- 无标题文档
查看论文信息

中文题名:

 分布式驱动电动车纵向控制策略研究    

姓名:

 田雪毅    

学号:

 1676960223    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081101    

学科名称:

 工学 - 控制科学与工程 - 控制理论与控制工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 控制工程    

研究方向:

 车辆纵向控制策略    

第一导师姓名:

 张菊香    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 陈琳    

完成日期:

 2021-03-20    

答辩日期:

 2021-05-23    

外文题名:

 Research on the Longitudinal Control System of Distributed Drive Electric Vehicle    

中文关键词:

 分布式驱动 ; 多模式切换控制 ; 模糊控制 ; 复合制动    

外文关键词:

 Distributed driver ; Multi-mode switching control ; Fuzzy control ; Compound brake    

中文摘要:

随着社会发展及科学技术的进步,汽车工业在世界范围内迅速发展,使人们的生活更加便捷。汽车给人们生活提供方便的同时,也产生了一系列问题,如交通事故的发生、能源的消耗和环境污染,尤其在城市问题更为突出。为解决上述问题,国家大力推进新能源和智能驾驶汽车的发展,希望通过电动汽车的发展降低对传统能源的依赖及对环境的污染;同时通过智能驾驶,降低驾驶员劳动强度,避免疲劳驾驶或天气因素导致的安全事故。

本文基于分布式驱动电动汽车平台,开展智能驾驶纵向控制策略的研究,对实现车辆纵向运动驱动及制动等执行层的控制策略进行研究,主要开展工作为:

(1)基于模糊控制不依赖精确的数学模型的特点,模拟驾驶员模型,结合车辆纵向行驶工况分析,建立了基于模糊控制的多模式切换控制策略。该模式将车辆的运行工况分为巡航工况、接近工况、跟随工况和避撞工况,每一种工况下基于模糊控制开展控制策略设计,并建立了多模式切换的控制策略,实现车辆的巡航、接近、跟踪和避撞等功能随车间距、车速、加速度变化的稳定可靠切换,保证行车安全及道路利用率。

(2)基于电动汽车纵向控制的执行系统开展方案及控制策略设计。驱动系统设计时根据车辆动力性能需求确定分布式驱动的轮毂电机参数,确定驱动过程中采用扭矩控制方案;制动系统设计时,结合分布式驱动电动汽车四个车轮均可提供电机制动力的特点,确定前后轴制动力分配采用理想制动力分配曲线,在电机制动力与摩擦制动力分配时,充分考虑电机和蓄电池特性,同时结合车辆多模式纵向控制策略的控制要求,建立适合该车型的复合制动控制策略,在车辆纵向控制中保证行车安全、舒适的前提下进一步提升能量回收率。

(3)建立基于Matlab\Simulink和Carsim的联合仿真模型,通过制动系统的效能及典型工况下的能量回收率仿真分析验证控制策略可行性。

(4)结合常见纵向行驶的巡航工况、接近前车工况、跟随工况、避撞工况及综合工况开展仿真分析,验证纵向控制和复合制动控制策略在单一和综合工况下的适应性。

研究结果表明:本文设计的纵向控制策略及其执行系统可以很好的实现车辆的纵向控制需求,且车辆的安全性、舒适性和能量回收率均满足要求。

外文摘要:

With the development of society and science, the automobile industry develops rapidly in the world, which makes people's life more convenient. While cars provide convenience for people's life, they also produce a series of problems, such as traffic accidents, energy consumption and environmental pollution, especially in cities. In order to solve the above problems, the state vigorously promotes the development of new energy and intelligent driving vehicles, hoping to reduce the dependence on traditional energy and environmental pollution through the development of electric vehicles; at the same time, through intelligent driving, reduce the labor intensity of drivers, and avoid safety accidents caused by fatigue driving or weather factors.

 

Based on the distributed drive electric vehicle platform, this paper carries out the research on the longitudinal control strategy of intelligent driving, and studies the control strategy of the implementation layer such as the longitudinal motion drive and braking of the vehicle. The main work is as follows.

 

(1)Based on the fact that fuzzy control does not rely on accurate mathematical model, a multi-mode switching control strategy based on fuzzy control is established by simulating the driver model and combining with the analysis of vehicle longitudinal driving conditions. In this mode, the vehicle operation conditions are divided into cruise condition, approach condition, follow condition and collision avoidance condition. In each condition, the control strategy is designed based on fuzzy control, and a multi-mode switching control strategy is established to realize the stable and reliable switching of vehicle cruise, approach, tracking and active collision avoidance functions with the change of vehicle spacing, speed and acceleration, so as to ensure the driving safety And road utilization.

 

(2) The drive and brake development plan and control strategy design of the executive system based on the longitudinal control of electric vehicles. In the design of the drive system, the in-wheel motor parameters of the distributed drive are determined according to the vehicle's power performance requirements, and the torque control scheme is adopted during the driving process; when the braking system is designed, combined with the characteristics that all four wheels of the distributed drive electric vehicle can provide electric power, Determine the ideal braking force distribution curve for the front and rear axle braking force distribution. When the electric mechanism power and friction braking force are distributed, fully consider the characteristics of the motor and battery, and combine the control requirements of the vehicle's multi-mode longitudinal control strategy to establish a compound system suitable for the model. The dynamic control strategy further improves the energy recovery rate under the premise of ensuring the safety and comfort of driving in the longitudinal control of the vehicle.

 

(3) A joint simulation model based on Matlab\Simulink and Carsim is established, and the feasibility of the control strategy is verified through the simulation analysis of the efficiency of the braking system and the energy recovery rate under typical working conditions.

 

(4) Carry out simulation analysis in combination with common longitudinal cruising conditions, approaching vehicle conditions, following conditions, collision avoidance conditions and comprehensive operating conditions to verify the adaptability of longitudinal control and compound braking control strategies under single and comprehensive operating conditions .

 

The results show that: the longitudinal control strategy and its implementation system designed in this paper can well meet the requirements of vehicle longitudinal control, and the vehicle safety, comfort and energy recovery rate meet the requirements.

参考文献:
[1]杜明博. 基于人类驾驶行为的无人驾驶车辆行为决策与运动规划方法研究[D] .合肥:中国科学技术大学,2016.
[2]邓学,陈平,郑宏达,等. 汽车颠覆时代无人驾驶热血而来[J] .机器人产业,2016(4):46-56.
[3]Rajesh Rajamani .车辆动力学及控制[M] .北京:机械工业出版社,2010 .11 .
[4]张振军. 纯电动汽车自适应巡航控制系统控制策略研究[D] .吉林:吉林大学,2013.
[5]宾洋. 汽车行驶车间纵向间距自适应控制系统的研究[D] .重庆:重庆大学,2002.
[6]Santhanakrishnan K. and Rajamani R. On spacing policies for highway vehicle automation [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2003, 4(4):198-204.
[7]刘文刚. 基于ITS的高速公路通行能力研究[D] .太原:中北大学,2009.
[8]李肖含. 汽车自适应巡航控制系统模糊控制策略研究[D] .北京:北京理工大学,2015.
[9]段斌. 汽车自动防撞系统的研究[D]. 武汉:湖北工业大学,2012.
[10]Yi K et al. Vehicle Tests of Longitudinal Control Algorithm for Stop and Go Cruise Control. AVEC’02 Intl. Symposium on Advanced Vehicle Control, 2002,in Hiroshima,Japan.
[11]HedrickJK,McmahonD,NarendranV,et al.Longitudinal Vehicle Controller Design for IVHS Systems[C]. AmericanControlConference.IEEE,2009:3107—3112.
[12]Tsai C.C, Hsieh S.M and Chen C.T, Fuzzy longitudinal controller design and experimentation for adaptive cruise control and stop & go [J]. JOURNAL OF INTELLIGENT & POBOTIC SYSTEMS, 2010, 59(2): 167-189.
[13]张强,曲仕茹. 车辆自适应巡航控制系统的模糊PID实现[J] . 汽车工程,2008(Vol30)No .7 .
[14]王熔熔,李朋. 基于模糊控制的汽车避撞系统建模与研究[J] . 公路与汽运,2012.
[15]Ko J W,Ko S Y,Kim I S,et al. Co-Operative Control for Regenerative Braking and Friction Braking to Increase Energy Recovery without Wheel Lock[J]. International Journal of Automotive Technology,2014,15(2):253-262.
[16]Oleksowicz S A,Burnham K J,Southgate A,et al. Regenerative Braking Strategies,Vehicle Safety and Stability Control Systems:Critical Use-Case Proposals[J]. Vehicle System Dynamics,2013,51(5):684-699.
[17]Masuda Y,Yamasoe Y,Kuki Y,et al. Development of an Electronically Controlled Brake System for Fuel-efficient Vehicles[R]. U.S:SAE Technical Paper,2016.
[18]Sakai S, Hori Y. Advanced Motion Control of Electric Vehicle with FastMinor Feedback Loops:Basic Experiments Using the 4-Wheel Motored EV “UOT Electric March II”[J]. JSAE review,2001,22(4):527-536.
[19]Kim D,Kim H. Vehicle Stability Control with Regenerative Braking and Electronic Brake Force Distribution for a Four-Wheel Drive Hybrid Electric Vehicle[J]. Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2006,220(6):683-693.
[20]龚贤武,张丽君,马建,等. 基于制动稳定性要求的电动汽车制动力分配[J]. 长安大学学报:自然科学版,2014,34(1):103-108.
[21]张建龙,张建武,袁明,等. 混合动力汽车操纵稳定性模糊控制仿真研究[J]. 系统仿真学报,2009 (20):6600-6607.
[22]国家发展和改革委员会. QC/T759—2006汽车试验用城市运转循环[S]. 北京:中国计划出版社,2006 .
[23]全国智能运输系统标准化委员会. GB/T 20608-2006 智能运输系统 自适应巡航控制系统性能要求与检测方法[S] .北京:中国计划出版社,2006 .
[24]高树健. 电动汽车再生制动控制策略设计与仿真[D]. 西安:长安大学,2013 .
[25]叶敏,郭金刚. 电动汽车再生制动及其控制技术[M]. 北京:人民交通出版社,2013:10-11.
[26]余志生. 汽车理论[M] .北京:机械工业出版社,2002:87-95.
[27]张俊智,陆欣,张鹏君等. 混合动力城市客车制动能量回收系统道路试验[J]. 机械工程学报,2009,02:25-30.
[28]庄佳泉. 电动物流车电液复合再生制动控制策略研究[D]. 南京:南京林业大学,2015.
[29]欧洲经济委员会(ECE) . 关于乘用车制动认证的统一规定[EB/OL] . (2010-12-26)[2014-12-5]. http://www.docin.com/p-111314338.html .
[30]查鸿山,宗志坚等. 电动汽车能量回馈制动仿真研究[J]. 机械科学与技术.2012,31(4): 572-577.
[31]Wang and B Zhuo. Regenerative braking strategy for hybrid electric vehicles based on regenerative torque optimization control[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2008,499-513.
[32]王保华,张建斌,罗永革. 并联混合动力客车再生制动仿真研究[J]. 汽车工程,2005,27(26): 648-651.
[33]王鹏宇.混合动力轿车再生制动系统研究[D] . 吉林:吉林大学,2008
[34]刘辉,王伟达,何娇等. 基于模糊控制的混合动力电动车再生制动系统的建模与仿真[J]. 汽车工程.2012,34(1):51-56.
[35]陈斌. 纯电动汽车再生制动研究[D]. 重庆:重庆大学,2011.
[36]李朋. 自适应巡航控制系统的建模与联合仿真[J]. 汽车工程,2012(Vol.34)No.7.
中图分类号:

 U46    

馆藏号:

 48630    

开放日期:

 2021-12-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式