- 无标题文档
查看论文信息

中文题名:

 碎片光散射特性分析及仿真软件开发    

姓名:

 王佳鹏    

学号:

 20051212136    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科名称:

 理学 - 物理学 - 光学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 西安电子科技大学    

院系:

 物理学院    

专业:

 物理学    

研究方向:

 计算电磁学    

第一导师姓名:

 韩一平    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-06-15    

答辩日期:

 2023-05-29    

外文题名:

 Analysis of Light Scattering Characteristics ofDebris and Development of Simulation Software    

中文关键词:

 软件开发 ; Qt ; 数据库空间碎片 ; 光散射    

外文关键词:

 Space Debris ; Light Scattering ; Software Development ; Ot ; Database    

中文摘要:

随着航天技术的发展,太空中的航天器越来越多,碎片问题也日益凸显。高速飞行的空间碎片会对在役的卫星、空间站等产生巨大威胁,因此本文从碎片光散射特性出发,研究对于空间碎片的观测问题,针对该问题开发一款光散射仿真软件并建立相匹配的数据库管理系统。

1.本文首先介绍了离散偶极子近似方法(Discrete Dipole Approximation,DDA)和蒙特卡罗模拟方法(Monte Carlo method),讨论了离散偶极子近似中的计算精度问题,完成了对于单个碎片的散射特性计算,然后介绍了蒙特卡罗模拟光子运动的计算流程,得到了光子在碎片群中的透射概率和反射概率,最后对Mie理论进行了推导,作为对照计算验证算法的可靠性。

2.选用Qt开发框架进行软件开发,针对计算功能、数据储存功能和交互功能做出了完整的软件系统架构,采用模块化设计分别从文件操作模块、线程操作模块实现了软件的计算功能,数据库模块实现了数据储存功能,图形界面模块实现了人机交互功能,完成了对仿真软件计算流程的整体设计与实现。

3.借鉴大数据的思想,为计算软件搭配了数据库管理系统,实现了对计算结果的保存和随时调用,确保了数据的安全性和准确性。对于数据库的底层逻辑进行了解释,然后结合计算参数和计算结果完成了数据库的结构设计,通过SQL(Structured Query Language)语言完成了数据库的编写工作,并结合向量空间模型和数据库内已有数据,实现了对计算结果的模糊匹配,可以通过导入结果反推初始计算条件。

4.利用软件进行计算测试,分析入射波波长和碎片材料(折射率)对于散射特征的影响,然后又针对碎片群密度、碎片形状和碎片群尺寸分布分别展开计算,研究了球形碎片、六棱柱形碎片、子弹形碎片和子弹花环形碎片各自组成的碎片群对于红外波段入射光的传输特性的影响,针对球形碎片,将碎片群尺寸分布按正态分布、对数正态分布和均匀分布进行计算,得到不同尺寸分布对于入射光的传输特性影响。

外文摘要:

With the development of space technology, there are more and more spacecraft in space, and the problem of debris is becoming increasingly prominent. Space debris flying at high speed will pose a great threat to in-service satellites and space stations. Therefore, this paper studies the observation of space debris from the light scattering characteristics of debris, and develops a light scattering simulation software and establishes a matching database management system for this problem.

 

1.This paper introduces the discrete dipole approximation ( DDA ) and Monte Carlo method, discusses the calculation accuracy of discrete dipole approximation, completes the calculation of scattering characteristics of single debris particles, then introduces the calculation process of Monte Carlo simulation of photon motion, and obtains the transmission probability and reflection probability of photons in the debris group.

 

2. The Qt development framework is selected for software development, and a complete software system architecture is made for the calculation function, data storage function and interaction function. The modular design is used to realize the calculation function of the software from the file operation module and the thread operation module respectively. The database module realizes the data storage function, and the graphical interface module realizes the human-computer interaction function, and completes the overall design and implementation of the simulation software calculation process.

 

3. Drawing on the idea of big data, the database management system is used for the calculation software, which realizes the preservation and call of the calculation results at any time, and ensures the safety and accuracy of the data. The underlying logic of the database is explained, and then the structural design of the database is completed by combining the calculation parameters and the calculation results. The database is written by SQL ( Structured Query Language ) language. Combined with the vector space model and the existing data in the database, the fuzzy matching of the calculation results is realized, and the initial calculation conditions can be deduced by importing the results.

 

4. The influence of incident wave wavelength and fragment material ( refractive index ) on scattering characteristics is analyzed by software, and then the density, shape and size distribution of fragment group are calculated respectively, and the influence of fragment group composed of spherical fragment, hexagonal prism fragment, bullet fragment and bullet flower ring fragment on the transmission characteristics of incident light in infrared band is studied.

参考文献:
[1] 魏龙涛. 空间碎片模型比较与减缓策略分析[D]. 哈尔滨工业大学, 2006.
[2] Banken E, Schneider V E, Ben-Larbi M K, et al. Biomimetic space debris removal: conceptual design of bio-inspired active debris removal scenarios[J]. CEAS Space Journal, 2022: 15(1): 461-476.
[3] 赵洋. 第一颗人造地球卫星发射成功[J]. 自然科学博物馆研究, 2017, 2(04): 2.
[4] Trushlyakov V I, Yudintsev V V, Onishchuk S Y. Risks of docking and nulling of the kinetic moment of an uncooperative large-sized space debris[J]. Journal of Space Safety Engineering, 2022, 9(04): 523-527.
[5] 李怡勇, 沈怀荣, 李智. 空间碎片环境危害及其对策[J]. 导弹与航天运载技术, 2008, (06): 31-35.
[6] Black S D. Space-debris hazards of interplanetary exploration[J]. Journal of Spacecraft and Rockets, 1964, 1(03): 317-322.
[7] Ledkov A S. Aslanov V S. Active space debris removal by ion multi-beam shepherd spacecraft[J]. Acta Astronautica, 2023, 205(205): 247-257.
[8] Jiang Y, Hu S, Du J, et al. Inversion of space debris material by synthetic light curves[J]. Aerospace, 2023, 10(01): 41.
[9] 霍江涛, 秦大国, 祁先锋. 空间碎片概况研究[J]. 装备指挥技术学院学报, 2007, (05): 56-60.
[10] Wang T. Analysis of debris from the collision of the cosmos 2251 and the Iridium 33 satellites[J]. Science & Global Security, 2010, 18(02): 87-118.
[11] 李大光. 卫星相撞警示加强空间管理[J]. 国防科技工业, 2009, (02): 59-60.
[12] Palmer C. Russian anti-satellite test spotlights space debris danger[J]. Engineering, 2022, 12(5): 3-5.
[13] Liou J C. Highlights of recent research activities at the NASA Orbital Debris Program Office[C]. European Conference on Space Debris. 2017 (JSC-CN-39199).
[14] Johnson N L . Space debris modeling at NASA[C]. 3rd European Conference on Space Debris. 2001.
[15] 朱毅麟. NASA空间碎片模型[J]. 上海航天, 1999, (03): 26-32.
[16] Klinkrad H, Bendisch J, Bunte K D, et al. The MASTER-99 space debris and meteoroid environment model[J]. Advances in Space Research, 2001, 28(09): 1355-1366.
[17] Nazarenko A I, Sokolov V G, Gorbenko A V. The comparative analysis of the probability of spacecraft pressure wall penetration for different space debris environment models[C]. Space Debris. 2001, 473: 667-672.
[18] 王若璞. 空间碎片环境模型研究[D]. 解放军信息工程大学, 2010.
[19] 郑珍珍, 朱振才, 康一舟. 天基空间碎片可见光观测系统与关键技术发展概述[J]. 光学学报, 2022, 42(17): 189-196.
[20] 张换兆, 滕洪胜. 尤里卡计划的特点及对我国科技计划改革的启示[J]. 科技管理研究, 2016, 36(20): 17-21.
[21] Li S. The present situation and prospects of Chinese national mechanism on space debris mitigation[J]. The Korean Journal of Air & Space Law and Policy, 2011, 26(2): 239-258.
[22] 李爽. 空间碎片环境建模及分析预报软件研制[D]. 哈尔滨工业大学,2003.
[23] Van D, Twersky V. Light scattering by small particles[J]. Physics Today, 1957, 10(12): 28-30.
[24] Mishchenko M I. Radiation force caused by scattering, absorption, and emission of light by nonspherical particles[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2001, 70(04-06): 811-816.
[25] Wilson J D, Foster T H. Mie theory interpretations of light scattering from intact cells[J]. Optics Letters, 2005, 30(18): 2442.
[26] Wriedt T, Hellmers J. New Scattering Information Portal for the light-scattering community[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109(08): 1536-1542.
[27] Michael K. Electromagnetic scattering by nonspherical particles: Recent advances[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2010, 111(11): 1788-1790.
[28] 哈林顿. 计算电磁场的矩量法[M]. 国防工业出版社, 1981.
[29] DeVoe, Howard. . The Journal of Chemical Physics[J]. 1964, 41 (2): 393–400.
[30] Yee K. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on antennas and propagation, 1966, 14(3): 302-307.
[31] 吴振森, 王一平. 直接模拟法和统计估计法研究平面波通过离散随机介质的散射[J]. 物理学报, 1988, 37(04): 698-704.
[32] 阮立明, 刘晓红. 蒙特卡罗法研究随机粗糙表面的光散射特性[J]. 工程热物理学报, 2005, 26(02): 304-306.
[33] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真[J]. 物理学报, 2007, (04): 2098-2105.
[34] 王红霞, 马进, 宋仔标, 等. 分形凝聚粒子的光散射特性研究[J]. 光学学报, 2011, 31(03): 292-297.
[35] 类成新, 吴振森, 冯东太. 复杂烟尘凝聚粒子的光散射特性研究[J]. 激光与光电子学进展, 2011, 48(10): 167-171.
[36] 王雅君. 基于Qt的多波束测深系统显控软件设计实现[D]. 哈尔滨工程大学, 2020.
[37] Sun L, Sun Q. Design and implementation of power plant coal transmission control information linkage system based on VC++[C]. SHS Web of Conferences. EDP Sciences, 2015, 17: 01026.
[38] Luo R, Guo Q, Wang H, et al. The simulation of elevator traffic flow based on VC++[J]. International Journal of Industrial and Systems Engineering, 2020, 36(02): 212-224.
[39] Balena F, 翔实组. Visual Basic 6 编程技术大全[M]. 机械工业出版社, 2000.
[40] Bai Y. Oracle Database Programming with Visual Basic. NET: concepts, designs, and implementations[M]. John Wiley & Sons, 2021.
[41] Johnson. Visual Studio 2015高级编程(第6版)[M]. 清华大学出版社, 2016.
[42] 冉林仓. Visual Studio十年磨一剑[J]. 程序员, 2007, (05): 120-123.
[43] 连丽红. 基于Qt的嵌入式实验平台开发[J]. 中国集成电路, 2018, 27(08): 59-62.
[44] 施菊, 张庆, 赵冰. Qt开发平台的搭建与应用[J]. 制导与引信, 2012, 33(02): 56-58.
[45] 李华君. 一种基于Qt的应用软件开发与集成方法[J]. 雷达与对抗, 2022, 42(04): 46-52+57.
[46] 孔翔鸣. Qt本地数据库开发[J]. 电脑知识与技术, 2017, 13(10): 4-5.
[47] Liu C, Teng S, Zhu Y, et al. Performance of the discrete dipole approximation for optical properties of black carbon aggregates[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 98-109.
[48] Lee H, Ro G, Kim J M, et al. Discrete-dipole approximation for the optical properties with morphological changes of silver nanoprism and nanosphere via galvanic reaction[J]. Materials Letters, 2017, 209: 138-141.
[49] Purcell E M, Pennypacker C R. Scattering and absorption of light by nonspherical dielectric grains[J]. Astrophysical Journal, 1973, 186: 705-714.
[50] 刘建斌, 曾应新, 杨初平. 基于离散偶极子近似生物细胞光散射研究[J]. 红外与激光工程, 2014, 43(07): 2204-2208.
[51] 帕尔哈提江•吐尔孙. Au纳米颗粒光学特性及粒径浓度消光法测量[D]. 西安电子科技大学,2014.
[52] 赵欣颖, 胡以华, 顾有林, 等. 微生物凝聚粒子群的激光透射率研究[J]. 光学学报, 2015, 35(06): 222-228.
[53] 李金刚. 雾霾粒子散射特性研究[D]. 西安电子科技大学, 2020.
[54] 类成新, 冯东太, 吴振森. 掺杂对随机取向团簇粒子辐射特性的影响[J]. 光子学报, 2011, 40(07): 1055-1060.
[55] 杨凡. 离散偶极近似指导的局域表面等离子共振增强上转换荧光[D]. 西安电子科技大学, 2020.
[56] 吕锐婵, 王燕兴, 杨凡, 等. 离散偶极近似仿真金属调制稀土荧光及应用研究[J]. 发光学报, 2020, 41(09): 1030-1044.
[57] 刘帅, 白进强, 魏博健, 等. 0.55μm激激光在复杂组分雾霾中的散射传传输特性[J]. 大气与环境光学学报, 2021, 16(05): 373-382.
[58] 吴北婴. 大气辐射传输实用算法[M]. 气象出版社, 1998.
[59] 咸良. 偏振光子的大气传输及纠缠浓缩[D]. 中国海洋大学, 2008.
[60] Liu X, Wu Y P. Monte-Carlo optical model coupled with inverse adding-doubling for building integrated photovoltaic smart window design and characterisation[J]. Solar Energy Materials and Solar Cells, 2021, 223(08): 110972.
[61] Rita R, Theodora K, Konstantinos C, et al. Monte Carlo optical simulations of a small FoV gamma camera. effect of scintillator thicknesses and septa materials[J]. Crystals, 2019, 9(8): 398.
[62] 程天际, 胡帅, 高太长, 等. 基于蒙特卡罗法研究海水中矿物质的光传输特性[J]. 光子学报, 2016, (02): 131-139.
[63] 胡帅, 高太长, 刘磊, 等. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真[J]. 物理学报, 2015, (09): 290-305.
[64] Kalyvas N, Liaparinos P. Comparing analytical and Monte Carlo optical diffusion models in phosphor-based X-ray detectors[J]. Medical Imaging 2014: Physics of Medical Imaging. SPIE, 2014, 9033: 1112-1119.
[65] 雷桂媛. 关于蒙特卡罗及拟蒙特卡罗方法的若干研究[D]. 浙江大学, 2003.
[66] 汪杰君, 阮耀辉, 王鹏, 等. 基于蒙特卡罗模拟的大气颗粒物浓度偏振传输特性研究[D]. 桂林电子科技大学, 2018.
[67] 闫晓鹏, 栗苹, 杨倩. 伪码激光引信抗干扰性能的蒙特卡罗仿真研究[J]. 系统仿真学报, 2008, 20(20): 5691-5694.
[68] 于婷婷. 图形用户界面(GUI)外观设计保护研究[D]. 烟台大学, 2018.
[69] Blanchette J, Summerfield M. C++ GUI programming with Qt 4[M]. Prentice Hall Professional, 2006.
[70] 王维波, 栗宝鹃, 侯春望. Qt 5.9 C++开发指南[M]. 人民邮电出版社, 2018.
[71] Hübschle C B, Sheldrick G M, Dittrich B. ShelXle: a Qt graphical user interface for SHELXL[J]. Journal of applied crystallography, 2011, 44(06): 1281-1284.
[72] Brun R, Fine V, Lauret J, et al. Cross-platform approach to create the interactive applications based on ROOT and Qt GUI libraries[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 534(01-02): 94-97.
[73] 向明尚, 张志华, 潘丽艳. 基于Qt的多线程嵌入式系统设计与实现[J]. 科技与创新, 2017, (04): 11-13.
[74] 黄宇东, 胡跃明, 陈安. 基于Qt的多线程技术应用与研究[J]. 软件导刊, 2009, 8(10): 40-42.
[75] Ren Y, Qiu J. Embedded GUI design using signal-slot communication mechanism[C]. 2009 WRI World Congress on Software Engineering. IEEE, 2009, 1: 159-162.
[76] 贺志朋. 浅析QT入门之信号与槽机制[J]. 山东工业技术, 2016,(22): 142-142.
[77] 龚凌璞. Qt框架中信号和槽机制的研究[J]. 计算机光盘软件与应用, 2013, 16(11): 281+283.
[78] Wang Z. Design and implementation of english online examination system based on QT[J]. Journal of Physics: Conference Series, 2021, 1982(01): 012174
[79] 钟建华. 基于Qt的电路仿真软件开发[D]. 杭州电子科技大学, 2021.
[80] 霍亚飞. Qt Creator快速入门[M]. 北京航空航天大学出版社, 2012.
[81] Hearn D, Baker M P, Baker M P. Computer graphics with OpenGL[M]. Upper Saddle River, NJ:: Pearson Prentice Hall, 2004.
[82] Wang X H. Research on interactive picking method of 3D model graphics based on BVH and Qt[J]. Journal of Physics: Conference Series, 2022, 2278(1): 012039.
[83] Neider J, Davis T, Woo M. OpenGL programming guide[M]. Reading, MA: Addison-Wesley, 1993.
[84] Gois J P, Batagelo H C. Interactive graphics applications with opengl shading language and qt[C]. SIBGRAPI Conference on Graphics, Patterns and Images Tutorials. IEEE, 2012: 1-20.
[85] 杨胜安. 工业机器人三维示教器的软件设计与实现[D]. 山东建筑大学, 2018.
[86] 陈敬静. SQLite数据库研究与可视化[D]. 南京邮电大学, 2020.
[87] Lv J , Xu S , Li Y. Application research of embedded database SQLite[C]. 2009 International Forum on Information Technology and Applications. IEEE, 2009, 2: 539-543.
[88] Liu C. The design of embedded mobile database SQLite based on the ARM11 platform[J]. Advanced Materials Research, 2013,2526(753-755): 2415-2418.
[89] 胡伟. SQLite在嵌入式系统上的实现研究[J]. 计算机与数字工程, 2009, 37(02): 158-163.
[90] 张晓博. 基于Python的SQL Server海量数据转移的研究与实现[J]. 铁路计算机应用, 2012, 21(02): 55-57+61.
[91] 阳深, 何剑锋, 刘琳, 等. 基于Qt/SQLite便携式谱仪放射性核素数据库设计[J]. 核电子学与探测技术, 2020, 40(03): 405-411.
[92] 唐敏, 宋杰. 嵌入式数据库SQLite的原理与应用[J]. 电脑知识与技术, 2008, 2(04): 600-603.
[93] 张广斌, 宫金林, 陈爽. SQLite嵌入式数据库系统的研究与实现[J]. 单片机与嵌入式系统应用, 2008, (06): 11-13.
[94] Shi J L. SQLite encryption method for embedded databases based on chaos algorithm[J]. Journal of Applied Mathematics, 2023, (2023):205-214.
[95] 耿庆田, 狄婧, 常亮, 等. 基于B+树的数据索引存储[J]. 吉林大学学报(理学版), 2013, 51(06): 1133-1136.
[96] 庞剑锋, 卜东波, 白硕. 基于向量空间模型的文本自动分类系统的研究与实现[J]. 计算机应用研究, 2001, 18(09): 23-26.
[97] 武永亮, 赵书良, 李长镜, 等. 基于TF-IDF和余弦相似度的文本分类方法[J]. 中文信息学报, 2017, 31(05): 138-145.
[98] Salton G, Wong A, Yang C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18(11): 613-620.
[99] 孙小琳. 基于余弦相似度的自然计算方法研究及应用[D]. 哈尔滨师范大学, 2022.
[100] Su J, Liu Z, Wu Y, et al. Retrieval of multi-wavelength aerosol lidar ratio profiles using Raman scattering and Mie backscattering signals[J]. Atmospheric Environment, 2013, 79: 36-40..
[101] Sawicki J, Kastor N, Xu M. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers[J]. Optics Express, 2008, 16(8): 5728-5738.
[102] Bohren C F, Singham S B. Backscattering by nonspherical particles: A review of methods and suggested new approaches[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D3): 5269-5277.
[103] 张森, 贺伟, 赵雷磊, 等. 1.064μm激光大气散射离轴探测特性研究[J]. 应用激光, 2022, 42(07): 94-101.
[104] 王羽佳, 宗思光, 张鑫. 基于Mie散射特性的微气泡激光探测仿真与实验研究[J]. 舰船电子工程, 2022, 42(05): 150-153.

中图分类号:

 O43    

馆藏号:

 56327    

开放日期:

 2023-12-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式