- 无标题文档
查看论文信息

中文题名:

 基于认知的跳频通信系统关键技术研究与实现    

姓名:

 陈恒    

学号:

 1401120117    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 通信与信息系统    

学生类型:

 硕士    

学位:

 硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 通信与信息系统    

第一导师姓名:

 李赞    

第一导师单位:

 西安电子科技大学    

完成日期:

 2017-06-14    

外文题名:

 Research and Implementation on Key Technologies for FH Communication System Based on Cognition    

中文关键词:

 认知 ; 跳频通信 ; 跳频序列 ; 跳频同步 ; FPGA ; TOD    

外文关键词:

 Cognition ; FH Communication ; FH Sequence ; FH Synonization ; FGPA ; TOD    

中文摘要:

    跳频通信作为现代无线通信领域的主要手段之一,具有抗干扰能力强、截获概率低、多址组网能力优良以及易于与窄带通信系统兼容等特点。但是在现代信息化技术高速发展的环境下,频谱资源日益紧张、复杂干扰不断升级、通信链路环境复杂多变等诸多挑战使得传统跳频通信已经不能满足高效率、高可靠的数据传输需求,使得传统跳频通信系统性能达到了瓶颈。因此,在通信带宽受限的环境下,为了提高跳频通信的综合性能,需要跳频通信系统能够随着电磁频谱环境的变化动态调整参数,使得系统实时地工作在最优的状态。

基于跳频通信系统对有效性与可靠性的需求,本文将认知无线电的频谱感知技术引入传统跳频通信中,构建了一种基于认知的跳频通信系统,该系统具备动态调整参数的能力,并且对系统中的关键技术跳频序列生成方法以及跳频同步方案进行研究与实现。具体的工作包括以下内容:

1、介绍了传统跳频通信技术所面临的挑战,阐述了基于认知的跳频通信系统的研究背景、工作原理与关键技术,并且给出了系统的主体架构设计。

2、针对基于认知的跳频通信系统在复杂多变的电磁环境下能够满足参数动态可变的需求,本文研究了一种基于认知的跳频序列生成方法,该方法是对基于3DES分组密码算法生成的跳频基序列采用伪随机扰动映射算法进行处理,然后得到序列参数动态可变的跳频序列。通过仿真验证与数据分析,说明了该方法生成的跳频序列能够动态自适应地更改跳频频隙数、跳频间隔等参数,具备良好的综合性能,可用于基于认知的跳频通信系统。

3、分析了现有常用跳频同步方法的优缺点,结合同步字头法与独立信道法的优缺点,研究了一种基于TOD信息的差异化扫描跳频同步方案,并且对同步方案做出了详细的介绍与设计。通过仿真验证与数据分析,说明了该同步方案具有良好的可靠性与稳定性,能够用于基于认知的跳频通信系统。

4、对本文基于认知的跳频通信系统中的跳频总体控制方案进行设计,并且利用硬件描述语言VHDL完成了系统中跳频总体控制方案的数字电路设计,之后基于实验平台对整个系统进行了调试与验证。结果表明,该系统具备良好的综合性能,能够根据通信带宽内电磁频谱环境动态调整参数以及可靠地进行数据通信。

外文摘要:

As one of the main methods in modern wireless communication field, frequency hopping (FH) communication has many advantages, such as strong anti-interference ability, low interception probability, excellent ability of multiple access networking, being compatible with narrow band communication systems easily and so on. However, with the rapid development of modern informatization technology, many challenges make that FH communication technology doesn’t satisfy the requirement for high efficiency and reliable data transmission, such as growing tense spectrum resource, continuous upgrading of complicated interference, and complicated variable communication link environment. Moreover, the performance of traditional FH communication system reaches the bottleneck. Therefore, in order to improve the comprehensive performance of FH communication, it needs to adjust the system parameters dynamically and adaptively which is changed by the electromagnetic environment for FH communication system under the environment of limited bandwidths. And then the communication system can work in the optimal state dynamically.

 

Based on the requirement for validity and reliability of FH communication system, this paper has designed the cognitive FH communication system which brings the spectrum perception technology of cognitive radio into the traditional FH communication. This system can adjust the parameters dynamically. Moreover, the key technologies of FH sequence generation and FH synonization in this system have been studied and implemented in this paper. The main work contains following several aspects:

 

1、This paper introduces the challenges that the existing traditional FH communication technology has to face with, and expound the development background, operating principle, and key technology in cognitive FH communication system. The main architecture design of the system is also given.

 

2、Aiming at the requirement for changing the parameters adaptively and dynamically in the cognitive FH communication system which works in the complex and variable environment, this paper has studied the cognitive FH sequence which is generated by pseudo-mapping algorithm from the basic FH sequence based on the 3DES block encryption ciphers. Then we can get the FH sequence that its parameters change dynamically. From the simulation verification and data analysis, we can find the good comprehensive performance of the scheme what we have designed. Therefore, it can be used in the cognitive FH communication system.

 

3、The advantages and disadvantages of existing FH synonization technology are analyzed. Then a differential scanning FH synonization scheme which based on time of day(TOD) information is researched. Moreover, the detailed introduction and design for synonization scheme is also given. By the simulation verification and data analysis, this scheme shows the good reliability and stability. Therefore, it can be used in cognitive FH communication system.

 

4、This paper designs the FH overall controlling scheme for cognitive FH communication system. Moreover, the hardware deion language VHDL is used to design the corresponding digital circuit for controlling scheme, then the whole system is debugged and verified based on experimental platform. The result shows that the communication system owns excellent performance and can adjust the parameters dynamically according to the spectrum environment in the communication bandwidth and transmit data reliably.

参考文献:
[1] 梅文华, 王淑波, 邱永红等. 跳频通信[M]. 北京: 国防工业出版社, 2005.
[2] RONG X Z, LU Y Z, ZHENG Z. Cognitive frequency hopping[C]. Cognitive Radio Oriented Wireless Networks and Communications, 2008. CrownCom 2008, 3rd International Conference on, 2008: 1-4.
[3] 仇帅, 陈西宏, 王澈. 认知无线电在跳频通信中的应用研究[J]. 现代防御技术, 2013, 41(5): 64-69.
[4] JOSEPH M, GERALD Q M J. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1999, 6(4): 13-18.
[5] CAPAR F, MARTOYO I, T Weiss, et al. Comparison of bandwidth utilization for controlled and uncontrolled channel assignment in spectrum pooling system[C]. Vehicular Technology Conference, 2002. VTC Spring 2002. IEEE 55th: IEEE, 2002: 1069-1073.
[6] R W BRODERSEN, A WOLISZ, D CABRIC, et al. A cognitive radio approach for usage of virtual unlicensed spectrum [R]. Berkeley ,CA, USA: Berkeley Wireless Research Center, 2004.
[7] XG Working Group. The XG vision, RFC v2.0[R]. http://www.ir.bbn.com/projects/xmac/rfc/rfc-vision PDF. [2010-12-5].
[8] 王淑波, 梅文华, 毕笃彦. 蓝牙自适应跳频序列的性能分析[J]. 电波科学学报, 2006, 21(4): 612-618.
[9] 高健. 移动通信技术[M]. 北京: 机械工业出版社, 2007.
[10] ZANDER J, MALMGREN G. Adaptive frequency hopping in HF communications[J]. Communications IEEE Proceedings, 1995, 142: 99-105.
[11] OMER A BAMAHDI, SALAM A ZUMMO. An adaptive frequency hopping technique with application to blue-tooth-WLAN coexistence[C].Proceedings of the International Conference on Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies(ICNICONSMCL’06).
[12] 梅文华, 杨义先. 跳频通信地址编码理论[M]. 北京: 国防工业出版社, 1996.
[13] AMERICO M C CORREIA. Design of Reed-Solomon frequency-time hopping sequences[J], IEEE International Symposium on Spread Spectrum Techniques & Applications, 1998(3): 982-986.
[14] LEMPEL A, GREENBERGER H. Families of sequences with optimal hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94.
[15] 梅文华, 杨义先, 周炯槃. 跳频序列设计理论的研究进展[J]. 通信学报, 2003, 24(2): 92-101.
[16] 梅文华. 基于m序列构造最佳跳频序列族[J]. 通信学报, 1991, 12(1): 70-73.
[17] JIE Y, LIANG H, PENG L, et al. Design and implementation of a new kind of chaotic frequency hopping sequences[C]. 2008 International Conference on Wireless Communications, Networking and Mobile Computing: IEEE, 2008: 1-4.
[18] YING C, JIA S Z. Design of a clock controlled FH sequences based on chaos[J]. Chinese Journal of Radio Science, 2004, 19(2): 209-214.
[19] 刘向东, 张金海, 李志洁等. 基于混沌动态量化的宽间隔跳频序列[J]. 电路与系统学报, 2010, 15(4): 96-100.
[20] 傅志坚, 曾以成, 徐茂林. 基于单向耦合映象格子生成伪随机位序列的两种新方法[J]. 物理学报, 2008, 57(7): 4014-4020.
[21] HUI S L, CHONG X YU, QI Z, et.al, Chebyshev sequences degenerating into periodic sequences with realizing finite precision initial value[J], Journal of Beijing University of Posts and Telecommunications, 2010, 33(1): 102-105.
[22] 骆文, 甘良才. 一种组合映射产生混沌跳频序列的方法[J]. 电波科学学报, 2001, 16(3): 375-383.
[23] 米良, 朱中梁. 一种基于Logistic映射的混沌跳频序列[J]. 电波科学学报, 2004, 19(3): 334-337.
[24] GOLMIE,N REBALA O, CHEVROLLIER N. Bluetooth adaptive frequency hopping and scheduling[C]. Military Communications Conference, 2003. MILCOM’03: IEEE, 2003: 1138-1142.
[25] 王顶, 吴刚, 赵宏. 基于信息驱动的跳频通信系统新方案[J]. 现代电子技术, 2011, 34(13): 36-40.
[26] FU L L, WEI X L. New iterated decoding algorithm based on differential frequency hopping system[J]. Journal of Beijing Institute of Technology, 2005, 14(1): 27-31.
[27] ZAN L, YI L C, WEI D K, et al. A family of FH sequences based on 3DES block cipher for FHMA communications[C], IEEE International Conference on Communications: IEEE, 2004: 311-315.
[28] 张博, 庄奕琪, 胡斌等. 基于AES算法的安全跳频序列族构造[J]. 电子器件, 2008, 31(3): 1030-1032.
[29] 何晓中, 张申如, 王庭昌. 用Skipjack算法构造跳频码的实现[J]. 解放军理工大学学报, 2003, 4(4): 35-39.
[30] 李赞, 常义林, 蔡觉平等. 基于分组密码的跳频序列族构造[J]. 电子学报, 2005, 33(4): 620-623.
[31] ZAN L, JUE P C, YI L C. Determining the complexity of FH/SS sequence by approximate entropy[J]. IEEE Transactions on Communications, 2009, 57(3): 812-820.
[32] 肖方红, 闫桂荣, 韩宇航. 混沌伪随机序列复杂度分析的符号动力学方法[J]. 物理学报, 2004, 53(9): 2877-2881.
[33] XIAO J C, JIANG B S, ZAN L, et al. A new complexity metric for FH/SS sequences using fuzzy entropy[J]. Science China Information Sciences, 2011, 54(7): 1491-1499.
[34] LEI G, ZAN L, JIANG B S, et al. Analysis of asynonous frequency hopping multiple-access network performance based on the frequency hopping sequences[J]. IET Communications, 2014, 9(1): 117-121.
[35] 关磊. 高性能智能跳频序列族构建与组网理论研究[D]. 西安: 西安电子科技大学博士论文, 2014.
[36] 赵晋宇. 超短波跳频通信系统关键技术研究与FPGA实现[D]. 西安: 西安电子科技大学硕士论文, 2013.
[37] 甘良才, 苏次琳. 慢跳频系统捕获方案选择及性能分析[J]. 系统工程与电子技术, 1998, (11): 1-4.
[38] 焦樑. 短波跳频通信系统同步方法研究[D]. 成都: 电子科技大学硕士论文, 2013.
[39] 蒋定顺, 金力军. 高速跳频通信系统同步技术研究[J]. 电子科技大学学报, 2005, 34(1): 48-52.
[40] 张远贵, 向新, 梅文华等. 一种基于时间信息TOD的跳频同步方法[J]. 现代电子技术, 2009, 32(2): 82-84.
[41] 陈磊. 高速跳频电台的快速同步技术研究[D]. 西安: 西安电子科技大学硕士论文, 2006.
[42] 王敏志. 深入理解Altera FPGA应用设计[M]. 北京: 北京航空航天大学出版社, 2014.
[43] 邢志强, 崔海涵. 一种宽带CCSK解扩解调算法的FPGA设计[J]. 北方工业大学学报, 2016, 28(1): 13-18.
[44] 熊于菽. GMSK调制解调技术研究[D]. 重庆: 重庆大学硕士学位论文, 2007.
[45] 黄芝平, 李鹏, 钟晓鹏. 基于网格编码调制的维特比译码实现[J]. 信息通信卷, 2001, (12): 84-85.
中图分类号:

 11    

馆藏号:

 11-34875    

开放日期:

 2017-12-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式