- 无标题文档
查看论文信息

中文题名:

 智能型近红外荧光探针用于乳腺癌微小病灶 及转移灶的高灵敏成像研究    

姓名:

 贾茜    

学号:

 1712110083    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810J3    

学科名称:

 工学 - 信息与通信工程 - 生物信息科学与技术    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 信息与通信工程    

研究方向:

 智能型分子影像探针的构建及其生物应用研究    

第一导师姓名:

 王忠良    

第一导师单位:

 西安电子科技大学    

完成日期:

 2021-09-22    

答辩日期:

 2021-12-04    

外文题名:

 Activatable Near-Infrared Fluorescent Probes for Highly Sensitive Imaging of Tiny Breast Tumors and Metastatic Lesions    

中文关键词:

 乳腺癌 ; 早期微小肿瘤 ; 肺转移瘤 ; 淋巴转移瘤 ; 肿瘤酸性微环境 ; 磷酸钙 ; 近红外荧光探针    

外文关键词:

 Breast cancer ; Tiny tumor ; Lung metastasis ; Lymph metastasis ; Tumor microenvironment ; Calcium phosphate ; Fluorescent probes    

中文摘要:

乳腺癌是严重危害女性健康的杀手,临床不易察觉的隐匿性微小癌灶、转移灶和微小残留癌灶在术中难以被检测到,促使肿瘤发生复发和转移,是导致乳腺癌患者死亡的主要原因。因此,乳腺癌微小癌灶和转移灶的有效成像诊断是提高乳腺癌患者五年生存率的关键,是当前乳腺癌诊疗领域中重要的、亟待解决的科学问题之一。近年来兴起的近红外荧光成像技术凭借其高灵敏度、高特异性、低成本、易操作、无辐射等优点为解决上述难题带来了新契机,但如何开发成像性能优异的近红外探针仍然充满挑战。

本论文从目前乳腺癌微小癌灶及转移灶难以精准检测的临床问题以及可用于乳腺癌成像的近红外荧光探针开发难的科学问题出发,旨在利用肿瘤细胞代谢异常导致的肿瘤酸性微环境(肿瘤的细胞外pH 6.5 ‒ 7.0,健康组织中细胞外pH约为7.4)为激活源,开发高特异、高灵敏的新型智能化近红外荧光探针用于乳腺癌的精准成像,具体研究内容如下:

(1)代谢酸激活型磷酸钙荧光探针的精准调控及对乳腺癌的高特异性成像

针对乳腺癌微小癌灶成像检测难的问题,受磷酸溶液的三元平衡启发,我们通过改变合成过程中的体系pH值实现了对探针pH响应范围的精确调控,最终制备出响应范围完全匹配肿瘤微酸代谢环境的磷酸钙近红外荧光探针。该探针不仅能够区分正常组织和肿瘤微酸性微环境的细微差别,而且能够在非常窄的pH变化范围(pH 6.8 ‒ 7.0、ΔpH = 0.2)内快速实现荧光由“OFF”到“ON”的转变,从而清晰地区分肿瘤和正常组织。实验结果表明,所制备的探针在正常生理环境中具有稳定性高、生物安全性好的优点,能够对微小的乳腺肿瘤病变进行高灵敏可视化(T/N值约为10)。这一工作不仅为构建pH响应范围可调的肿瘤微酸环境响应型智能纳米探针提供了一种有效策略,而且为实现乳腺癌微小病灶的早期精准诊断提供了有益的参考。

(2)乳腺癌肺部转移瘤的特异性探针构建及高灵敏成像性能研究

针对乳腺癌易发生肺部转移且难以高灵敏成像检测的临床问题,我们在上一工作的基础上进一步优化了探针的合成条件,使探针的响应倍数提高至100倍,并成功地利用该探针实现了对单/多灶点乳腺癌肺部转移瘤及肺部原位瘤的高特异性、高灵敏性成像。该研究为针对肺部肿瘤病灶的在体精准检测提供了一个可行的范例。

(3)pH激活型纳米探针高特异高灵敏识别乳腺癌转移性淋巴结

针对目前临床乳腺癌术中前哨淋巴结示踪过程中,使用的ICG探针无法精准区分正常淋巴结和转移性淋巴结的问题,结合转移性淋巴结组织外具有弱酸性的特征,我们把ICG限域在磷酸钙内,构建了具有良好生物相容性和低免疫反应的肿瘤酸性微环境响应型近红外光学探针并在小鼠乳腺癌淋巴结转移瘤模型中考查了探针的在体成像性能。结果表明所制备的探针作为一种非侵入性pH可激活型造影剂,可精确区分正常淋巴结和转移性淋巴结。该研究拓展了激活型分子影像探针用于术中实时指导淋巴结检测的潜在应用。

本论文从肿瘤细胞特有的异常糖酵解特征入手,通过自组装策略以及对合成过程的有效调控成功构建了两种肿瘤代谢酸激活的磷酸钙基近红外荧光探针。得益于探针对肿瘤微酸代谢环境的超灵敏响应性能,所构建探针不仅能够对乳腺癌微小肿瘤进行高特异性成像,而且还能够对乳腺癌转移灶及转移淋巴结进行高灵敏可视化。这项研究为构建pH响应范围可调的智能化近红外荧光探针提供了一种有效的策略,有利于进一步推进该类探针在肿瘤的精准诊断与治疗方面的应用。

外文摘要:

Breast cancer is one of the world’s leading causes of death, with low five-year survival rate, which is mainly due to missing the best timing of treatment and cancer metastasis in the clinical management. The precise diagnosis of tiny cancers and metastatic cancers from breast cancer greatly increases the chances of effective treatment and can help reduce further suffering and mortality. Advances in the near-infrared fluorescence imaging provide great opportunities for identifying cancer at its early stages and ultimately optimizing patient-specific therapies, owing to its considerable advantages over traditional molecular imaging, such as high signal-to-background ratio (SBR), high sensitivity, low cost.

The improvement of imaging sensitivity is crucial for the detection of tiny cancers and metastatic cancers. The improving of SBR is the key to gaining the higher sensitivity and realizing accurate tumor detection. It is an effective strategy to improve SBR by reducing the signal from non-tumor parts. Therefore, the design of activated near-infrared (NIR) fluorescent probes is more promising. Activatable probes are designed to stay in the “OFF” state in non-target tissues or blood, and signals can be turned “ON” only in response to specific targets or events. Consequently, elimination of the background signal dramatically improves the SBR, thereby making activatable probes a preferential choice for cancer imaging with high specificity and sensitivity. To design activatable probes for cancer detection, choosing a suitable stimulus plays a significant role in design. There is growing recognition that cancer is a metabolic disease. Although tumors are highly heterogeneous and complex, dysregulated energy metabolism is commonly observed in nearly all types of cancer cells. A potential target for imaging in breast cancers is acidic extracellular pH (pH 6.5 – 7.0), which mainly results from the abnormal aerobic glycolysis of tumor cells, has been recognized as a hallmark of different subtypes of breast cancers and metastatic tumors. Therefore, we aim to develop pH-activatable probes to targeting tiny breast tumors and metastatic tumors. The detailed works of dissertation are listed below.

(1) A metabolic acidity-activatable calcium phosphate probe with fluorescence signal amplification capabilities for non-invasive imaging of tiny breast tumors.

In this work, we report a robust strategy to create a metabolic acidity-activatable calcium phosphate (CaP) fluorescent probe (hereafter referred to as MACaP) based on the self-assembly of CaP and the NIR dye IR780 iodide mediated by a poly(acrylic acid) (PAA). By delicately modulating the synthesis conditions of the MACaP probe, its pH-responsive range could be adjusted to perfectly match the extracellular pH of the tumor microenvironment, with rapid and sharp responsiveness (pH range: 6.8 – 7.0, ΔpH = 0.2). The fluorescent probe remained silent in blood and normal tissue, owing to an aggregation-caused quenching (ACQ) effect (OFF state). However, upon reaching the tumor sites, the probe underwent fast disassembly in the acidic tumor pH range, which caused the release of IR780 and significantly enhanced the fluorescence signal (ON state), enabling tumor-specific imaging against a dark background. The MACaP probe benefited from its OFF/ON design and its ultra-pH sensitivity exhibited superior ability for in vivo tiny breast tumors imaging.

(2) An acidic-microenvironment activatable probe for ultrahigh specific fluorescence imaging of lung metastases.

We further optimized the synthetic conditions of the probe and obtained acidic-microenvironment activatable CaP fluorescent probe, SCaPI, with improved SBR value. Meanwhile, the superior sensitivity and specificity of SCaPI enabled high-contrast visualization of breast cancer with single/multiple lung metastases, as well as lung adenocarcinoma in situ.

(3) Sensitive and specific identification of sentinel lymph node metastasis using a pH-activatable probe.

In this work, we designed a tumor acidity-sensitive, NIR probe (termed ICPPs) for specific and sensitive identification of sentinel lymph nodes metastasis in vivo, based on calcium phosphate matrix and a NIR fluorophore, indocyanine green (ICG). We investigated the capability and sensitivity of this probe for tumor extracellular pH imaging in vitro and in vivo using metastatic sentinel lymph nodes model. Our results showed that the new probe provides non-invasive pH-activatable precise detect metastatic lymph nodes in vivo.

In summary, through a self-assembly strategy, as well as rational regulation of the preparation conditions, we successfully developed two pH-ultrasensitive CaP-based fluorescent probes. Unlike traditional CaP nanoprobes, which usually display broad pH responses inside endosomes or lysosomes at a low pH (4.0 – 6.0), probes could sharply respond to the subtle pH difference between the tumor microenvironment and normal tissues (pH 6.8 – 7.0, ΔpH = 0.2), leading to the activation of fluorescence for in vivo tumor imaging. Owing to its extreme sensitivity to the tumor extracellular pH, probes would not produce any noticeable fluorescence signal until reaching the tumor site, thereby significantly increasing the SBR. Our results demonstrated that probes could not only be used for imaging various tumors with high specificity but also enabled robust visualization of smaller tumor lesions and metastatic lesions. This study provides a robust strategy to modulate the pH response range of activatable NIR probes, which is particularly important for their applications in precise tumor diagnosis and treatment.

参考文献:
[1] HARBECK N., PENAULT L. F., CORTES J., et al. Breast cancer [J]. Nature Reviews Disease Primers, 2019, 5(1): 67.
[2] HARBECK N. and GNANT M. Breast cancer [J]. The Lancet, 2017, 389(10074): 1134-1150.
[3] SIEGEL R. L., MILLER K. D., FUCHS H. E., et al. Cancer statistics, 2021 [J]. CA-A Cancer Journal for Clinicians, 2021, 71(1): 7-33.
[4] CAO W., CHEN H. D., YU Y. W., et al. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020 [J]. Chinese Medical Journal, 2021, 134(7): 783-791.
[5] GROUP E. B. C. T. C. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials [J]. The Lancet, 2005, 365(9472): 1687-1717.
[6] FAN L., STRASSER W. K., LI J. J., et al. Breast cancer in China [J]. The Lancet Oncology, 2014, 15(7): e279-e289.
[7] DESANTIS C. E., MA J., GODING SAUER A., et al. Breast cancer statistics, 2017, racial disparity in mortality by state [J]. CA-A Cancer Journal for Clinicians, 2017, 67(6): 439-448.
[8] SCULLY O. J., BAY B. H., YIP G., et al. Breast cancer metastasis [J]. Cancer Genomics & Proteomics, 2012, 9(9): 311-320.
[9] ADJEI I. M., TEMPLES M. N., BROWN S. B., et al. Targeted nanomedicine to treat bone metastasis [J]. Pharmaceutics, 2018, 10(4): 205.
[10] CARDOSO F., SPENCE D., MERTZ S., et al. Global analysis of advanced/metastatic breast cancer: Decade report (2005-2015) [J]. Breast, 2018, 39: 131-138.
[11] BALASUBRAMANIAN I., HARDING T., BOLAND M. R., et al. The impact of postoperative wound complications on oncological outcomes following immediate breast reconstruction for breast cancer: A Meta-analysis [J]. Clinical Breast Cancer, 2021, 21(4): e377-e387.
[12] LEE K. T., JUNG J. H., MUN G. H., et al. Influence of complications following total mastectomy and immediate reconstruction on breast cancer recurrence [J]. British Journal of Surgery, 2020, 107(9): 1154-1162.
[13] SUNDQUIST M., BRUDIN L. and TEJLER G. Improved survival in metastatic breast cancer 1985-2016 [J]. Breast, 2017, 31: 46-50.
[14] TEVAARWERK A. J., GRAY R. J., SCHNEIDER B. P., et al. Survival in patients with metastatic recurrent breast cancer after adjuvant chemotherapy: little evidence of improvement over the past 30 years [J]. Cancer, 2013, 119(6): 1140-1148.
[15] BARBA D., LEON SOSA A., LUGO P., et al. Breast cancer, screening and diagnostic tools: All you need to know [J]. Critical Reviews in Oncology/Hematology, 2021, 157: 103174.
[16] JUNG S. Y., HAN J. H., PARK S. J., et al. The sentinel lymph node biopsy using indocyanine green fluorescence plus radioisotope method compared with the radioisotope-only method for breast cancer patients after neoadjuvant chemotherapy: A prospective, randomized, open-label, single-center phase 2 trial [J]. Annals of Surgical Oncology, 2019, 26(8): 2409-2416.
[17] TRINGALE K. R., PANG J. and NGUYEN Q. T. Image-guided surgery in cancer: A strategy to reduce incidence of positive surgical margins [J]. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2018, 10(3): e1412.
[18] ISHIZAWA T., FUKUSHIMA N., SHIBAHARA J., et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging [J]. Cancer, 2009, 115(11): 2491-504.
[19] UCHIYAMA K., UENO M., OZAWA S., et al. Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases [J]. World Journal of Surgery, 2010, 34(12): 2953-2959.
[20] VAHRMEIJER A. L., HUTTEMAN M., VAN DER VORST J. R., et al. Image-guided cancer surgery using near-infrared fluorescence [J]. Nature Reviews Clinical Oncology, 2013, 10(9): 507-518.
[21] KAMIYA M. and URANO Y. Rapid and sensitive fluorescent imaging of tiny tumors in vivo and in clinical specimens [J]. Current Opinion in Chemical Biology, 2016, 33: 9-15.
[22] KEATING J., TCHOU J., OKUSANYA O., et al. Identification of breast cancer margins using intraoperative near-infrared imaging [J]. Journal of Surgical Oncology, 2016, 113(5): 508-514.
[23] LANAHAN C. R., KELLY B. N., GADD M. A., et al. Performance of a novel protease-activated fluorescent imaging system for intraoperative detection of residual breast cancer during breast conserving surgery [J]. Breast Cancer Research and Treatment, 2021, 187(1): 145-153.
[24] LEE E. G., KIM S. K., HAN J. H., et al. Surgical outcomes of localization using indocyanine green fluorescence in breast conserving surgery: a prospective study [J]. Scientific Reports, 2021, 11(1): 9997.
[25] MURAWA D., HIRCHE C., DRESEL S., et al. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence [J]. British Journal of Surgery, 2009, 96(11): 1289-1294.
[26] CHENG P. and PU K. Molecular imaging and disease theranostics with renal-clearable optical agents [J]. Nature Reviews Materials, 2021, 1-9.
[27] URANO Y., ASANUMA D., HAMA Y., et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes [J]. Nature Medicine, 2009, 15(1): 104-109.
[28] CHUAN CHEN, TIAN R., ZENG Y., et al. Activatable fluorescence probes for “turn-on” and ratiometric biosensing and bioimaging:From NIR-I to NIR-II [J]. Bioconjugate Chemistry, 2020, 31(2): 276-292.
[29] YUE D., WANG M., DENG F., et al. Biomarker-targeted fluorescent probes for breast cancer imaging [J]. Chinese Chemical Letters, 2018, 29(5): 648-656.
[30] ZHANG R. R., SCHROEDER A. B., GRUDZINSKI J. J., et al. Beyond the margins: Real-time detection of cancer using targeted fluorophores [J]. Nature Reviews Clinical Oncology, 2017, 14(6): 347-364.
[31] ASHITATE Y., LEE B. T., LAURENCE R. G., et al. Intraoperative prediction of postoperative flap outcome using the near-infrared fluorophore methylene blue [J]. Annals of Plastic Surgery, 2013, 70(3): 360-365.
[32] TUMMERS Q. R., VERBEEK F. P., SCHAAFSMA B. E., et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue [J]. European Journal of Surgical Oncology, 2014, 40(7): 850-858.
[33] HADJIPANAYIS C. G. and STUMMER W. 5-ALA and FDA approval for glioma surgery [J]. Journal of Neuro-Oncology, 2019, 141(3): 479-486.
[34] GIOUX S., CHOI H. S. and FRANGIONI J. V. Image-guided surgery using invisible near-infrared light: Fundamentals of clinical translation [J]. Molecular Imaging, 2010, 9(5): 237-255.
[35] CHI C., YE J., DING H., et al. Use of indocyanine green for detecting the sentinel lymph node in breast cancer patients: From preclinical evaluation to clinical validation [J]. PLoS One, 2013, 8(12): e83927.
[36] HE K., CHI C., KOU D., et al. Comparison between the indocyanine green fluorescence and blue dye methods for sentinel lymph node biopsy using novel fluorescence image-guided resection equipment in different types of hospitals [J]. Translational Research, 2016, 178: 74-80.
[37] OTTOLINO PERRY K., SHAHID A., DELUCA S., et al. Intraoperative fluorescence imaging with aminolevulinic acid detects grossly occult breast cancer: A phase II randomized controlled trial [J]. Breast Cancer Research, 2021, 23(1): 72.
[38] BRZOZOWSKI A. M., PIKE A. C. W., DAUTER Z., et al. Molecular basis of agonism and antagonismin the oestrogen receptor [J]. Nature, 1997, 389(16): 753-758.
[39] BLAIR S., GARCIA M., DAVIS T., et al. Hexachromatic bioinspired camera for image-guided cancer surgery [J]. Science Translational Medicine, 2021, 13(592): eaaw7067.
[40] CHOI W. I., LEE J. H., KIM J. Y., et al. Targeted antitumor efficacy and imaging via multifunctional nano-carrier conjugated with anti-HER2 trastuzumab [J]. Nanomedicine, 2015, 11(2): 359-368.
[41] FANG H., CAVALIERE A., LI Z., et al. Preclinical advances in theranostics for the different molecular subtypes of breast cancer [J]. Frontiers in Pharmacology, 2021, 12: 627693.
[42] GOLDMAN E., ZINGER A., DA SILVA D., et al. Nanoparticles target early-stage breast cancer metastasis in vivo [J]. Nanotechnology, 2017, 28(43): 43LT01.
[43] GONDA K., MIYASHITA M., WATANABE M., et al. Development of a quantitative diagnostic method of estrogen receptor expression levels by immunohistochemistry using organic fluorescent material-assembled nanoparticles [J]. Biochemical and Biophysical Research Communications, 2012, 426(3): 409-414.
[44] GAJADEERA N. and HANSON R. N. Review of fluorescent steroidal ligands for the estrogen receptor 1995-2018 [J]. Steroids, 2019, 144: 30-46.
[45] BAI M. and BORNHOP D. Recent advances in receptor-targeted fluorescent probes for in vivo cancer imaging [J]. Current Medicinal Chemistry, 2012, 19(28): 4742-4758.
[46] TANG C., DU Y., LIANG Q., et al. A novel estrogen receptor alpha-targeted near-infrared fluorescent probe for in vivo detection of breast tumor [J]. Molecular Pharmaceutics, 2018, 15(10): 4702-4709.
[47] PRIVAT M., BELLAYE P. S., LESCURE R., et al. Development of an easily bioconjugatable water-soluble single-photon emission-computed tomography/optical imaging bimodal imaging probe based on the aza-BODIPY fluorophore [J]. Journal of Medicinal Chemistry, 2021, 64(15): 11063-11073.
[48] BAM R., LAFFEY M., NOTTBERG K., et al. Affibody-indocyanine green based contrast agent for photoacoustic and fluorescence molecular imaging of B7-H3 expression in breast cancer [J]. Bioconjugate Chemistry, 2019, 30(6): 1677-1689.
[49] BELFIORE L., SAUNDERS D. N., RANSON M., et al. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer [J]. Pharmaceutics, 2020, 12(7): 1-12.
[50] CHOI H. S., GIBBS S. L., LEE J. H., et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging [J]. Nature Biotechnology, 2013, 31(2): 148-153.
[51] SLOOTER M. D., JANSSEN A., BEMELMAN W. A., et al. Currently available and experimental dyes for intraoperative near-infrared fluorescence imaging of the ureters: a systematic review [J]. Techniques in Coloproctology, 2019, 23(4): 305-313.
[52] WILSON K. E., BACHAWAL S. V., ABOU ELKACEM L., et al. Spectroscopic photoacoustic molecular imaging of breast cancer using a B7-H3-targeted ICG contrast agent [J]. Theranostics, 2017, 7(6): 1463-1476.
[53] MUNNINKA T. H. O., NAGENGASTA W. B., BROUWERSB A. H., et al. Molecular imaging of breast cancer [J]. Breast, 2009, 18(S3): S66-S73.
[54] RATHINAM R. and ALAHARI S. K. Important role of integrins in the cancer biology [J]. Cancer and Metastasis Reviews, 2010, 29(1): 223-237.
[55] BEER A. J. and SCHWAIGER M. Imaging of integrin alphavbeta3 expression [J]. Cancer and Metastasis Reviews, 2008, 27(4): 631-644.
[56] XIONG J. P., STEHLE T., ZHANG R., et al. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand [J]. Science, 2002, 296(5565): 151-155.
[57] HAN R., XIAO Y., YANG Q., et al. Ag2S nanoparticle-mediated multiple ablations reinvigorates the immune response for enhanced cancer photo-immunotherapy [J]. Biomaterials, 2021, 264: 120451.
[58] JACOBSON O., ZHU L., NIU G., et al. MicroPET imaging of integrin alphavbeta3 expressing tumors using 89Zr-RGD peptides [J]. Molecular Imaging and Biology, 2011, 13(6): 1224-1233.
[59] ZHOU Y., KIM Y. S., LU X., et al. Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties [J]. Bioconjugate Chemistry, 2012, 23(3): 586-595.
[60] ZHENG Y., JI S., CZERWINSKI A., et al. FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin alphavbeta3/alphavbeta5 in tumor tissues [J]. Bioconjugate Chemistry, 2014, 25(11): 1925-1941.
[61] DAS S. S., ALKAHTANI S., BHARADWAJ P., et al. Molecular insights and novel approaches for targeting tumor metastasis [J]. International Journal of Pharmaceutics, 2020, 585: 119556.
[62] WANG H., JIN Y., TAN Y., et al. Photo-responsive hydrogel facilitates nutrition deprivation by an ambidextrous approach for preventing cancer recurrence and metastasis [J]. Biomaterials, 2021, 275: 120992.
[63] AMINI A., MOGHADDAM S. M., MORRIS D. L., et al. The critical role of vascular endothelial growth factor in tumor angiogenesis [J]. Current Cancer Drug Targets, 2012, 12(1): 23-43.
[64] APTE R. S., CHEN D. S. and FERRARA N. VEGF in signaling and disease: beyond discovery and development [J]. Cell, 2019, 176(6): 1248-1264.
[65] LIU Y., TAMIMI R. M., COLLINS L. C., et al. The association between vascular endothelial growth factor expression in invasive breast cancer and survival varies with intrinsic subtypes and use of adjuvant systemic therapy: results from the Nurses' Health Study [J]. Breast Cancer Research and Treatment, 2011, 129(1): 175-184.
[66] VIACAVA P., NACCARATO A. G., BOCCI G., et al. Angiogenesis and VEGF expression in pre-invasive lesions of the human breast [J]. Journal of Pathology, 2004, 204(2): 140-146.
[67] BUSTAMANTE EDUARDO M., POPOVICI V., IMBODEN S., et al. Characterization of molecular scores and gene expression signatures in primary breast cancer, local recurrences and brain metastases [J]. BMC Cancer, 2019, 19(1): 549.
[68] LAMBERTS L. E., KOCH M., DE JONG J. S., et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A Phase I feasibility study [J]. Clinical Cancer Research, 2017, 23(11): 2730-2741.
[69] KOLLER M., QIU S. Q., LINSSEN M. D., et al. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumor-specific fluorescent tracers [J]. Nature Communications, 2018, 9(1): 3739.
[70] SUN W., LI M., FAN J., et al. Activity-based sensing and theranostic probes based on photoinduced electron transfer [J]. Accounts of Chemical Research, 2019, 52(10): 2818-2831.
[71] WU L., HUANG C., EMERY B. P., et al. Forster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents [J]. Chemical Society Reviews, 2020, 49(15): 5110-5139.
[72] XU M., WANG X., WANG Q., et al. Analyte-responsive fluorescent probes with AIE characteristic based on the change of covalent bond [J]. Science China Materials, 2019, 62(9): 1236-1250.
[73] ZHANG J., HE B., HU Y., et al. Stimuli-responsive AIEgens [J]. Advanced Materials, 2021, 33(32): e2008071.
[74] ESCUDERO D. Revising intramolecular photoinduced electron transfer (PET) from first-principles [J]. Accounts of Chemical Research, 2016, 49(9): 1816-1824.
[75] SEYFRIED T. N. and SHELTON L. M. Cancer as a metabolic disease [J]. Nutrition & Metabolism, 2010, 7: 7.
[76] COLLER H. A. Is cancer a metabolic disease? [J]. The American Journal of Pathology, 2014, 184(1): 4-17.
[77] VAZQUEZ A., KAMPHORST J. J., MARKERT E. K., et al. Cancer metabolism at a glance [J]. Journal of Cell Science, 2016, 129(18): 3367-3373.
[78] WISHART D. S. Is cancer a genetic disease or a metabolic disease? [J]. EBioMedicine, 2015, 2(6): 478-479.
[79] ALTENBERG B. and GREULICH K. O. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes [J]. Genomics, 2004, 84(6): 1014-1020.
[80] ARGILES J. M., BUSQUETS S., STEMMLER B., et al. Cancer cachexia: understanding the molecular basis [J]. Nature Reviews Cancer, 2014, 14(11): 754-762.
[81] BURNS J. S. and MANDA G. Metabolic pathways of the warburg effect in health and disease: perspectives of choice, chain or chance [J]. International Journal of Molecular Sciences, 2017, 18(12): 2755.
[82] RABINOWITZ J. D. and ENERBACK S. Lactate: the ugly duckling of energy metabolism [J]. Nature Metabolism, 2020, 2(7): 566-571.
[83] DEBERARDINIS R. J. Tumor microenvironment, metabolism, and immunotherapy [J]. The New England Journal of Medicine, 2020, 382(9): 869-871.
[84] LEIBOVICI J., ITZHAKI O., HUSZAR M., et al. The tumor microenvironment: part 1 [J]. Immunotherapy, 2011, 3(11): 1367-1384.
[85] ABADJIAN M. C. Z., EDWARDS W. B. and ANDERSON C. J. Imaging the tumor microenvironment [J]. Advances in Experimental Medicine and Biology, 2017, 1036: 229-257.
[86] ANDERSON N. M. and SIMON M. C. The tumor microenvironment [J]. Current Biology, 2020, 30(16): R921-R925.
[87] ARNETH B. Tumor microenvironment [J]. Medicina, 2019, 56(1): 15.
[88] BALKWILL F. R., CAPASSO M. and HAGEMANN T. The tumor microenvironment at a glance [J]. Journal of Cell Science, 2012, 125(23): 5591-5596.
[89] CASSIM S. and POUYSSEGUR J. Tumor microenvironment: A metabolic player that shapes the immune response [J]. International Journal of Molecular Sciences, 2020, 21(1): 157.
[90] LU Y., AIMETTI A. A., LANGER R., et al. Bioresponsive materials [J]. Nature Reviews Materials, 2016, 2(1): 16075.
[91] HUANG G., ZHAO T., WANG C., et al. PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers [J]. Nature Biomedical Engineering, 2020, 4(3): 314-324.
[92] WANG C., OTTO S., DORN M., et al. Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength [J]. Analytical Chemistry, 2019, 91(3): 2337-2344.
[93] FENG L., DONG Z., TAO D., et al. The acidic tumor microenvironment: A target for smart cancer nano-theranostics [J]. National Science Review, 2018, 5(2): 269-286.
[94] AL HUSARI M. and WEBB S. D. Regulation of tumour intracellular pH: A mathematical model examining the interplay between H+ and lactate [J]. Journal of Theoretical Biology 2013, 322: 58-71.
[95] CHEN X., ZHANG H., ZHANG M., et al. Amorphous Fe-based nanoagents for self-enhanced chemodynamic therapy by re-establishing tumor acidosis [J]. Advanced Functional Materials, 2019, 30(6): 1908365.
[96] DU J. Z., LI H. J. and WANG J. Tumor-acidity-cleavable maleic acid amide (TACMAA): A powerful tool for designing smart nanoparticles to overcome delivery barriers in cancer nanomedicine [J]. Accounts of Chemical Research, 2018, 51(11): 2848-2856.
[97] GAO F., TANG Y., LIU W. L., et al. Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors [J]. Advanced Materials, 2019, 31(51): e1904639.
[98] GU Z., DONG Y., XU S., et al. Molecularly imprinted polymer-based smart prodrug delivery system for specific targeting, prolonged retention, and tumor microenvironment-triggered release [J]. Angewandte Chemie International Edition, 2021, 60(5): 2663-2667.
[99] EL SAWY H., AL ABD A., AHMED T., et al. Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu_ past, present, and future perspectives [J]. ACS Nano, 2018, 12(11): 10636-10664.
[100] DONG Y., TU Y., WANG K., et al. A general strategy for Macrotheranostic prodrug activation: synergy between the acidic tumor microenvironment and bioorthogonal chemistry [J]. Angewandte Chemie International Edition, 2020, 59(18): 7168-7172.
[101] LIU H. W., CHEN L., XU C., et al. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging [J]. Chemical Society Reviews, 2018, 47(18): 7140-7180.
[102] ASHBY B. S. pH studies in human malignant tumours [J]. The Lancet, 1966, 2: 312-315.
[103] ALLEN S. E. and HOLM J. L. Lactate: physiology and clinical utility [J]. Journal of Veterinary Emergency and Critical Care, 2008, 18(2): 123-132.
[104] DAMAGHI M., WOJTKOWIAK J. W. and GILLIES R. J. pH sensing and regulation in cancer [J]. Frontiers in Physiology, 2013, 4: 370.
[105] LIBERTI M. V. and LOCASALE J. W. The Warburg effect: How does it benefit cancer cells? [J]. Trends in Biochemical Sciences, 2016, 41(3): 211-218.
[106] ADEVA A., LOPEZ O., FUNCASTA C. R., et al. Comprehensive review on lactate metabolism in human health [J]. Mitochondrion, 2014, 17: 76-100.
[107] BOZZETTI F. and STANGA Z. Does nutrition for cancer patients feed the tumour? A clinical perspective [J]. Critical Reviews in Oncology/Hematology, 2020, 153: 103061.
[108] DANHIER P., BANSKI P., PAYEN V. L., et al. Cancer metabolism in space and time: Beyond the Warburg effect [J]. Biochim Biophys Acta Bioenerg, 2017, 1858(8): 556-572.
[109] VANDER HEIDEN M. G., CANTLEY L. C. and THOMPSON C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation [J]. Science, 2009, 324(5930): 1029-1033.
[110] ROMERO GARCIA S., LOPEZ GONZALEZ J. S., BAEZ VIVEROS J. L., et al. Tumor cell metabolism: an integral view [J]. Cancer Biology & Therapy, 2011, 12(11): 939-948.
[111] FLINCK M., KRAMER S. H. and PEDERSEN S. F. Roles of pH in control of cell proliferation [J]. Acta Physiologica, 2018, 223(3): e13068.
[112] SWIETACH P. What is pH regulation, and why do cancer cells need it? [J]. Cancer and Metastasis Reviews, 2019, 38(1-2): 5-15.
[113] NEWELL K., FRANCHIT A., POUYSSTGURT J., et al. Studies with glycolysis-deficient cells suggest that production of-lactic acid is not the only cause of tumor acidity [J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90: 1127-1131.
[114] CHEN Y. Recent advances in fluorescent probes for extracellular pH detection and imaging [J]. Analytical Biochemistry, 2021, 612: 113900.
[115] HUANG X., SONG J., YUNG B. C., et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging [J]. Chemical Society Reviews, 2018, 47(8): 2873-2920.
[116] LUBY B. M., CHARRON D. M., MACLAUGHLIN C. M., et al. Activatable fluorescence: From small molecule to nanoparticle [J]. Advanced Drug Delivery Reviews, 2017, 113: 97-121.
[117] HOU Y., ZHOU J., GAO Z., et al. A protease-activated ratiometric fluorescent probe for pH-mapping of malignant tumor [J]. ACS Nano, 2015, 9(3): 3199-3205.
[118] TAKAHASHI S., KAGAMI Y., HANAOKA K., et al. Development of a series of practical fluorescent chemical tools to measure pH values in living samples [J]. Journal of the American Chemical Society, 2018, 140(18): 5925-5933.
[119] MARTIN G. R. and JAM R. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy [J]. Cancer Research, 1994, 54(21): 5670-5674.
[120] MA T., HOU Y., ZENG J., et al. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo [J]. Journal of the American Chemical Society, 2018, 140(1): 211-218.
[121] ZHAO M., WANG J., LEI Z., et al. NIR-II pH sensor with a FRET adjustable transition point for in situ dynamic tumor microenvironment visualization [J]. Angewandte Chemie International Edition, 2021, 60(10): 5091-5095.
[122] LIU Y., QU Z., CAO H., et al. pH switchable nanoassembly for imaging a broad range of malignant tumors [J]. ACS Nano, 2017, 11(12): 12446-12452.
[123] LI Y., ZHAO T., WANG C., et al. Molecular basis of cooperativity in pH-triggered supramolecular self-assembly [J]. Nature Communications, 2016, 7: 13214.
[124] ZHAO T., HUANG G., LI Y., et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery [J]. Nature Biomedical Engineering, 2016, 1(1): 0006.
[125] VOSKUIL F. J., STEINKAMP P. J., ZHAO T., et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery [J]. Nature Communications, 2020, 11(1): 3257.
[126] HANAHAN D. and WEINBERG R. A. Hallmarks of cancer: the next generation [J]. Cell, 2011, 144(5): 646-674.
[127] POUYSSEGUR J., DAYAN F. and MAZURE N. M. Hypoxia signalling in cancer and approaches to enforce tumour regression [J]. Nature, 2006, 441(7092): 437-443.
[128] SECOMB T. W., DEWHIRST M. W. and PRIES A. R. Structural adaptation of normal and tumour vascular networks [J]. Basic & Clinical Pharmacology & Toxicology, 2012, 110(1): 63-69.
[129] VAUPEL P. and MAYER A. Hypoxia in tumors: Pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications [J]. Advances in Experimental Medicine and Biology, 2014, 812: 19-24.
[130] BERTOUT J., PATEL S. and SIMON M. The impact of O2 human cancer availability on human cancer [J]. Nature Reviews Cancer, 2008, 8(12): 967-975.
[131] MICHIELS C., TELLIER C. and FERON O. Cycling hypoxia: A key feature of the tumor microenvironment [J]. Biochimica Et Biophysica Acta, 2016, 1866(1): 76-86.
[132] FERGUSON B. S., ROGATZKI M. J., GOODWIN M. L., et al. Lactate metabolism: historical context, prior misinterpretations, and current understanding [J]. European Journal of Applied Physiology, 2018, 118(4): 691-728.
[133] LIU J. N., BU W. and SHI J. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia [J]. Chemical Reviews, 2017, 117(9): 6160-6224.
[134] SHARMA A., ARAMBULA J. F., KOO S., et al. Hypoxia-targeted drug delivery [J]. Chemical Society Reviews, 2019, 48(3): 771-813.
[135] WANG S., REN W. X., HOU J. T., et al. Fluorescence imaging of pathophysiological microenvironments [J]. Chemical Society Reviews, 2021, 50(16): 8887-8902.
[136] LI Y., SUN Y., LI J., et al. Ultrasensitive near-infrared fluorescence-enhanced probe for in vivo nitroreductase imaging [J]. Journal of the American Chemical Society, 2015, 137(19): 6407-6416.
[137] ZHENG X., WANG X., MAO H., et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo [J]. Nature Communications, 2015, 5(6): 5834.
[138] ZHENG X., MAO H., HUO D., et al. Successively activatable ultrasensitive probe for imaging tumour acidity and hypoxia [J]. Nature Biomedical Engineering, 2017, 1(4): 0057.
[139] SHAY G., LYNCH C. C. and FINGLETON B. Moving targets: Emerging roles for MMPs in cancer progression and metastasis [J]. Matrix Biology, 2015, 44-46: 200-206.
[140] ALASEEM A., ALHAZZANI K., DONDAPATI P., et al. Matrix Metalloproteinases: A challenging paradigm of cancer management [J]. Seminars in Cancer Biology, 2019, 56: 100-115.
[141] KESSENBROCK K., PLAKS V. and WERB Z. Matrix metalloproteinases: regulators of the tumor microenvironment [J]. Cell, 2010, 141(1): 52-67.
[142] RHA S. Y., KIM J. H., ROH J. K., et al. Sequential production and activation of matrix metalloproteinase-9 (MMP-9) with breast cancer progression [J]. Breast Cancer Research and Treatment 1997, 43: 175-181.
[143] VIHINEN P., AHO R. A. and KäHäRI V. M. Matrix metalloproteinases as therapeutic targets in cancer [J]. Current Cancer Drug Targets, 2005, 5: 203-220.
[144] SOMIARI S. B., SOMIARI R. I., HECKMAN C. M., et al. Circulating MMP2 and MMP9 in breast cancer-potential role in classification of patients into low risk, high risk, benign disease and breast cancer categories [J]. International Journal of Cancer, 2006, 119(6): 1403-1411.
[145] DAS S., AMIN S. A. and JHA T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies [J]. European Journal of Medicinal Chemistry, 2021, 223: 113623.
[146] MCGOWAN P. M. and DUFFY M. J. Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database [J]. Annals of Oncology, 2008, 19(9): 1566-1572.
[147] KOHRMANN A., KAMMERER U., KAPP M., et al. Expression of matrix metalloproteinases (MMPs) in primary human breast cancer and breast cancer cell lines: New findings and review of the literature [J]. BMC Cancer, 2009, 9: 188.
[148] MIAMPAMBA M., LIU J., HAROOTUNIAN A., et al. Sensitive in vivo visualization of breast cancer using ratiometric protease-activatable fluorescent imaging agent, AVB-620 [J]. Theranostics, 2017, 7(13): 3369-3386.
[149] JI X., XIE S., JIAO Y., et al. MT1-MMP activatable fluorogenic probes with enhanced specificity via high-affinity peptide conjugation for tumor imaging [J]. Biomaterials Science, 2020, 8(8): 2308-2317.
[150] YIN L., SUN H., ZHANG H., et al. Quantitatively visualizing tumor-related protease-activity in vivo using a ratiometric photoacoustic probe [J]. Journal of the American Chemical Society, 2019, 141(7): 3265-3273.
[151] SAVARIAR E. N., FELSEN C. N., NASHI N., et al. Real-time in vivo molecular detection of primary tumors and metastases with ratiometric activatable cell-penetrating peptides [J]. Cancer Research, 2013, 73(2): 855-864.
[152] ZHAO X., YANG C. X., CHEN L. G., et al. Dual-stimuli responsive and reversibly activatable theranostic nanoprobe for precision tumor-targeting and fluorescence-guided photothermal therapy [J]. Nature Communications, 2017, 8: 14998.
[153] SHIMIZU Y., TEMMA T., HARA I., et al. In vivo imaging of membrane type-1 matrix metalloproteinase with a novel activatable near-infrared fluorescence probe [J]. Cancer Science, 2014, 105(8): 1056-1062.
[154] RANGASAMY L., GERONIMO B. D., ORTIN I., et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs) [J]. Molecules, 2019, 24(16): 2982.
[155] UNKART J. T., CHEN S. L., WAPNIR I. L., et al. Intraoperative tumor detection using a ratiometric activatable fluorescent peptide: A first-in-human phase 1 study [J]. Annals of Surgical Oncology, 2017, 24(11): 3167-3173.
[156] WHITLEY M. J., CARDONA D. M., LAZARIDES A. L., et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer [J]. Science Translational Medicine, 2016, 8(320): 320ra4.
[157] SMITH B. L., GADD M. A., LANAHAN C. R., et al. Real-time, intraoperative detection of residual breast cancer in lumpectomy cavity walls using a novel cathepsin-activated fluorescent imaging system [J]. Breast Cancer Research and Treatment, 2018, 171(2): 413-420.
[158] SMITH B. L., LANAHAN C. R., SPECHT M. C., et al. Feasibility study of a novel protease-activated fluorescent imaging system for real-time, intraoperative detection of residual breast cancer in breast conserving surgery [J]. Annals of Surgical Oncology, 2020, 27(6): 1854-1861.
[159] BERTUCCI F., NG C. K. Y., PATSOURIS A., et al. Genomic characterization of metastatic breast cancers [J]. Nature, 2019, 569(7757): 560-564.
[160] CARDOSO F., SENKUS E., COSTA A., et al. 4th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 4) [J]. Annals of Oncology, 2018, 29(8): 1634-1657.
[161] KIMBUNG S., LOMAN N. and HEDENFALK I. Clinical and molecular complexity of breast cancer metastases [J]. Seminars in Cancer Biology, 2015, 35: 85-95.
[162] LIU M., WANG Z., TAN T., et al. An aptamer-based probe for molecular subtyping of breast cancer [J]. Theranostics, 2018, 8(20): 5772-5783.
[163] CANCER GENOME ATLAS N. Comprehensive molecular portraits of human breast tumours [J]. Nature, 2012, 490(7418): 61-70.
[164] ESTRELLA V., CHEN T., LLOYD M., et al. Acidity generated by the tumor microenvironment drives local invasion [J]. Cancer Research, 2013, 73(5): 1524-1535.
[165] GATENBY R. A. and GILLIES R. J. Why do cancers have high aerobic glycolysis? [J]. Nature Reviews Cancer, 2004, 4(11): 891-899.
[166] GILLIES R. J. Cancer heterogeneity and metastasis:Life at the edge [J]. Clinical & Experimental Metastasis, 2021, 1(2): 4-8.
[167] DHUP S., DADHICH R. K., PORPORATO P. E., et al. Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis [J]. Current Pharmaceutical Design, 2012, 18: 1319-1330.
[168] PILLAI S. R., DAMAGHI M., MARUNAKA Y., et al. Causes, consequences, and therapy of tumors acidosis [J]. Cancer and Metastasis Reviews, 2019, 38(1-2): 205-222.
[169] TASDOGAN A., FAUBERT B., RAMESH V., et al. Metabolic heterogeneity confers differences in melanoma metastatic potential [J]. Nature, 2020, 577(7788): 115-120.
[170] HIRSCHHAEUSER F., SATTLER U. G. and MUELLER KLIESER W. Lactate: a metabolic key player in cancer [J]. Cancer Research, 2011, 71(22): 6921-6925.
[171] The challenge of early detection in cancer [J]. Science, 368(6491): 589-590.
[172] YAN R. and YE D. Molecular imaging of enzyme activity in vivo using activatable probes [J]. Science Bulletin, 2016, 61(21): 1672-1679.
[173] HERNOT S., VAN MANEN L., DEBIE P., et al. Latest developments in molecular tracers for fluorescence image-guided cancer surgery [J]. The Lancet Oncology, 2019, 20(7): e354-e367.
[174] HONG G., ANTARIS A. L. and DAI H. Near-infrared fluorophores for biomedical imaging [J]. Nature Biomedical Engineering, 2017, 1(1): 0010.
[175] LI C., CHEN G., ZHANG Y., et al. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications [J]. Journal of the American Chemical Society, 2020, 142(35): 14789-14804.
[176] ASANUMA D., SAKABE M., KAMIYA M., et al. Sensitive beta-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo [J]. Nature Communications, 2015, 6: 6463.
[177] ZHANG W., HUO F., CHENG F., et al. Employing an ICT-FRET integration platform for the real-time tracking of SO2 metabolism in cancer cells and tumor models [J]. Journal of the American Chemical Society, 2020, 142(13): 6324-6331.
[178] LU L., LI B., DING S., et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing [J]. Nature Communications, 2020, 11(1): 4192.
[179] FRANGIONI J. V. The problem is background, not signal [J]. Molecular Imaging, 2009, 8(6): 303-304.
[180] WANG C., WANG Z., ZHAO T., et al. Optical molecular imaging for tumor detection and image-guided surgery [J]. Biomaterials, 2018, 157: 62-75.
[181] ZHANG Y., HE S., CHEN W., et al. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes [J]. Angewandte Chemie International Edition, 2021, 60(11): 5921-5927.
[182] WANG Y., ZHOU K., HUANG G., et al. A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals [J]. Nature Materials, 2013, 13(2): 204-212.
[183] DEBERARDINIS R. J. and THOMPSON C. B. Cellular metabolism and disease: what do metabolic outliers teach us? [J]. Cell, 2012, 148(6): 1132-1144.
[184] BHUJWALLA Z. M., ARTEMOV D., BALLESTEROS P., et al. Combined vascular and extracellular pH imaging of solid tumors [J]. NMR in Biomedicine, 2002, 15(2): 114-119.
[185] GARCIA-CANAVERAS J. C., CHEN L. and RABINOWITZ J. D. The tumor metabolic microenvironment: Lessons from lactate [J]. Cancer Research, 2019, 79(13): 3155-3162.
[186] The relevance of tumour pH to the treatment of malignant disease [J]. Radiotherapy & Oncology, 1984, 2(4): 343-366.
[187] WEBB B. A., CHIMENTI M., JACOBSON M. P., et al. Dysregulated pH: a perfect storm for cancer progression [J]. Nature Reviews Cancer, 2011, 11(9): 671-677.
[188] ZHANG R., WANG L., WANG X., et al. Acid-induced in vivo assembly of gold nanoparticles for enhanced photoacoustic imaging-guided photothermal therapy of tumors [J]. Advanced Healthcare Materials, 2020, 9(14): e2000394.
[189] QI C., LIN J., FU L. H., et al. Calcium-based biomaterials for diagnosis, treatment, and theranostics [J]. Chemical Society Reviews, 2018, 47(2): 357-403.
[190] ALTINOGLU E., RUSSIN T., KAISER J., et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer [J]. ACS Nano, 2008, 2(10): 2075-2084.
[191] HUANG Y., CHEN Y., ZHOU S., et al. Dual-mechanism based CTLs infiltration enhancement initiated by Nano-sapper potentiates immunotherapy against immune-excluded tumors [J]. Nature Communications, 2020, 11(1): 622.
[192] QI C., MUSETTI S., FU L. H., et al. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications [J]. Chemical Society Reviews, 2019, 48(10): 2698-2737.
[193] LING D., XIA H., PARK W., et al. pH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. [J]. ACS Nano, 2014, 8(8): 8027-8039.
[194] ZHANG L., ZHANG M., ZHOU L., et al. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics [J]. Biomaterials, 2018, 181: 113-125.
[195] FU L. H., HU Y. R., QI C., et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy [J]. ACS Nano, 2019, 13(12): 13985-13994.
[196] LYNN A. and BONFIELD W. A novel method for the simultaneous, titrantfree control of pH and calcium phosphate mass yield [J]. Accounts of Chemical Research, 2005, 38(3): 202-207.
[197] DEBERARDINIS R. and CHANDEL N. Fundamentals of cancer metabolism [J]. Science Advances, 2016, 2(5): e1600200.
[198] DOHERTY J. R. and CLEVELAND J. L. Targeting lactate metabolism for cancer therapeutics [J]. Journal of Clinical Investigation, 2013, 123(9): 3685-3692.
[199] CORBET C. and FERON O. Tumour acidosis: from the passenger to the driver's seat [J]. Nature Reviews Cancer, 2017, 17(10): 577-593.
[200] JIN X., DEMERE Z., NAIR K., et al. A metastasis map of human cancer cell lines [J]. Nature, 2020, 588(7837): 331-336.
[201] LACAZE J. L., AZIZA R., CHIRA C., et al. Diagnosis, biology and epidemiology of oligometastatic breast cancer [J]. Breast, 2021, 59: 144-156.
[202] STEEG P. S. Targeting metastasis [J]. Nature Reviews Cancer, 2016, 16(4): 201-218.
[203] OBENAUF A. C. and MASSAGUE J. Surviving at a distance: Organ-specific metastasis [J]. Trends Cancer, 2015, 1(1): 76-91.
[204] SCHROEDER A., HELLER D. A., WINSLOW M. M., et al. Treating metastatic cancer with nanotechnology [J]. Nature Reviews Cancer, 2011, 12(1): 39-50.
[205] ALTORKI N. K., MARKOWITZ G. J., GAO D., et al. The lung microenvironment: an important regulator of tumour growth and metastasis [J]. Nature Reviews Cancer, 2019, 19(1): 9-31.
[206] HENSLEY C. T., FAUBERT B., YUAN Q., et al. Metabolic Heterogeneity in Human Lung Tumors [J]. Cell, 2016, 164: 681-694.
[207] GANESH K. and MASSAGUE J. Targeting metastatic cancer [J]. Nature Medicine, 2021, 27(1): 34-44.
[208] LARGILLIER R., FERRERO J. M., DOYEN J., et al. Prognostic factors in 1,038 women with metastatic breast cancer [J]. Annals of Oncology, 2008, 19(12): 2012-2019.
[209] CHEN W., HOFFMANN A. D., LIU H., et al. Organotropism: new insights into molecular mechanisms of breast cancer metastasis [J]. NPJ Precision Oncology, 2018, 2(1): 4.
[210] JIN L., HAN B., SIEGEL E., et al. Breast cancer lung metastasis: Molecular biology and therapeutic implications [J]. Cancer Biology & Therapy, 2018, 19(10): 858-868.
[211] KENNECKE H., YERUSHALMI R., WOODS R., et al. Metastatic behavior of breast cancer subtypes [J]. Journal of Clinical Oncology, 2010, 28(20): 3271-3277.
[212] MEDEIROS B. and ALLAN A. L. Molecular mechanisms of breast cancer metastasis to the lung: Clinical and experimental perspectives [J]. International Journal of Molecular Sciences, 2019, 20(9): 2272.
[213] CAO H., DAN Z., HE X., et al. Liposomes coated with isolated macrophage membrane can target lung metastasis of breast cancer [J]. ACS Nano, 2016, 10(8): 7738-7748.
[214] LIANG Y., ZHANG H., SONG X., et al. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets [J]. Seminars in Cancer Biology, 2020, 60: 14-27.
[215] QUAIL D. F. and JOYCE J. A. Microenvironmental regulation of tumor progression and metastasis [J]. Nature Medicine, 2013, 19(11): 1423-1437.
[216] DOOLITTLE E., PEIRIS P. M., DORON G., et al. Spatiotemporal targeting of a dual-ligand nanoparticle to cancer metastasis [J]. ACS Nano, 2015, 9(8): 8012-8021.
[217] OGIYA R., NIIKURA N., KUMAKI N., et al. Comparison of tumor-infiltrating lymphocytes between primary and metastatic tumors in breast cancer patients [J]. Cancer Science, 2016, 107(12): 1730-1735.
[218] BAMJI-STOCKE S., VAN BERKEL V., MILLER D. M., et al. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment [J]. Metabolomics, 2018, 14(6): 81.
[219] BERGERS G. and FENDT S. M. The metabolism of cancer cells during metastasis [J]. Nature Reviews Cancer, 2021, 21(3): 162-180.
[220] HASHIM A. I., ZHANG X., WOJTKOWIAK J. W., et al. Imaging pH and metastasis [J]. NMR in Biomedicine, 2011, 24(6): 582-591.
[221] ZHOU H., YI W., LI A., et al. Specific small-molecule NIR-II fluorescence imaging of osteosarcoma and lung metastasis [J]. Advanced Healthcare Materials, 2020, 9(1): e1901224.
[222] LI C., LIU Z.-S., DU X.-M., et al. Clinical value of whole-body magnetic resonance diffusion weighted imaging on detection of malignant metastases. [J]. Chinese Medical Sciences Journal, 2009, 24(2): 112-116.
[223] FAUBERT B., LI K. Y., CAI L., et al. Lactate metabolism in human lung tumors [J]. Cell, 2017, 171(2): 358-371.e9.
[224] BOEDTKJER E. and PEDERSEN S. F. The acidic tumor microenvironment as a driver of cancer [J]. Annual Review of Physiology, 2020, 82: 103-126.
[225] IPPOLITO L., MORANDI A., GIANNONI E., et al. Lactate: A metabolic driver in the tumour landscape [J]. Trends in Biochemical Sciences, 2019, 44(2): 153-166.
[226] ROLVER M. G. and PEDERSEN S. F. Putting Warburg to work: how imaging of tumour acidosis could help predict metastatic potential in breast cancer [J]. British Journal of Cancer, 2021, 124(1): 1-2.
[227] STACKER S. A., WILLIAMS S. P., KARNEZIS T., et al. Lymphangiogenesis and lymphatic vessel remodelling in cancer [J]. Nature Reviews Cancer, 2014, 14(3): 159-172.
[228] ROBERTS T. J., COLEVAS A. D., HARA W., et al. Number of positive nodes is superior to the lymph node ratio and American Joint Committee on Cancer N staging for the prognosis of surgically treated head and neck squamous cell carcinomas [J]. Cancer, 2016, 122(9): 1388-1397.
[229] KIM T., GIULIANO A. E. and LYMAN G. H. Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis [J]. Cancer, 2006, 106(1): 4-16.
[230] BOUGHEY J. C., SUMAN V. J., MITTENDORF E. A., et al. Sentinel lymph node surgery after neoadjuvant chemotherapy in patients with node-positive breast cancer: the ACOSOG Z1071 (Alliance) clinical trial [J]. The Journal of The American Medical Association, 2013, 310(14): 1455-1461.
[231] GIULIANO A. E., BALLMAN K. V., MCCALL L., et al. Effect of axillary dissection vs no axillary dissection on 10-Year overall survival among women with invasive breast cancer and sentinel node metastasis: The ACOSOG Z0011 (Alliance) randomized clinical trial [J]. The Journal of The American Medical Association, 2017, 318(10): 918-926.
[232] WEAVER D., ASHIKAGA T., KRAG D., et al. Effect of occult metastases on survival in node-negative breast cancer [J]. The New England Journal of Medicine, 2011, 364(5): 412-421.
[233] TAN L. K., GIRI D., HUMMER A. J., et al. Occult axillary node metastases in breast cancer are prognostically significant: results in 368 node-negative patients with 20-year follow-up [J]. Journal of Clinical Oncology, 2008, 26(11): 1803-1809.
[234] KUEHN T., BAUERFEIND I., FEHM T., et al. Sentinel-lymph-node biopsy in patients with breast cancer before and after neoadjuvant chemotherapy (SENTINA): a prospective, multicentre cohort study [J]. The Lancet Oncology, 2013, 14(7): 609-618.
[235] LAYEEQUE R., KEPPLE J., HENRY-TILLMAN R. S., et al. Intraoperative subareolar radioisotope injection for immediate sentinel lymph node biopsy [J]. Annals of Surgery, 2004, 239(6): 841-845.
[236] MAHESH M. and MADSEN M. Addressing Technetium-99m shortage [J]. Journal of the American College of Radiology, 2017, 14(5): 681-683.
[237] YANG Z., TIAN R., WU J., et al. Impact of semiconducting perylene diimide nanoparticle size on lymph node mapping and cancer imaging [J]. ACS Nano, 2017, 11(4): 4247-4255.
[238] JIA B., ZHANG X., WANG B., et al. Dual-modal probe based on polythiophene derivative for pre- and intraoperative mapping of lymph nodes by SPECT/Optical imaging [J]. ACS Applied Materials & Interfaces, 2018, 10(7): 6646-6651.
[239] ZHANG F., NIU G., LU G., et al. Preclinical lymphatic imaging [J]. Molecular Imaging and Biology, 2011, 13(4): 599-612.
[240] NANDU V. V. and CHAUDHARI M. S. Efficacy of sentinel lymph node biopsy in detecting axillary metastasis in breast cancer using methylene blue [J]. Indian Journal of Surgical Oncology, 2017, 8(2): 109-112.
[241] SAMORANI D., FOGACCI T., PANZINI I., et al. The use of indocyanine green to detect sentinel nodes in breast cancer: a prospective study [J]. European Journal of Surgical Oncology, 2015, 41(1): 64-70.
[242] SCHAAFSMA B. E., MIEOG J. S., HUTTEMAN M., et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery [J]. Journal of Surgical Oncology, 2011, 104(3): 323-332.
[243] TAGAYA N., YAMAZAKI R., NAKAGAWA A., et al. Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer [J]. The American Journal of Surgery, 2008, 195(6): 850-853.
[244] STOFFELS I., MORSCHER S., HELFRICH I., et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging [J]. Science Translational Medicine, 2015, 7(317): 317ra199.
[245] YANG X., WANG Z., ZHANG F., et al. Mapping sentinel lymph node metastasis by dual-probe optical imaging [J]. Theranostics, 2017, 7(1): 153-163.
[246] TAFRESHI N. K., ENKEMANN S. A., BUI M. M., et al. A mammaglobin-A targeting agent for noninvasive detection of breast cancer metastasis in lymph nodes [J]. Cancer Research, 2011, 71(3): 1050-1059.
[247] HAMEED S., CHEN H., IRFAN M., et al. Fluorescence guided sentinel lymph node mapping: From current molecular probes to future multimodal nanoprobes [J]. Bioconjugate Chemistry, 2019, 30(1): 13-28.
[248] NISHIO N., VAN DEN BERG N. S., VAN KEULEN S., et al. Optical molecular imaging can differentiate metastatic from benign lymph nodes in head and neck cancer [J]. Nature Communications, 2019, 10(1): 5044.
[249] GERLINGER M., ROWAN A., HORSWELL S., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing [J]. The New England Journal of Medicine, 2012, 366(10): 883-892.
[250] TAFRESHI N. K., BUI M. M., BISHOP K., et al. Noninvasive detection of breast cancer lymph node metastasis using carbonic anhydrases IX and XII targeted imaging probes [J]. Clinical Cancer Reseach, 2012, 18(1): 207-219.
[251] PASTOREKOVA S. and GILLIES R. J. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond [J]. Cancer and Metastasis Reviews, 2019, 38(1-2): 65-77.
[252] PEREIRA E. R., KEDRIN D., SEANO G., et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice [J]. Science, 2018, 359(6382): 1403-1407.
[253] LEE C., JEONG S., JANG C., et al. Tumor metastasis to lymph nodes requires YAP-dependent metabolic adaptation [J]. Science, 2019, 363(6427): 644-649.
[254] BENNETT Z. T., FENG Q., BISHOP J. A., et al. Detection of lymph node metastases by ultra-pH-sensitive polymeric nanoparticles [J]. Theranostics, 2020, 10(7): 3340-3350.
[255] PALMER A., MILLER A., DAVIS C., et al. Gas tensions in cardiac lymph as a reflection of the interstitial space of the heart [J]. Anglology, 1998, 49(9): 735-741.
中图分类号:

 Q-33    

馆藏号:

 52229    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式