- 无标题文档
查看论文信息

中文题名:

 空间光学合成孔径成像构型优化与图像复原研究    

姓名:

 曹阳    

学号:

 17131212982    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085233    

学科名称:

 工学 - 工程 - 航天工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 空间科学与技术学院    

专业:

 机械(专业学位)    

研究方向:

 光学合成孔径成像    

第一导师姓名:

 方海燕    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 帅平    

完成日期:

 2020-06-24    

答辩日期:

 2020-05-20    

外文题名:

 Research on Configuration Optimization and Image Restoration of Space Optical Synthetic Aperture Imaging    

中文关键词:

 光学合成孔径 ; 深空探测 ; 构型优化 ; 阵列旋转 ; 增长基线 ; 图像复原    

外文关键词:

 optical synthetic aperture ; deep space exploration ; configuration optimization ; array rotation ; growth baseline ; image restoration    

中文摘要:

合成孔径技术是利用多个小孔径实现高分辨成像的有效途径。随着前沿空间科学研究对观测分辨率需求的日益提高,光学合成孔径技术也被应用到系外行星的观测、黑洞的观测等深空探测领域。

深空探测由于空间尺度大、被测目标暗弱,需要更高的分辨率和对比度。比如为区分距太阳系60光年外1AU(日地距离)的目标天体,需要角分辨率达到0.01角秒的光学望远镜,当采用中红外波段时望远镜等效口径需达到200米。而受加工能力及火箭运载能力的制约,组阵子孔径的尺寸及数量有限,传统构型方法难以实现如此大的等效口径,需要采用扫描式合成孔径成像技术,其扫描方式和扫描次数的确定是关键问题。扫描次数过少会导致中高频部分的频域信息损失,造成图像严重退化不可复原。扫描次数过多会导致系统复杂度增大,造成子孔径协同控制精度降低。

针对光学合成孔径在深空探测应用中,面临着等效口径大而子孔径尺寸及数量受限的问题,为在获得高质量图像的同时降低扫描次数,本文深入研究了光学合成孔径构型选取及优化问题。主要研究内容如下:

1.光学合成孔径成像基本理论介绍。建立扫描式合成孔径成像模型,对光学传递函数、点扩散函数和调制传递函数之间的关系,以及一些重要的特征指标和成像性能评价指标进行详细介绍。

2.提出基于旋转和增长基线的扫描式合成孔径成像技术达到口径需求。将初始阵列以一定步长进行旋转和增长基线扫描,在每个扫描点处停留一段时间进行观测,直到所有扫描点组成的构型在光瞳面内实现200米口径全覆盖,整合所有观测信息进行图像复原。

3.将中心对称的扫描点位置排布应用到扫描式构型中,提出基于中高频分界圆搜索的构型优化方法,解决了传统构型的高频信息损失严重问题,可在降低扫描次数的同时获得高系统性能。

4.采用相关系数和峰值信噪比对滤波参数进行优化,改进维纳滤波算法。增强了算法的抗噪能力,实现低运算复杂度下的高质量图像复原。

5.将理想与估计点扩散函数进行加权,改进直接盲解卷积算法。实现系统传递函数的修正,同时对噪声干扰具有高鲁棒性。

实验结果表明,经过优化,采用4米口径的Golay3型初始阵列进行观测的扫描次数从131下降到81,图像质量大幅提升。说明所提构型优化方法效果明显,改进算法提升效果明显,满足系外行星探测需求。

外文摘要:

Synthetic aperture technology is an effective way to realize high-resolution imaging with multiple small apertures. With the increasing demand for observation resolution in frontier space science research, optical synthetic aperture technology is also applied to the observation of exoplanets, black holes and other deep space exploration fields. 

Deep space exploration needs higher resolution and contrast because of its large spatial scale and dim target. For example, in order to distinguish the target celestial bodies that are 60 light-years away from the solar system, an optical telescope with an angular resolution of 0.01 angular seconds is needed. When the mid infrared band is used, the equivalent aperture of the telescope needs to reach 200 meters. However, due to the constraints of processing capacity and rocket carrying capacity, the size and number of subaperture of array are limited. It is difficult for traditional configuration methods to achieve such a large equivalent aperture. Scanning synthetic aperture imaging technology is needed. The determination of scanning mode and scanning times is the key problem. Too few scanning times will lead to the loss of frequency domain information in the middle and high frequency parts, resulting in serious image degradation and irrecoverable. Too many scans will increase the complexity of the system and reduce the accuracy of sub aperture cooperative control.

In order to obtain high-quality images and reduce the number of scans, this paper studies the array selection and configuration optimization of optical synthetic aperture. The main research contents are as follows:

1. The introduction of the basic theory of optical synthetic aperture imaging. The relationship among optical transfer function, point spread function and modulation transfer function, as well as some important characteristic indexes and imaging performance evaluation indexes are introduced in detail.

2. The scanning synthetic aperture imaging technology based on rotation and growth baseline is proposed to meet the aperture requirements. The initial array was scanned with rotation and growth baseline in a certain step, and each scanning point was observed for a period of time, until the configuration composed of all scanning points realized full coverage of 200m aperture in the pupil plane, and all observation information was integrated for image restoration.

3. The scanning configuration adopts the central symmetrical scanning point position arrangement, a configuration optimization method based on the middle and high frequency boundary circle search is proposed to solve the problem of high frequency information loss of traditional configuration, which can reduce the number of scanning and obtain high system performance.

4. Optimization of filter parameters with correlation coefficient and PSNR, and the Wiener filter algorithm is improved. It enhances the anti noise ability of the algorithm, and realizes high-quality image restoration under low computational complexity.

5. The direct blind deconvolution algorithm is improved by weighting the ideal and the estimated point spread function. Implement the correction of system transfer function, at the same time, it has high robustness to noise interference.

The experimental results show that, after optimization, the number of scans of the initial Golay3 array with a 4-meter aperture is reduced from 131 to 81, and the image quality is greatly improved. It shows that the optimization effect of the configuration optimization method is obvious, and the improved algorithm has obvious improvement effect, which can meet the needs of exoplanet exploration.

中图分类号:

 P17    

馆藏号:

 46898    

开放日期:

 2020-12-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式