- 无标题文档
查看论文信息

中文题名:

 大型空间结构在轨组装动力学问题研究    

姓名:

 张贝贝    

学号:

 20041211765    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 机械电子工程    

第一导师姓名:

 段宝岩    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-06-06    

答辩日期:

 2023-05-28    

外文题名:

 Research on On-orbit Assembly Dynamics of Large Space Structure     

中文关键词:

 大型空间结构 ; 在轨组装 ; 多柔体动力学 ; 时变结构 ; 组装序列规划    

外文关键词:

 Large space structure ; On-orbit assembly ; Multi-flexible body dynamics ; Time- varying structure ; Assembly sequence planning    

中文摘要:

随着航天技术的发展,大型空间结构是未来航天领域发展的趋势。受限于运载火箭的单次运载能力,大型空间结构的在轨建造需要运用在轨组装技术来完成。大型空间结构在轨组装期间不可避免的组装撞击会造成空间结构的振动,影响组装的顺利完成。结构在整个组装过程中呈现变结构、变质量、大柔性等特点,其动力学模型的建立与分析是当前研究的热点。本文以OMEGA空间太阳能电站为研究对象,开展在轨组装动力学建模、组装过程中的振动分析以及组装序列规划研究,具体工作如下:

1. 建立了具有变结构、变质量以及大柔性特点的在轨组装动力学模型。首先从一个简单的平面桁架结构的组装着手,分析大型空间结构在轨组装过程中变质量、大柔性以及变结构等问题。从数学和力学上对具有这些特征的结构在轨组装进行合理的描述。将组装时的变结构分成两个阶段,一是在组装过程中装配好的结构在不断改变,二是第 次组装过程中的第 个子结构也在改变,对第 个模块的组装过程进行了详细的动力学建模。同时对整个组装过程中的时变参数进行了分析。

2. 建立了组装阶段与代数微分方程对应的多柔体分析有限元模型,同时进行了组装全过程仿真分析。首先根据组装单元具有模块化特点,将结构的组装划分为M个阶段,按照提取式建模策略,实现了多柔体分析有限元模型的建立和更新。基于所建立的模型完成兆瓦级OMEGA空间太阳能电站核心圈以及聚光镜组装全过程仿真分析,在仿真分析中考虑了模块的组装撞击、模块的展开和展开驱动、机器人的爬行以及组装序列对组装过程结构振动的影响。数值仿真结果说明,随着组装的进行,结构整体的动力学特性有明显的变化并且变化过程与模块的组装序列有关。模块的组装撞击、机器人爬行和展开驱动都会影响结构整体的稳定性。

3. 提出一种考虑拓扑约束并且使组装路径最短以及组装过程中的姿态扰动最小的混合优化算法。将聚光镜组装序列规划问题分解成组装路径和姿态扰动的最优问题,在两个优化步骤中进行。以结构几何拓扑约束以及组装的可行性为约束条件,引入了拓扑约束C,考虑了模块之间的柔性连接,以路径最短和姿态扰动最小为优化指标,结合蚁群算法解决上述约束的组装路径规划问题。仿真结果证明了所提出的算法可以在满足路径最短以及最小姿态扰动的情况下完成聚光镜的组装任务。

 

外文摘要:

Thanks to the advances in space technology, the aerospace field is expected to witness the growth of large space structures in the future. To ensure the successful construction of these structures on-orbit, on-orbit assembly technology is essential. However, when on-orbit assembly of large space structures is conducted, the vibration of the space structure will be unavoidable, thus impeding the smooth completion of the assembly. During the on-orbit assembly of large space structures, the inevitable assembly impact will cause the vibration of the space structure and affect the smooth completion of the assembly. During the assembly process, it presents the characteristics of variable configuration, variable mass, large flexibility, etc. The establishment and analysis of its dynamic model is a hot topic in current research. This thesis takes OMEGA-SSPS as the research object to carry out structural dynamic modeling, vibration analysis and sequence planning research. The main work of this thesis is as follows:

 

1. A dynamic model of on-orbit assembly with variable structure, variable mass, and large flexibility is established. Beginning with the structural construction of a straightforward planar cantilever beam, this thesis investigates the issues of variable mass, considerable suppleness, and variable structure in the on-orbit assembly of expansive space structures. The physical and mathematical depiction of the spatial assembly of structures with these features is sensible. The variable structure during assembly is divided into two stages: one is that the assembled structure is constantly changing during the assembly process, and the other is that the nth substructure during the nth assembly process is also changing. A comprehensive dynamic model is created to construct the  module. Throughout the assembly, the time-varying parameters are analyzed.

 

2. A finite element model of multi-flexible body analysis corresponding to algebraic differential equation were established and the whole process simulation analysis. According to the modular characteristics of the assembly unit, the assembly of the structure was divided into M stages. According to the extractive modeling strategy, the finite element model of multi-flexible body analysis and its updating were established. This model enabled the whole process simulation analysis of the core circle and condenser assembly to be completed. In the simulation analysis, the effects of module assembly impact, module deployment and deployment drive, robot crawling and assembly sequence on structural vibration during assembly are considered. The numerical simulation results demonstrate that with the assembly process progresses, its dynamic characteristics become more pronounced and the changing process is related to the assembly sequence of modules. Both the robot crawling and the expansion drive will increase the vibration amplitude of the structure.

 

3. A hybrid optimization algorithm is proposed which takes topological constraints into account and minimizes the assembly path and attitude disturbance during assembly. The assembly sequence planning problem of the whole module is carried out in two optimization steps. With geometric topological constraints of the structure and the feasibility of assembly as constraints, the shortest path and minimum attitude disturbance as optimization indexes, the assembly path planning problem with the above constraints is solved by a hybrid optimization algorithm The simulation results prove that the algorithm proposed in this chapter can realize the assembly task of the concentrator under the condition of the shortest path and minimum attitude disturbance.

参考文献:
[1] 庄逢甘, 李明, 王立, 等. 未来航天与新能源的战略结合——空间太阳能电站[J]. 中国航天,2008,(07):36-39.
[2] Glaser P E. Power from the sun: its future[J]. Science, 1968, 162(3856):857-861.
[3] 仲元昌, 魏莹莹, 姚博文, 等. 空间太阳能电站的发展及关键技术综述[J]. 电源技术,2019,43(06):1063-1066.
[4] Hou Xinbin, Wang Li. Study on Multi-Rotary Joints Space Power Satellite Concept [J].Aerospace China,2018,19(01):19-26.
[5] 杨阳, 段宝岩, 黄进, 等. OMEGA型空间太阳能电站聚光系统设计[J].中国空间科学技术,2014,(5):18-23.
[6] 杨阳. OMEGA型空间太阳能电站聚光镜与光电转换系统设计[D]. 陕西:西安电子科技大学,2017.
[7] Crespo Da Silva M R M, Zaretzky C L. Nonlinear dynamics of a flexible beam in a central gravitational field-I. Equations of motion[J]. International Journal of Solids and Structures, 1993, 30(17): 2287-2299.
[8] 刘福寿. 大型空间结构动力学等效建模与振动控制研究[D].南京航空航天大学,2015.
[9] 沈晓凤, 曾令斌, 靳永强, 等. 在轨组装技术研究现状与发展趋势[J].载人航天,2017,23(2):228-235,244.
[10] 丁继锋, 王罡, 任磊, 等. 空间太阳能电站在轨 3D 打印方案设想[C]. 航天科技集团公司科技委航天器总体技术专业组2014年学术研讨会, 2014, 10:89-98.
[11] 蔡远文, 郭会, 李岩. 航天器在轨组装技术进展[J]. 兵工自动化,2009,28(10):6-8+14.
[12] 崔瑛楠. 美国空间在轨装配技术发展史[D].哈尔滨师范大学,2012.
[13] 芦瑶. 空间在轨装配技术发展历程研究[D].哈尔滨工业大学,2011.
[14] 范唯唯, 杨帆, 韩淋, 等. 国际空间站俄罗斯舱段20年主要科研活动及未来部署综述[J].载人航天,2018,24(4):553-560.
[15] 林来兴. 美国“轨道快车”计划中的自主空间交会对接技术[J]. 国际太空,2005,(02):23-27.
[16] NASA.Emerging space capabilities and tipping point summaries[EB/OL]. ( 2015. 12. 19) .https: //www. Nasa. gov /feature /emerging-space-capabilities-and-tipping point-summaries/.
[17] 贾平. 国外在轨装配技术发展简析[J]. 国际太空,2016(12):61-64.2016.12.012.
[18] 李团结, 马小飞, 华岳等. 大型空间天线在轨装配技术[J]. 载人航天, 2013,19(1) : 86-90.
[19] Chen T, Wen H, Hu H, et al. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly[J]. Acta Astronautica, 2016, 121: 271-281.
[20] 余瑶, 文浩, 陈提. 中心刚体-柔性梁应变反馈多目标优化控制[J]. 动力学与控制学报,2017,15(04):356-362.
[21] 高朝辉, 王俊峰, 童科伟, 等. 重型运载火箭发射空间太阳能电站相关技术问题分析[J].导弹与航天运载技术,2016,(2):51-54.
[22] 马尚君, 刘更, 吴立言, 等. 航天器结构的模块化设计方法综述[J]. 机械科学与技术,2011,30(06):960-967.
[23] 丁继峰, 高峰, 钟小平, 等. 在轨建造中的关键力学问题[J].中国科学:物理学 力学 天文学,2019,49(02):54-61.
[24] Huston. Multibody dynamics:Modeling and analysis methods[J].Appl Mech- rev. 1991, 44(3): 109-117.
[25] Shabana A.Flexible multibody dynamics:review of past and recent developments [J].Multibody System Dynamics.1997,1:189-222.
[26] Schiehlen W.Multibody system dynamics:Roots and Perspectives[J]. Multibody System Dynamics. 1997.1:149-188.
[27] 陆佑方. 柔性多体系统动力学[M]. 北京:高等教育出版社, 1996:1-7.
[28] Wasfyt M,Noor AK. Computational strategies for f lexible multibody systems[J].ApplMech Rev,2003,56(6):553-613.
[29] Ashley H. Observations on the dynamic behavior of large flexible bodies in orbit[J]. AIAA Journal,1967,5(3):460-469.
[30] Mingle Deng, Baozeng Yue. Attitude tracking control of flexible spacecraft with large amplitude slosh[J]. Acta Mechanica Sinica,2017,33(06):1095-1102.
[31] Wu L, Tiso P. Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach[J]. Multibody System Dynamics, 2016, 36(4): 405-42.
[32] Das M, Barut A, Madenci E. Analysis of multibody systems experiencing large elastic deformations[J]. Multibody System Dynamics, 2010, 23(1): 1-3.
[33] Wie B, Roithmayr C M. Attitude and orbit control of a very large geostationary solar power satellite[J]. Journal of Guidance, Control and Dynamics, 2005, 28(3): 439-451.
[34] Terumichi Y, Kaczmarczyk S, Sogabe K. Numerical approach in the analysis of flexible body motion with time-varying length and large displacement using multiple time scales: The 1st Joint International Conference on Multibody System Dynamics[J]. Lappeenranta, Finland: 2010.
[35] 赵将, 刘铖, 田强, 等. 黏弹性薄膜太阳帆自旋展开动力学分析[J].力学学报,2013,45(5):746-754.
[36] 邓子辰, 曹珊珊, 李庆军, 等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究[J].中国科学:技术科学,2016,46(12):1242-1253.
[37] 文奋强, 邓子辰 ,魏乙, 等.太阳帆塔轨道和姿态耦合动力学建模及辛求解[J].应用数学和力学,2017,38(07):762-768.
[38] 王启生, 蒋建平, 李庆军, 等. 空间机器人组装超大型结构的动力学分析[J]. 应用数学和力学,2022,43(08):835-845.
[39] 荣吉利, 崔硕, 石文静, 等. 大型空间电站在轨展开与组装动力学与控制[J]. 宇航学报,2021,42(03):295-304.
[40] 王雪瑶. 国外在轨服务系统最新发展(下)[J].国际太空,2017(11):65-69.
[41] R. Colin, Mclnnes, Distributed control of maneuvering vehicles for on-orbit assembly, [J]. Guid. Contr. Dynam. 18 (5) (1995) September-October.
[42] Ishijima Y, Tzeranis D, Dubowsky S. The on-orbit maneuvering of large space flexible structures by free-flying robots[J]. Proceedings of i-SAIRAS 2005 - The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space,2005, 603:449-456.
[43] Badawy Ahmed, Colin R. McInnes, On-orbit assembly using superquadric potential fields, [J]. Guid. Contr. Dynam. 31 (1) (2008) January–February.
[44] Rebecca C. Foust, Soon-Jo Chung, Fred Y. Hadaegh, Autonomous in-orbit satellite assembly from a modular heterogeneous swarm using sequential convex pro- gramming, AIAA SPACE Forum, 13-16 September 2016[C]. Long Beach, California, AIAA/AAS Astrodynamics Specialist Conference, AIAA 2016-5271.
[45] She Y C, Li S, Du B, et al. On-orbit assembly mission planning considering topological constraint and attitude disturbance[J]. Acta Astronautica, 2018,152:692-704.
[46] Dario Izzo, Lorenzo Pettazzi, Mark Ayre, Mission concept for autonomous on orbit assembly of a large reector in space[C].56th International Astronautical Congress, Paper IAC-05-D1.4.03.
[47] 林鲲鹏. 空间站运营总体任务规划技术研究[D].国防科学技术大学,2010.
[48] 陈提. 柔性航天器状态一致与自主组装控制[D].南京航空航天大学,2017.
[49] 徐影. 多星协同近距离操作任务规划与姿轨耦合控制研究[D].国防科技大学,2019.
[50] 王恩美. 大型空间结构在轨组装阶段的分布式振动控制[D].大连理工大学,2020.
[51] 张嘉城. 空间站运营在轨任务分配与后勤策略统筹多目标规划[D].国防科技大学,2021.
[52] 郭继峰, 王平, 崔乃刚. 大型空间桁架结构装配序列的分层规划方法[J].哈尔滨工业大学学报,2008(03):350-353.
[53] 郭继峰, 王平, 程兴, 等.一种用于空间在轨装配的两级递阶智能规划算法[J].宇航学报,2008(03):1059-1063+1069.
[54] 刘谋怀. 空间太阳能电站在轨组装序列规划研究[D].大连理工大学,2022.
[55] 孙楚琦, 吴限德, 谢亚恩, 等. 改进遗传算法的在轨组装路径规划[J]. 哈尔滨工程大学学报,2017,38(07):1167-1172.
[56] 罗建军, 王嘉文, 王明明, 等. 机器人在轨构建空间桁架结构的装配序列规划方法[J]. 宇航学报,2021,42(04):437-449.
[57] 王豆, 段晓强, 邵晓东, 等. 一种反射面天线面板装配优化方法[J]. 计算机集成制造系统,2020,26(06):1679-1690.
[58] 郝子然. 太空望远镜主镜系统在轨装配研究[D].哈尔滨工业大学,2018.
[59] 王兴龙, 周志成, 王典军, 等. 面向空间近距离操作的机械臂与服务卫星协同控制[J]. 宇航学报,2020,41(01):101-109.
[60] 胡国伟. 可展开天线展开动力学分析与仿真研究[D].西安电子科技大学,2011.
[61] 纪祥飞. 欧米伽空间太阳能电站多柔体动力学分析、协同与综合设计研究[D].西安电子科技大学,2022.
[62] 曹丽,周志成,曲广吉.面向控制的变构型航天器柔性耦合动力学建模与仿真[J].工程力学,2013,30(08):266-271.
[63] 曲广吉.航天器动力学工程[M].北京:中国科学出版社,2000:159-165.
[64] 杨阳, 段宝岩, 黄进, 等. OMEGA型空间太阳能电站聚光系统设计[J]. 中国空间科学技术,2014(5):18-23.
[65] Wasfyt M,Noor AK. Computational strategies for f lexible multibody systems[J].ApplMech Rev,2003,56(6): 553-613.
[66] 徐斌,高跃飞,余龙. MATLAB有限元结构动力学分析与工程应用[M].北京:清华大学出版社,2009.
[67] 李仙丽, 王东旭, 张逸群, 等. SSPS-OMEGA超大型球形聚光器结构拓扑构型与设计[J]. 宇航学报,2018,39(04):450-456.
[68] 张逸群, 杨东武, 杜敬利. 周边桁架可展开天线小冲击展开过程设计[J]. 宇航学报,2011,32(05):1205-1210.
[69] 李素兰. 超大型全可动反射面天线高指向精度关键技术研究[D].西安电子科技大学,2014.
[70] 陈代海,王雅南,李整. 基于板单元形函数的公路桥梁车桥耦合振动分析方法研究[J].动力学与控制学报,2019,17(04):318-325.
[71] 闫大勇. 蚁群算法简介[J]. 黑龙江科技信息,2008,(34):50.
[72] 吴小峰, 朱家齐. 蚁群算法概述[J]. 福建电脑,2009,25(04):39-40.
[73] 郭琴, 郑巧仙. 基于优化蚁群算法的机器人路径规划[J]. 湖北大学学报(自然科学版),2023,45(02):157-163.
[74] Christian Hellström, Seppo Mikkola. Satellite attitude dynamics and estimation with the implicit midpoint method[J]. New Astronomy,2009,14(5).
中图分类号:

 V41    

馆藏号:

 58523    

开放日期:

 2023-12-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式