- 无标题文档
查看论文信息

题名:

  末制导雷达抗固定极化干扰和变极化干扰方法研究    

作者:

 郎思呈    

学号:

 20021210959    

保密级别:

 公开    

语种:

 chi    

学科代码:

 081002    

学科:

 工学 - 信息与通信工程 - 信号与信息处理    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 信息与通信工程    

研究方向:

 信号与信息处理    

导师姓名:

 陈伯孝    导师信息

导师单位:

  西安电子科技大学    

完成日期:

 2023-05-28    

答辩日期:

 2023-05-29    

外文题名:

 Research on the Method of Anti Fixed Polarization Jamming and Variable Polarization Jamming for Terminal Guidance Radar    

关键词:

 极化 ; 抗干扰 ; 极化特征提取 ; 识别 ; 变极化干扰 ; 末制导雷达    

外文关键词:

 Polarization ; Target Identification ; Polarized Feature Extraction ; Anti Jamming ; Variable Polarization Jamming ; Terminal Guidance Radar    

摘要:

随着干扰机和无源干扰相关硬件技术的更新,干扰机和无源散射体产生的干扰回 波信号与目标回波信号难以分辨,传统的利用时域,空域,频域抗干扰技术已难以对 抗日益完善的干扰技术,利用极化域信息对抗干扰成为了新的焦点领域。本文针对末 制导雷达极化抗干扰问题,对不同的极化干扰利用不同的极化抗干扰手段进行对抗, 对于新型变极化压制式干扰,分析其极化特性,根据干扰和目标的极化特性差异提出 一种基于极化滤波器输出的极化识别量算法。

本文在前人工作的基础上,结合科研项目,从若干个方面研究末制导雷达中几种 固定极化干扰和常见变极化干扰的抗干扰方法,针对新型变极化压制式干扰分析了干 扰的极化特性,并根据极化特性设计了对抗算法。具体工作内容如下:

1、极化基础理论研究。本文首先对完全极化电磁波以及部分极化电磁波的表征 方法以及目标极化散射矩阵表征方法进行介绍,总结完全极化电磁波之间的转换关系。 研究现阶段的几种雷达极化测量体制,分析对比各雷达极化测量体制之间的优缺点。

2、极化滤波器技术。极化滤波技术主要用于抑制极化压制式干扰,首先推导极 化参数估计算法,基于极化参数估计算法,介绍单凹口极化滤波器技术,多凹口极化 滤波器技术以及跟踪式自适应极化滤波器技术。通过 Matlab 仿真验证极化参数估计 的准确性。仿真分析在极化压制式干扰条件下的单凹口极化滤波器性能。在脉内极化 调制变极化压制式干扰环境下分析自适应极化滤波器的性能。

3、极化特征提取识别技术。极化特征提取识别技术主要应用于欺骗式干扰环境 下的目标识别,根据欺骗式干扰种类的不同分为两个研究方向:一是有源欺骗式干扰 环境下的目标识别,仿真分析有源拖曳式干扰和密集变极化欺骗式假目标干扰环境下 的目标识别;二是无源干扰环境下的目标识别,通过实测数据分析电线塔和电力线的 分类识别问题和角反射器干扰环境下的目标舰船识别问题。

4、抗变极化压制式干扰及新型变极化压制式干扰技术。首先针对常见的变极化 干扰及其对抗方法进行仿真分析。然后针对新型变极化压制式干扰,通过实测数据分 析新型变极化压制式干扰的极化特性以及利用传统极化抗干扰手段的抗干扰结果,由 于传统抗干扰手段难以对抗新型变极化压制式干扰,本文根据新型变极化压制式干扰 极化特性提出一种基于极化滤波器输出的极化识别量算法,最后通过仿真实验与传统 对抗方法和近期发表的几种方法进行性能对比分析。仿真验证方法的有效性。

外摘要要:

With the update of hardware technology related to jammers and passive jamming, the jamming echo signals generated by jammers and passive scatterers are more and more similar to the target echo signals. The traditional anti jamming technology using time domain, air domain and frequency domain It is difficult to counter the increasingly perfect jamming technology, and using polarization domain information to counter jamming has become a new focus area. In this paper, aiming at the polarization anti jamming problem of the terminal guidance radar, different polarization anti jamming means are used to counteract different polarization jamming. Characteristic Differences presents an algorithm for polarization identification quantities based on the output of polarization filters.

Based on the work of predecessors and combined with scientific research projects, this paper studies the anti jamming methods of several fixed polarization jamming and common variable polarization jamming in the terminal guidance radar from several aspects, and analyzes the jamming for the new variable polarization suppression jamming The polarization characteristics, and the countermeasure algorithm is designed according to the polarization characteristics. The specific work content is as follows: 1. Research on the basic theory of polarization. This paper first introduces the characterization methods of fully polarized electromagnetic waves and partially polarized electromagnetic waves, as well as the characterization method of target polarization scattering matrix, and summarizes the conversion relationship between fully polarized electromagnetic waves. Several radar polarization measurement systems at the present stage are studied, and the advantages and disadvantages of each radar polarization measurement system are analyzed and compared.

2. Polarization filter technology. Polarization filtering technology is mainly used to suppress polarization suppressed jamming. First, the polarization parameter estimation algorithm is introduced and derived. Based on the polarization parameter estimation algorithm, the single-notch polarization filter technology and the multi-notchpolarization filter are introduced. technology and tracking adaptive polarization filter technology. The accuracy of polarization parameter estimation is verified by Matlab simulation. The performance of the single-notch polarization filter under the condition of polarization suppression interference is analyzed by simulation. The performance of adaptive polarimetric filter is analyzed in the interference environment of intrapulse polarization modulation and variable polarization suppression.

3. Polarization feature extraction and recognition technology. The polarization feature extraction and recognition technology is mainly used in the target recognition in the deceptive jamming environment. According to the different types of deceptive jamming, it is divided into two research directions: the first research direction is the target recognition in the active deceptive jamming environment, the simulation Analyzed target recognition under active towed jamming and dense variable polarization deceptive false target jamming environments; the second research direction is target recognition under passive jamming environments, and analyzed the classification and recognition of power towers and power lines through measured data problem and the problem of target ship identification in corner reflector jamming environment.

4. Anti polarization suppression interference and new polarization suppression interference technology. Firstly, a simulation analysis is carried out for common polarization-variable jamming and its countermeasures. Then, for the new type of polarization-variable suppression interference, the polarization characteristics of the new type of polarization-variable suppression interference and the anti jamming results using traditional polarization anti jamming methods are analyzed through the measured data. Suppressive jamming, this paper proposes a polarization recognition algorithm based on the output of the polarization filter according to the polarization characteristics of the new variable polarization suppressive jamming. Finally, the performance is compared with traditional countermeasures and several recently published methods through simulation experiments. Comparative analysis. The simulation verifies the effectiveness of the method.

参考文献:
[1] 陈伯孝, 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012.
[2] YAN Y,CHEN H,SU J. Overview on anti jamming technology in main lobe of radar[C]. 2021 IEEE 4th International Conference on Automation, Electronics and Electrical Engineer-
-ing. Shenyang: IEEE,2021: 67-71.
[3] 隋起胜, 袁健全. 反舰导弹战场电磁环境仿真及试验鉴定技术[M]. 北京: 国防工业出版社, 2015.
[4] SINCLAIR G. The transmission and reception of elliptically polarized radar waves[J]. Proc. IRE-38, 1950: 148-151.
[5] GIULI D. Polarization diversity in radars[J]. Proceedings of the IEEE, 1986, 24(2): 245-269.
[6] 代大海, 廖斌, 肖顺平. 雷达极化信息获取与处理的研究进展[J]. 雷达学报,2016, 5(2): 143-154.
[7] ANDERSON S J, MORRIS J T. Aspect dependence of the polarimetric characteristics of sea clutter: II. Variation with azimuth angle[C]. 2008 International Conference on Radar, Adelaide,2008: 581–585.
[8] MA J Z, SHI L F, XIAO S P. Angle estimation of extended targets in main-lobe interference with polarization filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017 53(1): 169-189.
[9] 刘勇, 梁伟, 王同权等. 基于空域极化捷变的有源假目标鉴别[J]. 电波科学学报,2014,29(1): 288-294.
[10] HUYNEN J R. Phenomenological theory of radar target[D]. Ph.D. dissertation, Technical University Delft, 1970.
[11] NATHANSONG F E. Adaptive circular polarization[C]. IEEE International Radar Conference. Arlington. VA:IEEE, 1975: 221-225.
[12] POELMAN A J,GUY J R F. Multinotch logic-product polarization suppression filters: A typical design example and its performance in a rain clutter environment[J]. Proceedings, Fart F-Communication, Radar and Signal Processing, 1984, 131(4): 383-396.
[13] PINNEGAR C R. Polarization analysis and polarization filtering of three-component signals with the time-frequency S transform[J]. Geophysical Journal International, 2006, 165(2): 596–606.
[14] FAISAL A, NICHOLAS V S. Radar target recognition based on modified characteristic polarization states[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(4):1921-1933.
[15] 庄钊文, 肖顺平, 王雪松. 雷达极化信息处理及应用[M]. 北京: 国防工业出版社, 1999.
[16] 徐振海, 极化敏感阵列信号处理研究[D]. 长沙: 国防科学技术大学,2004.
[17] 任博, 罗笑冰, 邓方刚等. 应用极化聚类中心设计快速自适应极化滤波器[J]. 国防科技
大学学报,2015,37(4): 87-92.
[18] 张嘉纹, 党小宇, 杨凌辉. 海面短波地波通信中基于 DNN 神经网络的单样本极化滤波器预测研究[J]. 电子学报, 2020, 48(11): 2250-2257.
[19] 何松华. 高距离分辨率毫米波雷达目标识别的理论与应用[D]. 长沙: 国防科学技术大学, 1993.
[20] 李永祯, 王雪松, 王涛等. 有源诱饵的极化鉴别研究[J]. 国防科技大学学报, 2004, 26(3): 83-88.
[21] MA J Z, SHI L F, XIAO S P. Mitigation of cross-eye jamming using a dual-polarization array[J]. Journal of Systems Engineering and Electronics, 2018, 29(3): 491-498.
[22] WANG M, XIE M, SU Q N. Identification of ship and corner reflector based on invariant features of the polarization[C]. 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), 2019: 1-6
[23] 宋立众, 乔晓林. 一种双极化单脉冲被动雷达实现方案[J]. 电波科学学报, 2012, 27(10):867-874.
[24] 施龙飞, 帅鹏, 王雪松等. 极化调制假目标干扰的鉴别[J]. 信号处理, 2008, 24(6): 894-900.
[25] 王睿志, 末制导雷达极化抗干扰技术研究[D]. 西安: 西安电子科技大学,2017.
[26] 曾清平. 雷达极化技术与极化信息应用[M]. 北京: 国防工业出版社, 2006.
[27] 王雪松. 宽带极化信息处理的研究[D]. 长沙: 国防科学技术大学, 1999.
[28] YAN W L and BOERNER W M. “Optimal polarizaton states determination of the stokes reflection matrices MP for the coherent case, and of the mueller matrix [M],VI for the partially polarized case”[J]. Electromagnetic Waves and Appl. JEWA, 1991,5(10): 1123-1150.
[29] MARTIN B W, YAN W L, XI A Q. On the basic principles polarimetry: the target of radar characteristic polarization state theory of Kennaugh, Huynen’s polarization fork concept, and its extension to the partially polarized case[J]. PROCEEDINGS OF THE IEEE,1991, 79(10): 1538-1550.
[30] 李永祯, 李棉全, 程旭. 雷达极化测量体制研究综述[J]. 系统工程与电子技术, 2013, 35(9): 1873-1877.
[31] DREUILLET P, PAILLOU P, CANTALLOUBE H. P band data collection and investigations utilizing the RAMSES SAR facility[C]. Proc.of the IEEE International Geoscience and Remote Sen sing Symposium, 2003: 4262-4264.
[32] SACHIDANANDA M, ZRNIC D S. Characteristics of echoes from alternately polarized transmission[R]. Cooperative Institute for Mesoscale MeteoroIogical Studies, 1986.
[33] GIULI D, FACHERIS L, FOSSI M. Simultaneous scattering matrix easurement through signal coding[C]. Proc.of the IEEE International Radar Conference, 1990: 258-262.
[34] 施龙飞, 任博, 马佳智. 雷达极化抗干扰技术进展[J]. 现代雷达, 2016, 38(4): 22-29.
[35] 施龙飞, 马佳智, 庞晨. 极化雷达信号处理与抗干扰技术[M]. 北京, 国防工业出版社, 2019: 61-62.
[36] DAI H, HUANG Z, LEI H. Interference cancellation and polarization suppression technology based on the pattern difference[C]. 2014 International Radar Conference, 2014: 1-6.
[37] SANTALLA V, VERA M, PINO A. G. A method for polarimetric contrast optimization in the coherent case[J]. Antennas and Propagation Society International Symposium, 1993: 1288-1291.
[38] WANG X S, CHANG Y L, DAI D H. Band characteristics of SINR polarization filter[J]. IEEE Transactions on AP, 2007, 55(4): 1148-1154.
[39] 徐振海, 王雪松, 肖顺平等. 极化自适应递推滤波算法[J]. 电子学报, 2002,30(4): 608-610.
[40] 曹斌. 基于斜投影的极化滤波技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[41] 刘勇. 动态目标极化特性测量与极化雷达抗干扰新方法研究[D]. 长沙: 国防科学技术大学, 2011.
[42] 王涛, 王雪松, 肖顺平. 随机调制单极化有源假目标的极化鉴别研究[J]. 自然科学进展, 2006, 16(5): 611-617.
[43] 牛朝阳, 盛广铭, 马德宝. 全极化转发式假目标鉴别方案设计[J]. 电子信息对抗技术, 2011, 26(5): 45-51.
[44] 吴盛源, 张小宽, 林存坤. 双接收站的有源诱饵极化鉴别[J]. 空军工程大学学报, 2016, 17(3): 73-77.
[45] 李永祯, 胡万秋, 程旭. 相干两点源角欺骗干扰的极化鉴别方法研究[J]. 兵工学报, 2013, 34(9): 1078-1083.
[46] ZONG Z W, CHANG Y L, SHI L F. Detection method for active false-target based on diffences of polarimatric frequency response[C]. IET International Radar Conference,[S.1.]IEEE Press, 2015.
[47] 常字亮, 李永祯, 戴幻尧. 全极化复杂调制假目标的鉴别方法[J]. 电波科学学报, 2010, 25(4): 651-656.
[48] LANG P, Fu X J, MARCO M. A comprehensive survey of machine learning applied to radar signal processing[J]. arXiv, 2020, 29(9): 1-49.
[49] 王福友, 罗钉, 刘宏伟. 基于极化不变量特征的雷达目标识别技术[J]. 雷达科学与技术, 2013, 11(2):165-172.
[50] 杨栋文. 雷达目标物理特征提取及应用研究[D]. 西安: 西安电子科技大学, 2019.
[51] BICKLE S H. Some invariant properties of the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1070-1072.
[52] 周文明, 宋健杜, 郑永安等. 常见定标体的雷达截面积计算与仿真[J]. 电光与控制,2007, 14(5): 28-33
[53] Hmot 著, 林禄倡等译. 天线和雷达中的极化[M]. 成都: 电子科技大学出版社, 1989.
[54] 曾勇虎, 王雪松, 肖顺平等. 雷达目标互易性的最小变质修正法[J]. 电子学报, 2001, 22(12): 1611-1614.
[55] 刘涛, 杨子渊, 蒋燕妮等. 极化 SAR 图像舰船目标检测研究综述[J]. 雷达学报, 2021, 10(1): 1-19.
[56] LIANG Z Y, YU Y, ZHANG B. Anti corner reflector array method based on pauli polarization decomposition and BP neural network[C]. 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning, 2021: 1-5.
[57] 朱珍珍, 汤广富, 程翥. 基于极化分解的舰船和角反射器鉴别方法[J]. 舰船电子对抗, 2010, 33(6): 15-21.
[58] REFREGIE P, MORIO J. Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations[J]. Optical Society of America, 2006, 23(12): 3036-3044.
[59] ZHANG Q, ZHOU R, SHI X B. Adaptive dual-polarization filtering method for countering active jamming[C]. International Journal of Antennas and Propagation, 2020: 1-7.
[60] 熊辉. 极化抗有源干扰方法[J]. 电子信息对抗技术, 2022, 35(5): 57-60.


中图分类号:

 TN95    

馆藏号:

 60058    

开放日期:

 2024-09-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式