- 无标题文档
查看论文信息

中文题名:

 逐日工程聚光、光电转换、发射天线系统空中承载与悬停技术研究    

姓名:

 高翔    

学号:

 20041211761    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 机械电子工程    

第一导师姓名:

 段宝岩    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-05-27    

答辩日期:

 2023-05-28    

外文题名:

 Research on Aerial Loading and Hovering Techniques for Concentrating, Photoelectric Conversion, and Transmitting Antenna System in Sun Tracking Project    

中文关键词:

 逐日工程 ; 浮空器设计 ; 矢量涵道旋翼 ; 反演控制 ; 定点悬停 ; 对日定向    

外文关键词:

 Sun Tracking Project ; Design of aerostat ; Vector culvert rotor ; Backstepping control ; Fixed-point hovering ; Sun oriented motion    

中文摘要:

浮空器是依靠自身浮力承载任务载荷并升空的空中装备,具有大载重、低成本、长续航等优点,在通信中继、能量传输、勘探侦察及货物运输等方面具有广阔应用前景。
本文针对“逐日工程” 中聚光、光电转换与发射天线系统的实验需求, 提出了一种六旋翼浮空器结构,该浮空器能够以“托举”的形式承载任务载荷, 空载浮重比可达 2.01, 具备在大气环境中定点悬停的能力, 并可以通过调整姿态角来完成对日定向。
首先, 对浮空器的总体结构方案进行了详细设计,其次针对其特殊任务需求进行了载荷方案的创新,最后完成了力学分析以及控制系统的研究。
本文主要工作内容如下:
(1) 提出了六旋翼浮空器的总体结构方案。首先结合“逐日工程”的实验需求及特殊载荷形式, 确定所设计浮空器的结构布局与载荷方案,并考虑到浮空器的强度、能量、动力及质量等多个学科模型相互耦合的关系,建立了多学科优化设计模型并给出了设计方法,提高了空载浮重比;其次基于此浮空器给出飞行原理,完成了动力推进系统的设计; 最后, 考虑到聚光镜、发射天线与气球之间的干涉问题,确定了支撑桁架的特征尺寸,对支撑桁架进行了优化设计, 并针对发射天线的波束指向调节需求,设计了三自由度并联机构, 完成其运动分析。
(2) 建立了浮空器的动力学与运动学模型。 首先建立运动坐标系,并对浮空器进行受力分析;其次, 建立了浮空器的动力学、运动学模型;最后, 对自然风场进行建模, 可更加准确地模拟出浮空器所处的大气环境。
(3) 完成了浮空器的运动控制研究及仿真验证。 首先, 将浮空器的常规运动分解为水平面与垂直面运动, 建立反演控制器, 仿真验证了浮空器具有良好的运动性能;其次, 考虑到浮空器逐日运动过程中大气环境的不确定性,将非线性干扰观测器引入至反演控制模型中,通过仿真验证了该观测器的引入能够有效抑制大气环境中的未知扰动对浮空器的影响,从而提高浮空器的定点悬停与对日定向运动性能;最后, 针对浮空器为移动目标进行供电的协同任务需求,建立领航跟随者模型, 并使用反演-滑
模控制器对其协同运动进行控制仿真, 验证了该方案的可行性。
 

外文摘要:

The aerostat is an aerial equipment that relies on its buoyancy to carry mission loads and lift up. It has the advantages such as large load, low cost, and long endurance. It has broad application prospects in fields such as communication relay, energy transmission, exploration and reconnaissance, and cargo transportation.

 

In this thesis, aiming at the experimental requirements of concentrating, photoelectric conversion, and transmitting antenna system in Sun Tracking Project, a six-rotor aerostat structure is proposed. The aerostat can carry mission loads in the form of "lifting", its no-load buoyancy-weight ratio can reach 2.01, has the ability to hover at a fixed point in the atmospheric environment, and can achieve sun oriented motion by adjusting the attitude angle. Firstly, the overall structural scheme of the aerostat is designed in detail, followed by the innovation of the load scheme for its special mission requirements, and finally, the mechanical analysis and control system research are completed.

 

The main contents of this thesis are as follows:

 

1. The overall structural scheme of the six-rotor aerostat is proposed. Firstly, based on the experimental requirements and the special load forms of Sun Tracking Project, the overall structural layout and load scheme of the aerostat are determined, and considering the coupling relationship between multidisciplinary models such as strength, energy, power, and mass, a multidisciplinary optimization design model is established and a design method is provided to increase no-load buoyancy-weight ratio. Secondly, based on the aerostat, the flight principle is provided, and the design of the power propulsion system is completed. Finally, considering the interference problem between the concentrator, transmitting antenna, and balloons, the characteristic dimension of the support truss is determined, and the support truss is optimized. A three degree of freedom parallel mechanism is designed to meet the beam pointing adjustment requirement of the transmitting antenna, and its motion analysis is completed.

 

2. The dynamic and kinematic models of the aerostat are established. Firstly, the motion coordinate systems and force analysis of the aerostat are established. Secondly, the dynamic and kinematic models of the aerostat are established. Finally, the natural wind field is modeled to more accurately simulate the atmospheric environment where the aerostat is located.

 

3. The motion control research and simulation verification of the aerostat are completed. Firstly, the conventional motion of the aerostat is decomposed into horizontal and vertical motion, and the backstepping controller is established. Simulation verifies that the aerostat has good motion performance. Secondly, considering the uncertainty of the atmospheric environment during the sun tracking movement of the aerostat, a nonlinear disturbance observer is introduced into the backstepping control model. Simulation results show that the introduction of this observer can effectively suppress the influence of unknown disturbances in the atmospheric environment on the aerostat, thereby improving its performance in fixed-point hovering and sun oriented motion. Finally, aiming at the cooperative task requirement of the mobile power supply of the aerostat, the Leader-Follower model is established, and backstepping and sliding mode controllers are introduced in the kinematic and dynamic control stages, respectively. The results verify the feasibility of the scheme.

参考文献:
[1] 段宝岩. 空间太阳能发电卫星的几个理论与关键技术问题[J]. 中国科学(技术科学),2018,48(11):1207-1218.
[2] Arya M, Lee N, Pellegrino S. Ultralight Structures for Space Solar Power Satellites[C]. 3rd AIAA Spacecraft Structures Conference. USA: AIAA, 2016.
[3] Meng X, Liu C, Bai X, et al. Optical study of a cocktail structural Space-based Solar Power Station[J]. Solar Energy, 2019, 194: 156-166.
[4] Ji X, Duan B, Zhang Y, et al. Effect of operational condition of rotational subsystem on attitude control for space solar power station[J]. Chinese Journal of Aeronautics, 2021, 34(5): 289-297.
[5] 李勋. 空间太阳能电站大型微波阵列发射天线若干问题研究[D]. 陕西:西安电子科技大学,2017.
[6] 杨阳,段宝岩,黄进,等. OMEGA型空间太阳能电站聚光系统设计[J]. 中国空间科学技术,2014(5):18-23.
[7] 杨阳. OMEGA型空间太阳能电站聚光镜与光电转换系统设计[D]. 陕西:西安电子科技大学,2017.
[8] Yang Y, Zhang Y, Duan B, et al. A novel design project for space solar power station (SSPS-OMEGA)[J]. Acta Astronautica, 2016, 121(Apr.-May):51-58.
[9] 纪祥飞. 欧米伽空间太阳能电站多柔体动力学分析、协同与综合设计研究[D].陕西:西安电子科技大学,2022.
[10] 侯欣宾. 不同空间太阳能电站概念方案的比较研究[J]. 太阳能学报,2012, (33):63-69.
[11] 田莉莉,方贤德.NASA高空气球的研究及其进展[J]. 航天返回与遥感,2012,33(01):81-87.
[12] Katikala S. Google project loon[J]. InSight: Rivier Academic Journal, 2014, 10(2): 1-6.
[13] Burr J. The feasibility of Google’s project Loon[J]. Australian National University (ANU) College of Engineering, Tech. report U, 2017, 5350804: 2015.
[14] Zhang D, Luo H, Cui Y, et al. Tandem, long-duration, ultra-high-altitude tethered balloon and its system characteristics[J]. Advances in Space Research, 2020, 66(10): 2446-2465.
[15] 探秘浮空艇——从“极目一号”说起[N]. 北京科技报,2023-02-06(007).
[16] 张宇. 平流层浮空器及螺旋桨气动特性研究[D]. 上海:上海交通大学,2020.
[17] Dolce J L, Collozza A. High-altitude, long-endurance airships for coastal surveillance[R]. 2005.
[18] Oliveira F A, Melo F C L, Devezas T C. High-altitude platforms—Present situation and technology trends[J]. Journal of Aerospace Technology and Management, 2016, 8: 249-262.
[19] Pheh Y H, Kyi Hla Win S, Foong S. Spherical Indoor Coandă Effect Drone (SpICED): A Spherical Blimp sUAS for Safe Indoor Use[J]. Drones, 2022, 6(9): 260.
[20] Graham M P. Design and System Identification of a Novel Hybrid-lift UAV[D]. Pomona: California State Polytechnic University, 2021.
[21] Davi, Antonio, Dos, et al. Flight control of a hexa-rotor airship: Uncertainty quantification for a range of temperature and pressure conditions.[J]. Isa Transactions, 2019, 268-279.
[22] Khoshnoud F, Esat I I, de Silva C W, et al. Self-powered solar aerial vehicles: Towards infinite endurance UAVs[J]. Unmanned Systems, 2020, 8(02): 95-117.
[23] 刘芬. 多螺旋桨组合浮空器抗饱和控制策略研究[D]. 上海:上海交通大学, 2016.
[24] 张国昌. 多螺旋桨组合浮空器故障诊断和多模型容错控制器设计[D]. 上海:上海交通大学,2019.
[25] 陈宇. 复合动力无人飞艇的设计与研究[D]. 江西:南昌航空大学,2017.
[26] 刘诗鸾. 旋翼+气囊复合动力无人机旋翼系统设计分析[D]. 江西:南昌航空大学, 2014.
[27] 陈兵武. 平流层飞艇飞行控制若干问题研究[D].福建:厦门大学,2018.
[28] 高明. 近空间飞艇飞行运动建模与控制研究[D]. 江苏:南京航空航天大学,2008.
[29] 王鑫. 平流层飞艇的定点悬停制导方法研究[D].上海:上海交通大学,2018.
[30] Joshi H, Sinha N K. Adaptive fault tolerant control design for stratospheric airship with actuator faults[J]. IFAC, 2022, 55(1): 819-825.
[31] 王明建, 黄新生. 平流层飞艇平台的发展及关键技术分析[J]. 兵工自动化, 2007, 26(008):58-60.
[32] Le R, Wang X, Duan D, et al. Attitude control strategy of airship based on active disturbance rejection controller[J]. Aerospace Systems, 2021, 4: 7-18.
[33] Song S H, Choi H R. A Novel Tandem-type Soft Unmanned Aerial Vehicle: Mechanism Design, Performance Validation and Implementation[C]. 18th International Conference on Ubiquitous Robots (UR). Korea :IEEE, 2021.
[34] Rooz N, Johnson E. Design and modelling of an airship station holding controller for low cost satellite operations[C]. AIAA guidance, navigation, and control conference and exhibit. USA: AIAA, 2005.
[35] Manikandan M, Pant R S. Research and advancements in hybrid airships—A review[J]. Progress in Aerospace Sciences, 2021, 127: 100741.
[36] Peddiraju P, Liesk T, Nahon M. Dynamics modeling for an unmanned, unstable, fin-less airship[C].18th AIAA lighter-than-air systems technology conference. USA: AIAA, 2009.
[37] Pinto E, Barata J. High Maneuverability Lenticular Airship[C]. Doctoral Conference on Computing, Electrical and Industrial Systems. Berlin: Springer, 2012.
[38] Battipede M, Gili P, Lando M. Control allocation system for an innovative remotely-piloted airship[C]. AIAA atmospheric flight mechanics conference and exhibit. USA: AIAA, 2004.
[39] Surace C, Roy R, Civera M, et al. Design of a prototype unmanned lighter-than-air platform for remote sensing: structural design and optimization[C]. Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai: ICAS, 2021.
[40] 王东旭. OMEGA-SSPS聚光器球面网格构建及结构设计分析[D]. 陕西:西安电子科技大学, 2017.
[41] 杨燕初, 王生, 顾逸东,等. 基于遗传算法的临近空间飞艇多学科优化设计[J]. 计算机仿真, 2012, 29(4):6.
[42] Shi Y I N, Ming Z H U, Liang H. Multi-disciplinary design optimization with variable complexity modeling for a stratosphere airship[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1244-1255.
[43] Alam M I, Pant R S. Multi-objective multidisciplinary design analyses and optimization of high altitude airships[J]. Aerospace science and technology, 2018, 78: 248-259.
[44] 赵新路. 平流层飞艇总体设计优化方法研究[D]. 湖南:国防科学技术大学,2016.
[45] 祝榕辰,王生,姜鲁华.超压气球球体设计与仿真分析[J].计算机仿真,2011,28(12):32-37.
[46] 黄迪,赵海涛,邱野,等. 平流层飞艇蒙皮强度建模与仿真研究[J]. 计算机仿真, 2013, 30(1):4.
[47] 温余彬. 基于预测理论的浮空器定点悬停控制方法研究[D]. 上海:上海交通大学,2019.
[48] 国家基本建设委员会编. 工业与民用建筑结构荷载规范[M]. 北京:建筑工业出版社, 1974.
[49] 向涛玲. 西安地区大气水汽通量的观测与分析[D].陕西:西安理工大学,2021.
[50] 李海. 涵道共轴双旋翼无人机总体设计及气动特性研究[D]. 吉林:中国科学院大学,2021.
[51] 王仁义. 基于增材制造的涵道和螺旋桨轻量化设计[D]. 甘肃:兰州交通大学,2022.
[52] 丁凯. 考虑损伤的飞艇蒙皮及骨架材料力学性能研究[D].上海:上海交通大学,2020.
[53] 张硕. 共轴式水空双动力跨介质无人机结构设计与动力性能研究[D]. 陕西:西安电子科技大学,2021.
[54] 高翔,张烁,张贝贝,等.基于ANSYS的浮空器组阵结构屈曲分析及优化设计[J].电子机械工程,2022,38(02):19-22.
[55] 陈政. 飞艇索膜结构的变形分析与优化设计[D].上海:上海交通大学,2020.
[56] 谢哲东,贾雨璇,邵琦,等. 微型3-PSP并联机构的工作空间及运动学分析[J]. 机械强度,2018,40(4):915-922.
[57] Di W, Tong X, Li Z. Tracking Control of the Six-rotor UAV with Input Dead-zone and Saturation[J]. IAENG International Journal of Applied Mathematics, 2022, 52(4): 1-7.
[58] 杨翼. 四旋翼无人机鲁棒抗扰控制技术研究[D]. 江苏:南京航空航天大学,2017.
[59] 李家宁. 平流层飞艇定点控制技术研究[D]. 江苏:南京航空航天大学, 2009.
[60] 马烨, 单雪雄. 数值计算复杂外形物体附加质量的新方法[J]. 计算机仿真, 2007, 24(5):5.
[61] 欧阳晋. 空中无人飞艇的建模与控制方法研究[D]. 上海:上海交通大学, 2003.
[62] 王晓亮. 平流层对地观测平台非线性气动力及其运动的研究[D]. 上海:上海交通大学, 2006.
[63] 胡帅. 四旋翼无人机轨迹跟踪控制方法研究[D]. 河北:燕山大学,2019.
[64] Mester G. Backstepping control for hexa-rotor microcopter[J]. Acta Technica Corviniensis-Bulletin of Engineering, 2015, 8(3): 121.
[65] 张家实. 风场中平流层飞艇轨迹控制方法[D]. 湖南:国防科学技术大学,2017.
[66] Zhou L, Zhang J, She H, et al. Quadrotor UAV flight control via a novel saturation integral backstepping controller[J]. Automatika, 2019, 60(2): 193-206.
[67] 朱奕航. 四旋翼无人机路径规划及跟踪控制技术[D]. 江苏:南京航空航天大学.2020.
[68] 李前国, 姜长生, 张春雨. 基于干扰观测器的导弹自动驾驶仪的反演设计[J]. 电光与控制, 2007, 14(5):6.
[69] 秦靖淳. 跨介质多旋翼潜空两栖航行器运动控制研究[D]. 吉林:吉林大学, 2020.
[70] 武建国, 刘杰, 陈凯. 时变干扰下AUV三维轨迹跟踪反演滑模控制[J]. 舰船科学技术, 2022(007):044.
[71] 章俊涛. 塔式定日镜追日跟踪控制与聚光策略研究[D].浙江:中国计量大学,2020.
[72] Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80: 8091-8126.
[73] 丁磊, 郭戈. 一种船队编队控制的backstepping方法[J]. 控制与决策, 2012, 27(2):299-303.
[74] Dehghani M A, Menhaj M B. Communication free leader–follower formation control of unmanned aircraft systems[J]. Robotics and Autonomous Systems, 2016, 80: 69-75.
[75] 阴枭雄. 四旋翼的协调编队飞行控制[D]. 黑龙江:哈尔滨工业大学,2016.
[76] 杨震, 王岩, 刘志林. 一种欠驱动船舶编队滑模鲁棒控制方法[J]. 电机与控制学报, 2014, 18(11):8.
[77] 于美妍,杨洪勇,孙玉娇.基于Backstepping的三轮机器人编队控制[J].复杂系统与复杂性科学,2021,18(03):28-34.
[78] 顾维博. 领导-跟随结构下的多无人机协同编队控制[D]. 北京:北京化工大学,2021.
中图分类号:

 V27    

馆藏号:

 56605    

开放日期:

 2023-12-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式