- 无标题文档
查看论文信息

中文题名:

 南海外海鸢乌贼可捕量分析与资源评估    

姓名:

 周茜涵    

学号:

 18071212231    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位:

 应用统计硕士    

学校:

 西安电子科技大学    

院系:

 数学与统计学院    

专业:

 应用统计    

研究方向:

 资源评估    

第一导师姓名:

 周杰    

第一导师单位:

  西安电子科技大学    

完成日期:

 2021-04-15    

答辩日期:

 2021-05-24    

外文题名:

 Catchable Analysis and Resource Assessment of Sthenoteuthis Oualaniensis in the Overseas South China Sea    

中文关键词:

 鸢乌贼 ; CPUE ; 资源评估 ; 灰色模型 ; 剩余产量模型    

外文关键词:

 Sthenoteuthis oualaniensis ; CPUE ; Resource Assessment ; Grey Model ; Residual Yield Model    

中文摘要:

南海既是我国南部最大的陆缘海,也是唯一的热带海洋,海域面积约356万平方公里,资源种类繁多,生物多样性丰富,其中鱼类资源超过25,000种,年捕捞量可达700万t. 然而近年来,南海近海过度捕捞现象严重,渔业资源逐渐衰退. 为有效遏制该现象,响应国家开展限额捕捞制度的政策需求,对海洋鱼类资源进行评估管理已成为渔业资源领域研究的重中之重. 鸢乌贼是一种大洋头足类,在南海外海资源储量丰富,通过北斗信息采集系统估算南海鸢乌贼资源量达到204.94万t,可捕量达99.40万t,具有巨大的开发潜力. 为保证南海鸢乌贼资源长久可持续发展,科学开展南海鸢乌贼资源评估与可捕量分析至关重要. 本文的研究海域8°N~12°N,108°E~116°E,时间跨度为2013-2019年,主要研究结果如下:

(1)本文使用2013-2019年南海外海鸢乌贼生产数据,首先采用广义可加模型对鸢乌贼的单位捕捞努力量渔获量(Catch Per Unit Effort, CPUE)进行标准化处理,对鸢乌贼CPUE与时空间因子(月份、纬度和经度)、海洋环境因子(海表面温度、海表面叶绿素a浓度、海表面风速和海表面高度)的关系进行分析讨论. 结果表明,鸢乌贼CPUE集中分布在海表面叶绿素a浓度0.09~0.13 mg·m-3,海表面温度27~29 ℃,海表面风速4.5~7. 0 m·s-1,海表面高度0.6~0.75m的范围内.

(2)本文通过数值分析中Simpson公式和Fourier级数对普通灰色模型做背景值改造及残差做修正,建立优化灰色GM(1,N)模型,以提高南海鸢乌贼CPUE的预测精度. 结果表明,对鸢乌贼CPUE的预测中,优化灰色GM(1,N)模型将平均相对误差由7.78%降低至2.54%;在对2019年鸢乌贼CPUE预测中,优化灰色GM(1,N)模型将相对误差由4.79%降至1.87%. 这为准确预测鸢乌贼资源相对丰度提供了一个新思路.

(3)本文以Schaefer剩余产量模型作为资源评估的主要模型,首先结合贝叶斯方法,分均匀分布方案和正态分布方案对南海鸢乌贼资源量进行评估;其次以收获率为指标,建立南海鸢乌贼管理指标体系,并讨论了相应的管理策略. 结果表明在两种方案下,2013-2019年南海鸢乌贼资源处于可持续发展状态,不存在过度捕捞的现象. 此时均匀分布方案下,最大的可持续产量为47.497万t,资源量为93.755万t;在正态分布方案下,最大可持续产量为41.059万t,资源量为87.499万t. 通过进行管理策略风险分析发现,将收获率维持在0.4的水平下,管理期结束时将取得种群资源量与捕捞量间的最佳平衡. 此时均匀分布方案下,捕捞量达到43.936万t;在正态分布方案下,捕捞量达到35.833万t. 且均不会出现过度捕捞、资源崩溃的情况.

外文摘要:

The South China Sea is not only the largest land-margin sea in southern China, but also the only tropical sea. The sea area is about 3.56 million square kilometers, with a wide variety of resources and rich biodiversity. Among them, there are more than 25,000 fish resources and an annual catch of up to 7 million tons. However, in recent years, the phenomenon of overfishing in the coastal waters of the South China Sea has been serious, and fishery resources have gradually declined. In order to effectively curb this phenomenon, in response to the country’s policy needs to implement a fishing quota system, the evaluation and management of marine fish resources has become the focus of research in the field of fishery resources. Sthenoteuthis Oualaniensis is a kind of oceanic cephalopod. It has abundant resources in the South China Sea. According to the Beidou information collection system, the resource of Squid in the South China Sea is estimated to reach 2,049,400 tons, with a catchable amount of 994,000 tons, which has huge development potential. In order to ensure the long-term sustainable development of the Squid resources in the South China Sea, scientific evaluation of the resources of Squid Squid in the South China Sea and the analysis of its catchable capacity are important. The research area in this paper is 8°N~12°N,108°E~116°E, and the time span For 2013-2019, the main research results are as follows:

(1) This article uses the production data of Squid from South China Sea from 2013 to 2019. First, the generalized additive model is used to standardize the catch per unit effort (CPUE) of Squid. The relationship between CPUE and time and space factors (month, latitude and longitude), marine environmental factors (sea surface temperature, sea surface chlorophyll a concentration, sea surface wind speed and sea surface height) is analyzed and discussed. The sea surface chlorophyll a concentration is 0.09~0.13 mg·m-3, the sea surface temperature is 27~29℃, the sea surface wind speed is 4.5~7.0 m·s-1, and the sea surface height is within the range of 0.6~0.75m.

(2) This paper uses the Simpson formula and Fourier series in the numerical analysis to modify the background value of the ordinary gray model and correct the residuals, and establish an optimized gray GM(1,N) model to improve the prediction accuracy of the CPUE of the southern sea squid. Results. It shows that in the prediction of the CPUE of the squid, the optimized gray GM(1,N) model reduces the average relative error from 7.78% to 2.54%; in the prediction of the CPUE of the squid in 2019, the gray GM(1,N) model is optimized The relative error is reduced from 4.79% to 1.87%. This provides a new idea for accurately predicting the relative abundance of the squid resource.

(3) This paper uses the Schaefer residual yield model as the main resource assessment model. First, combined with Bayesian methods, the resources of the Squid Squid in the South China Sea are evaluated by the uniform distribution scheme and the normal distribution scheme; secondly, the harvest rate is used as an indicator to establish the South China Sea The management index system of Squid Squid and corresponding management strategies were discussed. The results show that under the two scenarios, Squid resources in the South China Sea are in a sustainable development state from 2013 to 2019, and there is no phenomenon of overfishing. At this time, under the even distribution plan, The maximum sustainable output is 474,700 tons, and the resource amount is 937,550 tons; under the normal distribution scheme, the maximum sustainable output is 410,590 tons, and the resource amount is 874,900 tons. Through the risk analysis of the management strategy, it is found that the harvest will be harvested. The rate is maintained at 0.4. At the end of the management period, the best balance between the stock resources and the catch will be achieved. At this time, under the uniform distribution plan, the catch will reach 439,360 tons; under the normal distribution plan, the catch will reach 358,300 tons, and there will be no overfishing or resource collapse.

参考文献:
[1] 何国民,曾嘉 ,梁小芸. 牧场化——现代海洋渔业的方向[J]. 渔业现代化,2003(05):4-6
[2] 闫海,刘若冰. 我国渔业限额捕捞的制度设计[J]. 中国水产,2013(04):19-21.
[3] 顾玉姣. 浙江省实施限额捕捞管理面临的若干问题及对策探讨[D]. 浙江:浙江海洋大学, 2018.
[4] 王艳君,叶振江,尤凯,等. 略论渔业资源学的数学化趋势[J]. 海洋湖沼通报,2001(04):75-80.
[5] RICHARDS, JON T S, LAURA J. Use and abuse of fishery models[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1):10-17.
[6] 范江涛,冯雪,邱永松,等. 南海鸢乌贼生物学研究进展[J]. 广东农业科学,2013,40(23):122-128.
[7] 陈新军,刘必林,王尧耕. 世界头足类[M] .北京:海洋出版社,2009:342-398.
[8] 张鹏,杨吝,张旭丰,等. 南海金枪鱼和鸢乌贼资源开发现状及前景[J]. 南方水产, 2010, 6(1): 68-74.
[9] ZHANG Y. Fisheries acoustic studies on the purple back flying squidre-source in the South China Sea[D]. Taipei: Institute of Oceanography,NTU. 2005.
[10] 冯波,颜云榕,张宇美,等. 南海鸢乌贼(Sthenoteuthis Oualaniensis)资源评估的新方法[J]. 渔业科学进展,2014,35(04):1-6.
[11] 陈新军,刘必林,王尧耕. 世界头足类[M]. 北京:海洋出版社,2009:342-398.
[12] 张俊,陈作志,陈国宝,等. 南海鸢乌贼水声学测量和评估相关技术研究[J]. 南方水产科学,2014,10(06):1-11.
[13] ELSEVIER. Ocean and Coastal Management[J]. Geojournal, 1995, 37(4):569-570
[14] GISLI P, HELGASON A . Figuring fish and measuring men: the individual transferable quota system in the Icelandic cod fishery[J]. Ocean & Coastal Management, 1995, 28(1-3):117-146.
[15] 王芸. 我国海洋渔业捕捞配额制度研究[D]. 山东:中国海洋大学,2012.
[16] SCOTT A . The Fishery: The Objective of Sole Ownership[J]. Journal of Political Economy, 1955, 63(2):116-116.
[17] 陈作志,袁蔚文,张俊,等. 基于分期的实际种群分析法研究[J]. 中国水产科学, 2014, 21(05): 980-987.
[18] VICTOR M A, Canales C M . Total allowable catch for managing squat lobster fishery using stochastic nonlinear programming[J]. Computers & Operations Research, 2006, 33(8):2113-2124.
[19] MACCALL A D. Depletion-corrected average catch: a simple formula for estimating sustainable yields in data-poor situations[J]. Ices Journal of Marine Science, 2009, 66(10): 2267-2271.
[20] DICK E J , MACCALL A D. Depletion-Based Stock Reduction Analysis: A catch-based method for determining sustainable yields for data-poor fish stocks[J]. Fisheries Research, 2011, 110(2): 331-341.
[21] MARTELL S , FROESE R. A simple method for estimating MSY from catch and resilience[J]. Fish and Fisheries, 2013,14(4): 504-514.
[22] IOTC. Stock Assessment Of Blue Shark(Prionace Glauca)in the Indian Ocean[R]. IOTC, 2015, WPEB1149.
[23] THORPE R B. What is multispecies MSY? A worked example from the North Sea[J]. Journal of Fish Biology, 2019.
[24] 开展海洋限额捕捞试点推动渔业资源总量控制——五省海洋限额捕捞试点工作情况介绍[J]. 中国水产,2018(09):2-4.
[25] 林金錶. 南海北部大陆架外海区底拖网鱼类资源现存量及可捕量的探讨[J]. 海洋通报,1983(05):58-68.
[26] 官文江,田思泉,朱江峰,等. 渔业资源评估模型的研究现状与展望[J].中国水产科学, 2013,20(05):1112-1120.
[27] 李纲,陈新军. 基于贝叶斯方法的东、黄海鲐资源评估及管理策略风险分析[J]. 水产学报, 2010, 34(005):740-750.
[28] 耿喆,朱江峰. 运用数据缺乏方法估算印度洋大青鲨可持续渔获量[J]. 中国水产科学, 2017, 24(005):1099-1106.
[29] 耿喆,朱江峰. 应用Catch-MSY模型评估印度洋蓝枪鱼资源[J]. 海洋学报, 2019, 41(008):26-35.
[30] 曹杰,陈新军,田思泉,等. 基于世代分析法的西北太平洋柔鱼冬春生西部群体资源评估[J]. 中国海洋大学学报(自然科学版), 2010. 40(3): 27-42.
[31] 周永东,徐汉祥. 东海区鲳鱼、小黄鱼资源量及其持续渔获量的估算[J]. 浙江海洋学院学报(自然科学版), 2013. 32(1):1-5.
[32] 倪海儿,周瑞娟. 舟山渔场渔业资源可持续利用水平的灰色评价与预测[J]. 海洋与湖沼, 2009, 40(3):319-324.
[33] HASTIE T,TIBSHIRANI R. Generalized Additive Models[M]. London:Chapman and Hall,1990.
[34] HOWELL E A, KOBAYASHI D R. El Niño effects in the palmyra atoll region: oceanographic changes and bigeye tuna (Thunnus obesus) catch rate variability[J]. Fisheries Oceanography, 2006, 15(6): 477-489.
[35] IMAI C,SAKAI H, KATSURA K,et al. Growth model for the endangered cyprinid fish Tribolodon nakamurai based on otolith analyses[J]. Fisheries Science,2002,68(4):843-848.
[36] 王言丰,陈新军,陈芃,等. 基于灰色系统西南大西洋阿根廷滑柔鱼资源丰度预测模型的构建[J]. 海洋学报,2019,41(4):64-73.
[37] 余胜威. MATLAB优化算法案例分析与应用[M]. 北京:清华大学出版社,2004:46-55
[38] 陈新军. 灰色系统理论在渔业科学中的应用[M]. 北京:中国农业出版社,2003:1-32
[39] 方舟,陈洋洋,陈新军,等. 基于不同环境因子的中西太平洋鲣鱼资源丰度灰色预测模型构建[J]. 海洋学研究,2018,36(4):60-67.
[40] 高雪,陈新军,余为. 基于灰色系统的西北太平洋柔鱼冬春生群资源丰度预测模型[J]. 海洋学报,2017,39(6):55-61.
[41] MCALLISTER M K, KIRKWOOD G P. Bayesian stock assessment: a review and example application using the logistic model[J]. ICES Journal Marine Science, 1998, 55(6):1031 -1060.
[42] 童玉和,陈新军,田思泉,等. 渔业管理中生物学参考点的理论及其应用[J]. 水产学报, 2010,34(07):1040-1050.
[43] 石永闯,朱清澄,黄硕琳,等. 基于贝叶斯Schaefer模型的西北太平洋秋刀鱼资源评估和管理[J]. 渔业科学进展,2019,40(05):1-10.
[44] 耿喆,朱江峰,夏萌,等. 数据缺乏条件下的渔业资源评估方法研究进展[J]. 海洋湖沼通报,2018(5):130-137.
[45] 陆化杰,陈新军,李纲,等. 基于贝叶斯Schaefer模型的阿根廷滑柔鱼资源评估与管理[J]. 应用生态学报,2013,24(07):2007-2014.
[46] 江淼. 南海鸢乌贼资源现状及发展对策研究[D]. 天津:天津农学院,2018.
[47] 邓聚龙. 灰色系统基本方法[M]. 武汉:华中理工大学出版社,1987:20-60.
[48] 成枢,周龙飞,高秀明. 基于灰色关联GM(1,N)-Markov修正模型的应用[J]. 勘察科学技术, 2019(3):43-48.
[49] 李庆扬,王能超,易大义. 数值分析[M]. 北京:清华大学出版社,2008:32-39
[50] 姜汝翰. 基于灰色模型的青岛港集装箱吞吐量预测研究[D]. 大连:大连海事大学,2019.
[51] DENG Z, KE Y, GONG H, et al. Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model[J]. GIScience & Remote Sensing. 2017, 54(6):797-818.
[52] 郭雪峰,黄健元,王欢. 改进的灰色模型在流动人口预测中的应用[J]. 统计与决策, 2018, 34(08):76-79
[53] 蒲晓妮,赵睿,王江荣. 基于Fourier级数残差修正的灰色Verhulst模型及应用[J]. 自动化与仪器仪表,2019(8):98-101
[54] 徐红云,崔雪森,周为峰,等. 基于海洋遥感的南海外海鸢乌贼最适栖息环境分析[J]. 生态学杂志,2016,35(11):3080-3085.
[55] 晏磊,张鹏,杨炳忠,等. 南海鸢乌贼产量与表温及水温垂直结构的关系[J]. 中国水产科学,2016,23(2):469-477.
[56] 招春旭. 南海鸢乌贼渔场时空分布及其预报模型构建[D]. 广东:广东海洋大学,2017.
[57] 余景,胡启伟,李纯厚,等. 西沙—中沙海域春季鸢乌贼资源与海洋环境的关系[J]. 海洋学报,2017,39(6):62-73.
[58] 谢恩阁,周艳波,冯菲,等. 中国南海外海鸢乌贼灯光罩网渔业CPUE标准化研究[J]. 大连海洋大学学报,2020,35(3):439-446
[59] 范江涛,张俊,冯雪,等. 基于地统计学的南沙海域鸢乌贼渔场分析[J]. 生态学杂志, 2017, 36(2):442-446.
[60] YINGY P, CHEN Y, LIN L S, et al. Risks of ignoring fish population spatial structure in fisheries management[J]. Journal Canadien Des Sciences Halieutiques Et Aquatiques, 2011, 68(12):2101-2120.
[61] 陈新军,曹杰,刘必林,等. 基于贝叶斯Schaefer模型的西北太平洋柔鱼资源评估与管理[J]. 水产学报,2011,35(10):1572-1581.
[62] 石永闯. 西北太平洋秋刀鱼(Cololabis saira)资源评估研究[D]. 上海:上海海洋大学,2020.
[63] 李娜,陈新军,金岳. 基于复合种群的阿根廷滑柔鱼资源评估和管理策略评价[J]. 上海海洋大学学报,2019,28(03):471-482.
[64] 常永波. 几种人工神经网络模型在智利竹筴鱼渔场渔情预报中的比较研究[D]. 上海:上海海洋大学,2016:7-15.
[65] SOYKAN C U, EGUCHI T, KOHIN S, et al. Prediction of fishing effort distributions using boosted regression trees[J]. Ecological Applications, 2014, 24(1):71-83.
[66] HIROSHI S. Application of support vector regression to CPUE analysis for southern bluef in tuna Thunnus maccoyii , and its comparison with conventional methods[J]. Fisheries Science. 2014(5) :879-886.
中图分类号:

 S93    

馆藏号:

 49964    

开放日期:

 2021-12-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式