA, 1998: 1372-1378.
[177]DOYAROGLU C, MADENCI E, OTERKUS S, et al. Peridynamic solution of wetness equation with time dependent saturated concentration in ANSYS framework[C]. Proceedings of the 67th Electronic Components and Technology Conference. Orlando, FL, USA, 2017: 1014-1019.
[178]FAN X J, LEE S W R, HAN Q. Experimental investigations and model study of moisture behaviors in polymeric materials[J]. Microelectronics Reliability, 2009, 49(8): 861-871.
[179]ZAAL J J M, MAVINKURVE A, RONGEN R, et al. Over-acceleration of corrosion mechanisms during reliability testing: A method to relate biased HAST tests and application conditions for Cu wire products[C]. Proceedings of the 16th Electronics Packaging Technology Conference. Singapore, 2014: 426-431.
[180]BUCK A L. Buck Research Cr-1a User’s Manual[M]. Boulder, CO, USA: Buck Research Instruments, 1996.
[181]WONG E H, KOH S W, LEE K H, et al. Comprehensive treatment of moisture induced failure-recent advances[J]. IEEE Transactions on electronics packaging manufactiring, 2002, 25(3): 223-230.
[182]ALPERN P, LEE K C. Moisture-induced delamination in plastic encapsulated microelectronic devices: A physics of failure approach[J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(3): 478-483.
[183]WAGNER W, KRETZSCHMAR H J. International Steam Tables. Properties of Water and Steam Based on the Industrial Formulation IAPWS-1997[M]. Boston, MA, USA: Springer, 2000.
[184]TEE T Y, SHEN N H, YAP D, et al. Comprehensive board-level solder joint reliability modeling and testing of QFN and PowerQFN packages[J]. Microelectronics Reliability, 2003, 43(8): 1329-1338.
[185]FAN X J, LIM T B. Mechanism analysis for moisture-induced failure in IC packages[C]. Proceedings of the ASME International Mechanical Engineering Congress & Exposition 11th Symposium on Mechanics of Surface Mount Assemblies, Anaheim, CA, USA, 1999: 1-12.
[186]WANG J, NIU Y L, SHAO S, et al. A comprehensive solution for modeling moisture induced delamination in electronic packaging during solder reflow[J]. Microelectronics Reliability, 2020, 112: 113791.
[187]WONG E H, RAJOO R, KOH S W, et al. The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging[J]. Journal of Electronic Packaging, 2002, 124(2): 122-126.
[188]SHI X H, QIU Y Y, JIA F, et al. A simulating method of moisture continuous diffusion under changing temperatures and analysis of moisture-induced stresses covering moisture desorption and reflow processes for the QFN[J]. Microelectronics Reliability, 2021, 119: 1-11.
[189]TIMOSHENKO S P, GOODIERWRITED J N. Theory of Elasticity. 3rd Edition[M]. New York, USA: McGraw-Hill Book Company, 1970.
[190]PETER A, LEE K C. Moisture-induced delamination in plastic encapsulated microelectronic devices: A physics of failure approach[J]. IEEE Transactions on Device and Materials Reliability, 2008, 8(3): 478-483.
[191]RAJU I S, WANG J T. Classical laminate theory models for woven fabric composites[J]. Journal of composites technology research, 1994, 16(4): 289-303.
[192]ATKIN R J, FOX N. An Introduction to the Theory of Elasticity[M]. Massachusetts, USA: Courier Corporation, 2005.
[193]BARNES J R, STEPHENSON R J, WOODBURN C N, et al. A femtojoule calorimeter using micromechanical sensors[J]. Review of Scientific Instruments, 1994, 65(12): 3793-3798.
[194]CHEN X L, LIU Y J. Finite Element Modeling and Simulation with ANSYS Workbench. 2nd Edition[M]. Boca Raton, FL, USA: CRC Press Inc., 2014.
[195]BARINK M, MAVINKURVE A A, JANSSEN J H J. Predicting non-Fickian moisture diffusion in EMCs for application in micro-electronic devices[J]. Microelectronics Reliability, 2016, 62: 45-49.
[196]RAINER D. Popcorn Cracking[M]. The ELFNET book on failure mechanisms, testing methods, and quality issues of lead-free solder interconnects. London, England: Springer, 2011.
[197]ZHANG N H, MENG W L, AIFANTIS E C. Elastic bending analysis of bilayered beams containing a gradient layer by an alternative two-variable method[J]. Composite Structures, 2011, 93(12): 3130-3139.
[198]FREUND L B. Some elementary connections between curvature and mismatch strain in compositionally graded thin films[J]. Journal of the Mechanics Physics of Solids, 1996, 44(5): 723-736.
[199]METRI V, BRIELS W J. Brownian dynamics investigation of the Boltzmann superposition principle for orthogonal superposition rheology[J]. The Journal of Chemical Physics, 2019, 150(1): 014903.
[200]杨挺青. 粘弹性力学[M]. 湖北: 华中科技大学出版社, 1990.
[201]KUPCHISHIN A I, TAIPOVA B G, VORONOVA N A, et al. Catastrophic models of materials destruction[J]. IOP Conference Series: Materials Science and Engineering, 2016: 1-5.
[202]蔡晓升, 张能辉, 刘翰林. 粘弹性-弹性层合微梁尺寸依赖的应力松弛行为[C]. 第30届全国结构工程学术会议论文集(第Ⅰ册). 北京:《工程力学》杂志社, 2021: 167-170.
[203]RENAUD F, DION J L, CHEVALLIER G, et al. A new identification method of viscoelastic behavior: Application to the generalized Maxwell model[J]. Mechanical Systems and Signal Processing, 2011, 25(3): 991-1010.
[204]DIANI J, GILORMINI P, ARRIETA J S. Direct experimental evidence of time-temperature superposition at finite strain for an amorphous polymer network[J]. Polymer, 2015, 58: 107-112.
[205]QIU Y Y, QIU X, GUO X H, et al. Thermal analysis of Si/GaAs bonding wafers and mitigation strategies of the bonding stresses[J]. Advances in Materials Science and Engineering, 2017: 1-8.
[206]SUHIR E, YI S, NICOLICS J, et al. Semiconductor film grown on a circular substrate: predictive modeling of lattice-misfit stresses[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(9): 9356-9362.
[207]SUHIR E. An approximate analysis of stresses in multilayered elastic thin films[J]. Journal of Applied Mechanics, 1988, 55(1): 143-148.
[208]MAO W G, CHEN Y Y, WANG Y J, et al. A multilayer structure shear lag model applied in the tensile fracture characteristics of supersonic plasma sprayed thermal barrier coating systems based on digital image correlation[J]. Surface and Coatings Technology, 2018, 350(25): 211-226.
[209]陈斌, 王兴妍, 黄辉等. Ⅲ-Ⅴ族半导体晶片键合热应力分析[J]. 半导体光电, 2005, 26(5): 56-59+62.
[210]刘志强, 王良臣, 于丽娟等. InP/Si键合界面热应力分析[J]. 半导体光电, 2006, 27(4): 429-433.
[211]仇寻, 郭祥虎, 王典等. Si/GaAs晶圆片键合热应力及其影响因素分析[J]. 半导体光电, 2016, 37(6): 813-817+845.
[212]PEI C, FU G C, ZHAO Y H, et al. Simplified approach for steady thermal analysis of chips with variable power based on spatial autocorrelation[J]. Applied Thermal Engineering, 2017, 120(25): 347-357.
[213]唐亮. 结合材料界面裂纹应力强度因子的研究[D]. 上海: 上海交通大学, 2006.
[214]SHI G C. Mechanics of Fracture[M]. New York, USA: Noodhoof International Publication Leydon, 1972.
[215]许金泉. 界面力学[M]. 北京: 科学出版社, 2006.9.
[216]RICE J R. Elastic fracture mechanics concepts for interfacial cracks[J]. Journal of Applied Mechanics, 1988, 55(1): 98-103.
[217]DUNDURS J. Discussion: “Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading”[J]. Journal of Applied Mechanics, 1969, 36(3): 650-652.
[218]YUUKI R, XU J Q. Boundary element analysis of dissimilar materials and interface crack[J]. Computational Mechanics, 1994, 14(2): 116-127.
[219]YUUKI R, XU J Q, MUTOH Y. Evaluation of fracture and strength of metal/ceramic bonded joints based on interfacial fracture mechanics[J]. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1994, 60: 37-45.
[220]胡互让, 吴承平. 带裂纹层合板复应力强度分析[J]. 应用数学和力学, 1996, 17(2): 115-126.
[221]YUUKI R, XU J Q. Stress based criterion for an interface crack kinking out of the interface in dissimilar materials[J]. Engineering Fracture Mechanics, 1992, 41(5): 635-644.
[222]许金泉, 姜菊生. 界面端附近裂纹的应力强度因子[J]. 上海力学, 1998, 19(3): 221-227.
中图分类号:

 O34    

馆藏号:

 56104    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式