- 无标题文档
查看论文信息

题名:

 精密转轴圆度误差在线提取与评估方法研究    

作者:

 冯丹相    

学号:

 20041212027    

保密级别:

 公开    

语种:

 chi    

学科代码:

 085500    

学科:

 工学 - 机械    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械(专业学位)    

研究方向:

 转轴在线圆度误差提取与评估    

导师姓名:

 章云    导师信息

导师单位:

 西安电子科技大学    

第二导师姓名:

 刘炳刚    

完成日期:

 2023-06-20    

答辩日期:

 2023-05-30    

外文题名:

 Research on the Online Extraction and Evaluation Method of Roundness Error for Precision Rotor    

关键词:

 精密转轴 ; 在线提取 ; 误差分离 ; 测量不确定度 ; 自然选择的粒子群算法    

外文关键词:

 Precision rotor ; On-line extraction ; Error separation ; Measurement uncertainty ; NSPSO    

摘要:

装备制造行业正朝着高效率、高精度方向发展,高端制造装备的功能和性能在很大程度上取决于高精密转轴等核心旋转部件。由于轴系零件装配精度、制造工艺和工作环境等因素的影响,导致加工出的转轴会存在一定的圆度误差,这会引起转轴在运转过程中产生振动。因此,圆度误差的在线检测与提取是监测转轴工作状态、评估转轴运行性能的重要步骤,对于转轴圆度误差的定性分析与定量评估成为近些年国内外研究的焦点。本文研究了转轴圆度误差在线提取与评估方法,主要内容如下:

首先,针对实验中采集的信号存在噪声干扰的问题,研究了时频域滤波方法,分别在时域采用二阶高斯回归滤波器、在频域内通过阶跃滤波器去除信号噪声,并通过仿真验证了时、频域滤波方法的有效性,此外,结合对同一信号的时频域处理,给出了信号时频域滤波的对应关系。

其次,分析了影响三点法误差分离精度的因素,针对振动信号存在异常值的问题,提出了采用鲁棒高斯回归滤波的传感器信号处理方法,实现了信号异常值的剔除;针对传感器噪声干扰问题,提出了基于谐波抑制的传感器安装角度优化方法,实现了误差分离过程中的噪声抑制。仿真与实验结果表明:所提出的方法可有效提升误差分离精度,此外,运用蒙特卡罗方法对误差分离过程的不确定性进行了定量计算。

最后,研究了圆度误差的在线评估方法,分别采用圆度与圆柱度评估方法对转轴单一截面与多截面圆度误差进行分析,提出了基于自然选择的混合粒子群算法的圆柱误差优化评估方法,并通过实验对比验证了本文优化算法的准确性。

本文研究了转轴振动信号时频域信号滤波方法,提出了可处理异常值以及抑制噪声的误差分离精度提升技术,并计算了分离过程中的不确定性,实现了圆柱度误差优化评估,为保障转轴圆度误差的高精度在线检测与评估提供支撑。

关 键 词:精密转轴,在线提取,误差分离,测量不确定度,自然选择的粒子群算法

外摘要要:

The equipment manufacturing industry is developing in the direction of high efficiency and high precision, and the function and performance of high-end manufacturing equipment depend to a large extent on core rotating components such as high-precision rotors. Due to the influence of the assembly accuracy, manufacturing process and working environment of the rotor parts, there will be a certain roundness error of the machined rotor, which will cause vibration of the rotor during operation. Therefore, on-line detection and extraction of roundness error is an important step to monitor the working state and evaluate the operating performance of the rotor. Qualitative analysis and quantitative evaluation of the rotor roundness error have become the focus of research at home and abroad in recent years. This thesis studies the on-line extraction and evaluation method of the rotor roundness error, the main contents are as follows:

Firstly, in view of the noise interference in the signal collected in the experiment, the time-frequency domain filtering method is studied, and the second-order Gaussian regression filter is used in the time domain and the step filter is used in the frequency domain to remove the signal noise, and the effectiveness of the time-frequency domain filtering method is verified through simulation. In addition, combined with the time-frequency domain processing of the same signal, The correspondence of signal filtering in time-frequency domain is given.

Secondly, the factors affecting the error separation accuracy of the three-point method are analyzed. Aiming at the problem of abnormal values in vibration signals, a signal processing method using robust Gaussian regression filter is proposed to eliminate the abnormal values. In order to solve the problem of sensor noise interference, an optimization method of sensor installation Angle based on harmonic suppression is proposed to achieve noise suppression in the process of error separation. Simulation and experimental results show that the proposed method can effectively improve the accuracy of error separation. In addition, Monte Carlo method is used to quantitatively calculate the uncertainty of error separation process.

Finally, the online evaluation method of roundness error is studied, and the roundness and cylindricity evaluation methods are respectively used to analyze the roundness error of single section and multi-section of the rotor. The cylinder error optimization evaluation method based on nature selection particle swarm optimization is proposed, and the accuracy of the optimization algorithm in this thesis is verified by experimental comparison.

In this thesis, the time-frequency signal filtering method of rotor vibration signal is studied, and the error separation accuracy improvement technology which can deal with outliers and suppress noise is proposed. The uncertainty in the separation process is calculated, and the cylindricity error optimization evaluation is realized, which provides support for ensuring the high-precision online detection and evaluation of rotor roundness error.

Keywords: Precision rotor, On-line extraction, Error separation, Measurement uncertainty, NSPSO

参考文献:
[1] Huang P, Lee W B, Chan C Y. Investigation of the effects of spindle unbalance induced error motion on machining accuracy in ultra-precision diamond turning[J]. International Journal of Machine Tools & Manufacture, 2015, 94: 48-56.
[2] 梅雪松, 章云, 杜喆. 机床主轴高精度动平衡技术[M]. 北京:科学出版社, 2015.6.
[3] 贾智杰, 张政武, 姚斌, 等. 电主轴回转误差的测量与研究[J]. 陕西理工学院学报(自然科学版), 2015, 31(02):15-19.
[4] 王少蘅. 高速高精密主轴回转误差在线动态测试技术研究[D]. 广州:广东工业大学, 2006.
[5] Castro H. A method for evaluating spindle rotation errors of machine tools using a laser interferometer[J]. Measurement, 2008, 41(5):526–537.
[6] Garinei A, Marsili R. Design of an optical measurement system for dynamic testing of electrospindles[J]. Measurement, 2013, 46(5): 1715-1721.
[7] Viitala R, Widmaier T, Kuosmanen P. Subcritical vibrations of a large flexible rotor efficiently reduced by modifying the bearing inner ring roundness profile[J]. Mechanical Systems and Signal Processing, 2018, 110: 42-58.
[8] Zimmermann N, Ibaraki S. Self-calibration of rotary axis and linear axes error motions by an automated on-machine probing test cycle[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(5-6): 2107-2120.
[9] Li Q, Wang W, Zhang J, et al. All position-dependent geometric error identification for rotary axes of five-axis machine tool using double ball bar[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5): 1351- 1366.
[10] Ping S, Fu Y, Zhang F, et al. Study on measurement method of mirror reflection laser tracking interferometric length measurement [J]. Infrared and Laser Engineering, 2021, 50(12).
[11] 刘蜀韬, 杨平, 康海燕. 基于三点法的主轴回转误差二次分离技术[J]. 制造技术与机床, 2008, 2(2):112-115.
[12] 苏文宇. 主轴回转精度测试实验系统改造及其误差分析[D]. 哈尔滨工业大学, 2010.
[13] 杨钢. 高速电主轴径向跳动及静刚度测试方法[J]. 重庆理工大学学报(自然科学), 2013, 27(2): 62-68.
[14] 张雅超. 轴类零件径向跳动误差测量的机器视觉技术研究[D]. 长春:吉林大学, 2017.
[15] 金岸, 缪寅宵, 刘冬冬, 等. 主轴动态回转误差测量技术[J]. 光学精密工程, 2020, 28(10): 2227-2243.
[16] 刘力. 精密转台多自由度运动误差测量系统研究应用[D]. 大连理工大学, 2021.
[17] 丁要文. 转轴径向运动误差的激光干涉测量方法与技术研究[D]. 北京交通大学, 2022.
[18] 于铁民, 李振华. 测量圆度误差数学建模与实践[J]. 吉林建筑工程学院学报, 2006, 23(3):63-65.
[19] 蒋文兵, 郑鹏, 侯伯杰. 单纯形算法在圆度误差评定中的应用[J]. 中原工学学报, 2003, 14(1):37-40.
[20] Chen M C. Roundness inspection strategies for machine visions using non-linear programs and genetic algorithms[J]. International Journal of Production Research, 2000, 38(13): 2967-2988.
[21] 崔长彩, 黄富贵, 张认成, 等. 粒子群优化算法及其在圆度误差评定中的应用[J]. 计量学报, 2006, 27(4):317-320.
[22] 熊有伦. 精密测量的数学方法[M]. 北京:中国计量出版社, 1989.
[23] 郑鹏, 侯伯杰, 曹智军. 圆度误差置换算法的研究[J]. 郑州大学学报, 2002, 23(4): 107-109.
[24] 张娇娜, 郭伟伟, 曹衍龙, 等. 圆柱度误差评价方法研究[J]. 机床与液压, 2008, 36(2):106-108.
[25] 雷贤卿, 李言, 李济顺, 等. 圆柱度的三点法测量技术[J]. 仪器仪表学报, 2007, 28(5):944-951.
[26] 茅健. 基于数学定义的公差建模与误差评定技术的研究[D]. 浙江大学, 2007.
[27] Andrea R, Michele L. Minimal Exhaustive Search Heuristics (MESH) of point clouds for form tolerances: The minimum zone roundness[J]. Precision Engineering, 2016, 43.
[28] Samuel G L, Shunmugam M S. Evaluation of circularity from coordinate and form data using computational geometric techniques[J]. Prec Eng, 2000, 24(3): 251-263.
[29] Gadelmawla E S. Simple and efficient algorithms for roundness evaluation from the coordinate measurement data[J]. Measurement, 2010, 43(2): 223-235.
[30] Hodgson T J, Kay M G, Mittal R, et al. Evaluation of cylindricity using combinatorics[J]. IIE Transactions, 1999(31): 39-47.
[31] Nouira H, Bourdet P. Evaluation of roundness error using a new method based on a small displacement screw[J]. Measurement Science & Technology, 2014, 25(4): 984-986.
[32] Chou S Y, Sun C W. Assessing cylindricity for oblique cylindrical features[J]. International Journal of Machine Tools & Manufacture, 2010, 40(3): 327-341.
[33] Lai H Y, Jywe W Y, Chen C K. Precision modeling of form errors for cylindricity evaluation using genetic algorithms[J]. Journal of the International Societies for Precision Engineering and Nanotechnology, 2000, 24(4): 310-319.
[34] Rossi A, Antonetti M, Barloscio M, et al. Fast genetic algorithm for roundness evaluation by the minimum zone tolerance (MZT) method[J]. Measurement, 2011, 44(7): 1243-1252.
[35] Calvo R, Gómez E. Accurate evaluation of functional roundness from point coordinates[J]. Measurement, 2015, 73: 211-225.
[36] Vissiere A, Nouira H, Damak M, et al. A newly conceived cylinder measuring machine and methods that eliminate the spindle errors[J]. Measurement Science & Technology, 2012, 23(9): 2910-2916.
[37] 黄斌. 基于激光位移传感器的数控机床主轴径向运动误差测试方法研究[D]. 浙江大学, 2008.
[38] 曾汉平, 王标, 余晓芬. 大轴圆度误差在线测量新技术[J]. 兵工自动化, 2011, 30(2): 62-65.
[39] 林载誉. 大型轴类零件跳动在位测量系统[D]. 浙江大学, 2014.
[40] 乔凌霄, 陈江宁, 陈文会, 等. 一种基于多步法的高精密主轴回转误差分离算法[J]. 计量学报,2018, 39(1): 6-9.
[41] 魏许杰, 王红军, 王泽. 基于新的时域三点法的机床主轴回转误差研究[J]. 组合机床与自动化加工技术, 2019( 11): 84-91.
[42] 刘思遥, 黄美发, 张政泼. 基于多变量优化的机床主轴回转误差分离研究[J]. 组合机床与自动化加工技术, 2020(7): 85-87.
[43] Gao W, Sato E, Ohnuma T, et al. Roundness and spindle error measurement by angular three-probe method[J]. Journal of the Japan Society of Precision Engineering, 2002, 1195-1199.
[44] Eric R M, David A A, Donald L M. A comparison of reversal and multi-probe error separation[J]. Precision Engineering, March 2010, 34: 85-91.
[45] Cappa S, Reynaerts D, AL-Bender F. A sub-nanometre spindle error motion separation technique[J]. Precision Engineering, 2014, 38(3): 458-471.
[46] Anandan K, Ozdoganlar O. A multi-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43.
[47] Lee D H, Lee W R. Easy measuring instrument for analyzing the radial and tilt error motions of a rotating shaft[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 231(2): 667-674.
[48] Baek S W, Kim M G, Lee D H, et al. Multi-probe system design for measuring the roundness and rotation error motion of a spindle using an error separation technique[J]. Proceedings of the Institution of Mechanical Engineers, 2019, 233(5): 1547-1560.
[49] Tlainen T, Viitala R. Effect of positional errors on the accuracy of multi-probe roundness measurement methods[J]. Mechanical Systems and Signal Processing, 2020, 144: l-15.
[50] 翟国栋. 误差理论与数据处理[M]. 北京, 科学出版社, 2016.
[51] 卢燃, 庞博, 胡勇, 等. 基于卷积神经网络的发动机凸轮轴在线振动监测模型及异常信号处理算法研究[J]. 2022, 38(06): 19-24.
[52] 盛晓伟, 房小艳, 徐洋, 等. 随动磨削曲轴表面异常轮廓误差去除方法[J]. 振动测试与诊断, 2017, 37(06): 1114-1119.
[53] Anandan K P, Ozdoganlar O B. A muti-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43:119-131.
[54] 蔡洪, 苏永芝, 陈海莲. 时频域形态学滤波用于复杂时变长信号[J]. 北京信息科技大学学报(自然科学版), 2018, 33(03): 1-4.
[55] 赵桐. 机床主轴径向回转误差分离与补偿技术研究[D]. 沈阳工业大学, 2021.
[56] 邱海龙. 基于三点法的精密主轴径向回转误差分离技术研究[D]. 西安电子科技大学, 2015.
[57] Marsh E R. Precision spindle metrology[M]. U.S.A: DEStech Publications, 2010.
[58] 吴呼玲. 蒙特卡罗法评定圆度测量不确定度[J]. 自动化仪表, 2018, 39(05): 64-68.
[59] Muralikrishnan B, Raja J. Computational surface and roundness metrology[M]. Springer, 2009.
[60] 项载毓, 莫继良, 贺德强, 等. 基于三明治阻尼结构的高速列车制动摩擦振动噪声抑制[J/OL]. 机械工程学报, 2023, 1-13.
[61] Anandan K P, Ozdoganlar O B. A muti-orientation error separation technique for spindle metrology of miniature ultra-high-speed spindles[J]. Precision Engineering, 2016, 43:119-131.
[62] Fujimaki K, Sase H, Mitsui K. Effects of sensor noise in digital signal processing of the three-point method[J]. Measurement Science and Technology, 2007, 19(1): 015201.
[63] Viitala R, Widmaier T. Uncertainty analysis of phase and amplitude of harmonic components of bearing inner ring four-point roundness measurement[J]. Precision Engineering 2018, 54, 118-130.
[64] Kušera J, Bode P, Stvpánek V. The 1993 ISO Guide to the Expression of Uncertainty in Measurement Applied to NAA[J]. Journal of Radioanalytical & Nuclear Chemistry, 2000, 245(1): 115-122.
[65] 田宗利. 平稳序列最值的几乎处处中心极限定理[D]. 吉林大学, 2022.
[66] 吴呼玲. 基于蒙特卡罗法与GUM法的直线度测量不确定度评定[J]. 工具技术, 2017, 51(05): 104-107.
[67] 王立平, 张彬彬, 吴军. 基于最小二乘法的电主轴回转精度评价[J]. 制造技术与机床, 2018 (02): 54-60.
[68] 岳龙龙, 黄强先, 梅腱, 等. 基于最小包容区域法的圆度误差评定方法[J]. 机械工程学报, 2020, 56(04): 42-48.
[69] 姜传文, 唐旭晟. 一种基于最小外接圆法的圆度误差评定算法[J]. 机械制造与自动化, 2017, 46(05): 53-58.
[70] 熊有伦. 最小区域的统一判别准则和计算机仲裁[J]. 计量学报, 1987, 8(2): 126-133.
[71] 龚纯, 王正林. MATLAB最优化计算[M]. 北京:电子工业出版社, 2014.9.
[72] 胡乔治. 多目标粒子群优化算法的研究及应用[D]. 北京化工大学, 2021.
中图分类号:

 TH6    

馆藏号:

 60071    

开放日期:

 2024-09-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式