- 无标题文档
查看论文信息

中文题名:

 短期模拟失重对人体运动能力的影响及经皮穴位电刺激的防护研究    

姓名:

 吕松泽    

学号:

 19081212727    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 040302    

学科名称:

 教育学 - 体育学 - 运动人体科学(可授教育学、理学、医学学位)    

学生类型:

 硕士    

学位:

 教育学硕士    

学校:

 西安电子科技大学    

院系:

 人文学院    

专业:

 体育学    

研究方向:

 失重防护;体能训练    

第一导师姓名:

 李小涛    

第一导师单位:

  西安电子科技大学    

完成日期:

 2022-06-20    

答辩日期:

 2022-05-26    

外文题名:

 Effects of short-term simulated weightlessness on human exercise ability and protection of transcutaneous electrical     

中文关键词:

 失重 ; 经皮穴位电刺激 ; 有氧能力 ; 无氧功 ; 头低位卧床    

外文关键词:

 weightlessness ; transcutaneous electrical acupoint stimulation ; aerobic capacity ; anaerobic work ; head-down bed rest    

中文摘要:

研究背景:航天失重会对人体的生理机能造成不良影响,表现为骨密度下降、肌肉萎缩、前庭功能受损及心血管功能减弱等。前期研究表明,经皮穴位电刺激可有效防护模拟失重导致的心血管功能下降。

研究目的:探究模拟失重对人体运动能力的影响及经皮穴位电刺激的防护作用,为航天员失重防护方案的补充提供新的思路和实验依据。

研究方法:25名男性志愿者(年龄28 ± 3 years,身高169.4 ± 3.8cm,体重64.3 ± 6.9kg)随机分组进行15d的 - 6°头低位卧床(Head down bed rest, HDBR)短期模拟失重。对照组(n = 9)不做任何对抗。HDBR期间电刺激组(n = 8)每天进行30min的“内关”和“足三里”经皮穴位电刺激。HDBR后即时电刺激组(n = 8)在HDBR后运动测试时或运动测试前给予30s的“内关”经皮穴位电刺激。HDBR前后分别进行有氧能力、30s Wingate无氧功、垂直纵跳、平衡和反应时测试,分析HDBR对人体运动生理的影响以及穴位电刺激干预效果。

研究结果:

1 模拟失重对人体运动能力的影响

(1)HDBR后无氧阈下降且差异显著(P<0.05),同负荷下无氧阈心率上升且差异非常显著(P<0.05)。

(2)在Wingate的无氧功测试中,峰值无氧功下降,差异显著(P<0.05)。30s平均无氧功和最后5s的无氧功出现下降,差异非常显著(P<0.01)。

(3)HDBR后的单脚站立时间相较与卧床前降低,且差异显著(P<0.05)。

(4)HDBR后垂直纵跳高度下降,且差异显著(P<0.05)。

(5)HDBR前后的反应时测试并无显著差异。

(6)HDBR后小腿肌肉围度在下降,差异显著(P<0.05)。

2 模拟失重期间和模拟失重后经皮电刺激对人体运动能力的防护

(1)Wingate测试中的经皮穴位电刺激对30s平均功率以及峰值无氧功较卧床前无显著改变,但最后5s的无氧功平均值出现下降并且具有显著差异(P<0.05)。

(2)HDBR期间每天30min经皮穴位电刺激,可有效对抗无氧运动能力的下降。卧床后Wingate测试当中,30s平均功率、峰值无氧功及最后5s的平均无氧功和卧床前相比均无显著改变。

(3)HDBR期间30min电刺激和卧床后运动前30s的即时电刺激,对HDBR造成的爆发力和平衡能力下降均无有效的防护作用。两组志愿者垂直纵跳和单脚站立平衡均下降且具有显著差异(P<0.05)。

(4)HDBR期间进行穴位电刺激,可在一定程度上避免肌肉萎缩,与HDBR前相比小腿围度无统计学差异。

研究结论:

短期模拟失重可使人体代谢能力大幅度下降、骨骼肌出现萎缩,神经肌肉募集能力下降、前庭等运动本体感受器功能受损,运动控制能力减弱。HDBR后即时穴位电刺激可通过提升交感神经兴奋性,减弱运动疲劳提升运动能力,HDBR期间的穴位电刺激可在一定程度上避免肌肉萎缩,同时还可减弱肌肉无氧耐力的下降,但对肌肉神经募集能力以及运动感知能力的防护作用极为有限。

外文摘要:

Research background: Aerospace weightlessness will adversely affect the physiological functions of the human body, such as decreased bone density, muscle atrophy, impaired vestibular function, and weakened cardiovascular function. Preliminary studies have shown that transcutaneous electrical acupoint stimulation can effectively protect against the decline of cardiovascular function caused by simulated weightlessness. Research purposes: To explore the effect of simulated weightlessness on human movement ability and the protective effect of transcutaneous electrical acupoint stimulation, and to provide new ideas and experimental basis for the screening of astronauts weightlessness protection scheme. Methods: Twenty-five male volunteers (age 28 ± 3 yrs, height 169.4 ± 3.8 cm, weight 64.3 ± 6.9 kg) were randomly assigned to a 15-day -6° head down bed rest (HDBR) short-term simulated weightlessness. The control group (n = 9) did not do any protection. During HDBR, the electrical stimulation group (n = 8) performed transcutaneous electrical stimulation of "Neiguan" and "Zusanli" for 30 minutes every day. The post-HDBR immediate electrical stimulation group (n = 8) was given 30s of "Neiguan" transcutaneous electrical stimulation during or before the exercise test after HDBR. Before and after HDBR, aerobic capacity, 30s Wingate anaerobic work, vertical jump, balance and reaction time were tested respectively to analyze the effect of HDBR on human exercise physiology and the effect of acupoint electrical stimulation intervention.

 

Result:Effects of simulated weightlessness on human exercise capacity before and after: (1) The absolute value of the human body's anaerobic threshold decreased after 15-day simulated weightlessness, and the anaerobic threshold heart rate increased under the same load (P<0.05). (2) In the 30s Wingate anaerobic cycling test, the peak power decreased significantly (P<0.05), while the average power of 30s and the last 5s of anaerobic work decreased significantly (P<0.01). (3) In the balance test of standing on one foot, the time of standing on one foot after bed rest was significantly lower than that before bed rest (P<0.05). (4) In the vertical jump test, the vertical jump height after bed rest was significantly lower than that before bed rest (P<0.05). (5) There was no significant difference in the reaction time test before and after bed rest. (6) The calf muscle dimension decreased significantly after simulated weightless bed rest (P<0.05).

 

Immediate electrical stimulation during and after the simulated weightlessness in the head-down position protects the human movement ability: (1) In the Wingate test, the 30-s average power and peak anaerobic work were not significantly changed by transcutaneous electrical acupoint stimulation compared with those before bed rest, but the average power in the last 5 s decreased and there was a significant difference (P<0.05). (2) During the 15-day simulated weightlessness period, the “Neiguan and Zusanli points” were subjected to 30-min transcutaneous electrical acupoint stimulation every day. There were no statistically significant changes in work and bed rest. (3) Whether it was 30min electrical stimulation during bed rest or 30s immediate electrical stimulation after bed rest, the vertical jump before bed rest, and the time of standing on one foot were significantly decreased (P<0.05), while the response time was statistically significant (P<0.05). There is no difference.

 

Analysis of the data before and after shows that the simulated weightlessness of 15 days greatly reduces the metabolic capacity of the human body, the skeletal muscle also atrophies, and the neuromuscular recruitment ability also declines. At the same time, the vestibular and other motor proprioceptive abilities were weakened after 15 days of simulated weightlessness, and the motor control ability became worse. Immediate electrical stimulation of "Neiguan Point" after bed rest can reduce exercise fatigue. Electrical stimulation of Neiguan and Zusanli points during bed rest can avoid muscle atrophy to a certain extent (there is no significant difference between calf dimensions and before bed rest), and at the same time, it can also avoid the decline of muscle anti-lactic acid ability. However, it has no protective effect on muscle nerve recruitment ability and motor perception system.

 

参考文献:
[1] 陈善广, 邓一兵, 李莹辉. 航天医学工程学主要研究进展与未来展望[J]. 航天医学与医学工程, 2018 , 31(02): 79-89.
[2] 李莹辉, 孙野青, 郑慧琼等. 中国空间生命科学40年回顾与展望[J]. 空间科学学报, 2021, 41(01): 46-67.
[3] 王林杰, 曲丽娜, 李英贤等. 我国失重生理学研究进展与展望[J]. 航天医学与医学工程, 2018, 31(02): 131-139.
[4] EDGERTON V R, ZHOU M Y, OHIRA Y, et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight[J]. Journal of Applied Physiology, 1995, 78(5): 1733-1739.
[5] PETERSEN N, JAEKEL P, ROSENBERGER A, et al. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS[J]. Extreme physiology & medicine, 2016, 5(1): 1-13.
[6] 李小涛, 高原, 赵疆东等. 人工重力联合中等强度运动锻炼对4d头低位卧床后有氧及无氧运动能力的影响[J]. 航天医学与医学工程, 2016, 29(2): 95-100.
[7] 孙喜庆, 王永春, 高原等. 系统与整合——重力生理学发展之路[J]. 中华航空航天医学杂志, 2017, 28(02): 120-120.
[8] 孙静, 高原, 杨长斌等. 穴位电刺激对人体心血管功能的影响[J]. 心脏杂志, 2020, 32(02): 182-185.
[9] SCOTT M S, TORIN M C, DANIEL G, et al. Space flight calcium: Implications for astronaut health, spacecraft operations and earth [J]. Nutrients, 2012, 4, 2047-2068.
[10] VICO L, HARGENS A. Skeletal changes during and after spaceflight [J]. Nature reviews rheumatology, 2018, 4, (14): 229-245.
[11] LANG T, LEBLANC A, EVANS H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight [J]. J Bone Miner Res, 2004, 19: 1006-1012.
[12] LEBLANC A D, SPECTOR E R, EVANS H J, et al. Skeletal responses to space flight and the bed rest analog: a review [J]. J Musculoskelet Neuronal Interact, 2007, 7: 33-47.
[13] LEBLANC A, SCHNEIDER V, SHACKELFORD L, et al. Bone mineral and lean tissue loss after long duration space flight [J]. J Musculoskelet Neuronal Interact, 2000, 1: 157-160.
[14] LEBLANC A, LIN C, SHACKELFORD L, et al. Muscle volume, MRI relaxation times (T2), and body composition after spaceflight [J]. J Appl Physiol, 2000, 89: 2158-2164.
[15] LANG T, LEBLANC A, EVANS H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight [J]. J Bone Miner Res, 2004, 19: 1006-1012.
[16] SALANOVA M, GAMBARA G, MORIGGI M, et al. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest[J]. Scientific reports, 2015, 5(1): 1-15.
[17] ALIBEGOVIC A C, SONNE M P, HØJBJERRE L, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men [J]. Am J Physiol Endocrinol Metab, 2010, 299(5): 752-763.
[18] GAO Y F, ARFAT Y, WANG H P, et al. Muscle atrophy induced by mechanical unloading: Mechanisms and potential countermeasures [J]. Front Physiol, 2018, 03, 20: 9: 235.
[19] EDGERTON V R, ZHOU M Y, OHIRA Y, et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight [J]. J Appl Physiol, 1995, 78: 1733-1739.
[20] BURKHART K, ALLAIRE B, BOUXSEIN M L. Negative effects of long-duration spaceflight on paraspinal muscle morphology [J]. Spine, 2019, 44(12): 879-886.
[21] CHANG D G, HEALEY R M, SNYDER A J, et al. Lumbar spine paraspinal muscle and intervertebral disc height changes in astronauts after long-duration spaceflight on the international space station [J]. Spine, 2016, 41, (24): 1917-1924.
[22] SHEN M, FRISHMAN W H. Effects of spaceflight on cardiovascular physiology and health [J]. Cardiol Rev, 2019, 5, (27): 122-126.
[23] SATO T, KAWADA T, SUGIMACHI M, et al. Bionic technology revitalizes native baroreflex function in rats with baroreflex failure [J]. Circulation, 2002, 106: 730-734.
[24] GALLO C, RIDOLFI L, SCARSOGLIO S. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling [J]. NPJ Microgravity, 2020, 6: 27.
[25] GABRIELSEN A, PUMP B, BIE P, et al. Atrial distension, haemodilution, and acute control of renin release during water immersion in humans[J]. Acta Physiologica Scandinavica, 2002, 174(2): 91-99.
[26] BETTINELLI D, KAYS C, BAILLIART O, et al. Effect of gravity on chest wall mechanics [J]. J Appl Physiol, 2002, 92: 709-716.
[27] VERNICE N A, MEYDAN C, AFSHINNEKOO E, et al. Long-term spaceflight and the cardiovascular system [J]. Precis Clin Med, 2020, 3(4): 284-291.
[28] NORSK P, ASMAR A, DAMGAARD M, et al. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight [J]. J Physiol, 2015, 3(293): 573-584.
[29] PRISK G K, GUY H J B, ELLIOTT A R, et al. Pulmonary diffusion capacity, capillary blood volume, and cardiac output during sustained microgravity [J]. J Appl Physiol, 1993, 75: 15-26.
[30] LEVINE BD, PAWELCZYK JA, ERTL AC, et al. Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight [J]. J Physiol, 2002, 538: 331-340.
[31] NORSK P, DAMGAARD M, PETERSEN L, et al. Vasorelaxation in space [J]. Hypertension, 2006, 47: 69-73.
[32] MECK J V, WATERS W W, ZIEGLER M G, et al. Mechanisms of post spaceflight orthostatic hypotension: Low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation postflight [J]. Am J Physiol Heart Circ Physiol, 2004, 286: 1486-1495.
[33] KOPPELMANS V, BLOOMBERG J J, MULAVARA A P, et al. Brain structural plasticity with spaceflight. NPJ Microgravity[J], 2016, 2: 2.
[34] VAN OMBERGEN A, LAUREYS S, SUNAERT S, et al. Spaceflight induced neuroplasticity in humans as measured by MRI: What do we know so far?[J]. NPJ Microgravity, 2017, 3: 2.
[35] GEORGE R J, FITZPATRICK R C. The sense of self-motion, orientation and balance explored by vestibular stimulation [J]. J Physiol, 2011, 589: 807-813.
[36] LACKNER J R. DIZIO P. Space motion sickness [J]. Exp Brain Res, 2006, 175: 377-399.
[37] RESCHKE M F, BLOOMBERG J J, HARM D L, et al. Visual-vestibular integration as a function of adaptation to space flight and return to Earth (DSO 604 OI-3)[J]. Houston, TX: NASA Johnson Space Center, 1999.
[38] MOORE S T, CLEMENT G, RAPHAN T, et al. Ocular counterrolling induced by centrifugation during orbital space flight [J]. Exp Brain Res, 2001, 137: 323-335.
[39] CLEMENT G, MOORE S T, RAPHAN T, et al. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight [J]. Exp Brain Res, 2001, 138: 410-418.
[40] PALOSKI W H, RESCHKE M F, BLACK F O, et al. Recovery of postural equilibrium control following spaceflight [J]. Ann N Y Acad Sci.1992, 656: 747-754
[41] LEE A G, MADER T H, GIBSON C R, et al. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update [J]. NPJ Microgravity, 2020, 6(1):23.
[42] WOJCIK P, KINI A, ALOTHMAN B, GALDAMEZ L A, et al. Spaceflight associated neuro-ocular syndrome [J]. Curr Opin Neurol, 2020, 33(1): 62-67.
[43] LAMBERTZ D, PEROT C, KASPRANSKI R, et al. Effects of long-term spaceflight on mechanical properties of muscles in humans [J]. J Appl Physiol, 2001, 90: 179-188
[44] SMITH S M, HEER M A, SHACKELFORD L C, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry [J]. J Bone Miner Res, 2012, 27: 1896-1906.
[45] KOZLOVSKAYA I B, YARMANOVA E N, YEGOROV A D, et al. Russian countermeasure system for adverse effects of microgravity on long-duration ISS flights [J]. Aerosp Med Hum Perform, 2015, 86: 24-31.
[46] SIBONGA J D, CAVANAGH P R, LANG T F, et al. Adaptation of the skeletal system during long-duration spaceflight [J]. Clin Rev Bone Miner Metab, 2008, 5: 249-261.
[47] LAMBERTZ D, PEROT C, KASPRANSKI R, et al. Effects of long-term spaceflight on mechanical properties of muscles in humans [J]. J Appl Physiol, 2001, 90: 179-188.
[48] KORTH DW. Exercise Countermeasure Hardware Evolution on ISS: The First Decade [J]. Aerosp Med Hum Perform, 2015, 86(12): 7-13.
[49] FITTS R H, TRAPPE S W, COSTILL D L, et al. Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibers [J]. J Physiol, 2010, 588: 3567-3592.
[50] GOPALAKRISHNAN R, GENC K O, RICE A J, et al. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space [J]. Aviat Space Environ Med, 2010 81: 91-102.
[51] SMITH S M, HEER M A, SHACKELFORD L C, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry [J]. J Bone Miner Res, 2012, 27: 1896-1906.
[52] SCHNEIDER S M, LEE S M, FEIVESON A H, et al. Treadmill exercise within lower body negative pressure protects leg lean tissue mass and extensor strength and endurance during bed rest [J]. Physiol Rep, 2016, 4(15): e12892.
[53] 张家宁, 高原, 李程飞等. 航天飞行人工重力的发展与应用研究进展[J]. 西北国防医学杂志, 2018, 39(06): 411-416.
[54] KRAMER A, VENEGAS-CARRO M, ZANGE J, et al. Daily 30-min exposure to artificial gravity during 60 days of bed rest does not maintain aerobic exercise capacity but mitigates some deteriorations of muscle function: results from the AGBRESA RCT [J]. Eur J Appl Physiol, 2021, 121(7): 2015-2026.
[55] 李小涛, 孙静, 杨长斌等. 人工重力联合有氧锻炼可以有效对抗4d头低位卧床所致立位耐力不良. 航天医学与医学工程[J], 2014, 27(02): 142-145.
[56] 李小涛, 高原, 赵疆东等. 人工重力联合中等强度运动锻炼对4d头低位卧床后有氧及无氧运动能力的影响[J]. 航天医学与医学工程, 2016, 4, 29(2): 95-100.
[57] CONVERTINO V A. Lower body negative pressure as a tool for research in aerospace physiology and military medicine [J]. J Gravit Physiol, 2001, 8: 1-14.
[58] GOSWAMI N, LOEPPKY J A, HINGHOFER-SZALKAY H. LBNP: Past protocols and technical considerations for experimental design [J]. Aviat Space Environ Med, 2008, 79: 459-471.
[59] Charles J B, Fritsch-Yelle J M, Whitson P A, et al. Cardiovascular deconditioning[J]. Extended duration orbiter medical project, 1999.
[60] Cavanagh P R, Genc K O, Gopalakrishnan R, et al. Foot forces during typical days on the international space station[J]. J Biomech,2010, 43: 2182-2188.
[61] 魏佳, 李博, 冯连世等. 血流限制训练的方法学因素及潜在安全性问题[J]. 中国体育科技, 2019, 5(03): 3-12.
[62] 魏佳, 李博, 杨威等. 血流限制训练的应用效果与作用机制[J]. 体育科学, 2019, 39(04): 71-80.
[63] LOENNEKE J P, THIEBAUD R S, ABE T. Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence[J]. Scand J Med Sci Sports, 2015, 24(6): 415-422.
[64] 姜世忠, 蒋昌林, 李建军等. 加压套带对抗头低位卧床模拟失重生理影响的作用[J]. 航天医学与医学工程, 1998, 11(3): 1.
[65] IIDA, H, KURANO, M, TAKANO, H. et al. Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects[J]. Eur J Appl Physiol, 2007, 100 (3): 275-285.
[66] GABBETT T J, 2016. The training-injury prevention paradox: should athletes be training smarter and harder? [J] Br. J. Sports Med. 50, 273-280.
[67] LIXANDRÃO, M E, UGRINOWITSCH C, BERTON R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis [J]. Sports Med, 2018, 48, 361-378.
[68] ABE T, KEARNS C F, FUJITA S, et al. Skeletal muscle size and strength are increased following walk training with restricted leg muscle blood flow: implications for training duration and frequency[J]. International Journal of Kaatsu Training Research, 2009, 5(1):9-15.
[69] SCHOENFELD B J, 2013. Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations? [J] Sports Med, 43, 1279-1288.
[70] LOENNEKE J P, WILSON J M, MARÍN P J, et al, Low intensity blood flow restriction training: a meta-analysis [J]. Eur J Appl Physiol, 2012, 112: 1849-1859.
[71] HACKNEY K J, EVERETT M, SCOTT J M, et al. Blood flow-restricted exercise in space [J]. Extreme Physiology & Medicine, 2012, 1(1):12-25.
[72] ABE T, FUJITA S, NAKAJIMA T, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and vo2max in young men [J]. J Sports Sci Med, 2010, 9(3):452-458.
[73] GREGORY C M, BICKEL C S. Recruitment patterns in human skeletal muscle during electrical stimulation[J]. Physical therapy, 2005, 85(4): 358-364.
[74] GONDIN J, COZZONE P J, BENDAHAN D. Is high-frequency neuromuscular electrical stimulation a suitable tool for muscle performance improvement in both healthy humans and athletes?[J]. European journal of applied physiology, 2011, 111(10): 2473-2487.
[75] VELDMAN M P, GONDIN J, PLACE N, et al. Effects of neuromuscular electrical stimulation training on endurance performance[J]. Frontiers in physiology, 2016, 7: 544.
[76] BAX L, STAES F, VERHAGEN A. Does neuromuscular electrical stimulation strengthen the quadriceps femoris?[J]. Sports medicine, 2005, 35(3): 191-212.
[77] DIRKS M L, WALL B T, SNIJDERS T, et al. Neuromuscular electrical stimulation prevents muscle disuse atrophy during leg immobilization in humans[J]. Acta physiologica, 2014, 210(3): 628-641.
[78] JONES S, MAN W D C, GAO W, et al. Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease[J]. Cochrane database of systematic reviews, 2016 (10).
[79] SPECTOR P, LAUFER Y, GABYZON M E, et al. Neuromuscular electrical stimulation therapy to restore quadriceps muscle function in patients after orthopaedic surgery: a novel structured approach[J]. JBJS, 2016, 98(23): 2017-2024.
[80] MAFFIULETTI N A, GONDIN J, PLACE N, et al. Clinical use of neuromuscular electrical stimulation for neuromuscular rehabilitation: what are we overlooking?[J]. Archives of physical medicine and rehabilitation, 2018, 99(4): 806-812.
[81] FITTS R H, RILEY D R, WIDRICK J J. Physiology of a microgravity environment invited review: microgravity and skeletal muscle[J]. Journal of applied physiology, 2000, 89(2): 823-839.
[82] 李守江, 李加鹏, 孔祥佳等. 经皮穴位电刺激对足球高水平大学生BUN, 血清T, 血清CK-MM的影响[J]. 康复学报, 2018, 28(3): 37-41.
[83] 牟玉庆, 刘兴山, 魏彦龙等. 经皮穴位电刺激的临床应用进展[J]. 长春中医药大学学报, 2017, 33(01): 169-171.
[84] WANG J. Traditional Chinese medicine and the positive correlation with homeostatic evolution of human being: based on medical perspective[J]. Chinese journal of integrative medicine, 2012, 18(8): 629-634.
[85] 李颖. 经皮穴位电刺激对心悸患者及正常人心肺耐力、心率变异性影响的研究[D]. 天津: 天津中医药大学, 2021.
[86] WANG Q, PENG Y, CHEN S, et al. Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system[J]. Stroke, 2009, 40(6): 2157-2164.
[87] WANG Q, LI X, CHEN Y, et al. Activation of epsilon protein kinase C-mediated anti-apoptosis is involved in rapid tolerance induced by electroacupuncture pretreatment through cannabinoid receptor type 1[J]. Stroke, 2011, 42(2): 389-396.
[88] ZHANG J, ZHU L, LI H, et al. Electroacupuncture Pretreatment as a Novel Avenue to Protect Heart against Ischemia and Reperfusion Injury[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020.
[89] 游世晶,纪峰,何芙蓉等. 经皮穴位电刺激对运动性疲劳大学生运动员RBC、Hb的影响[J]. 康复学报. 2016, 26(4): 43-46
[90] 杨静, 熊利泽, 王强等. 不同刺激参数及其组合对电针诱导大鼠脑缺血耐受效应的影响[J]. 中国针灸, 2004, 24(3): 208-212
[91] HALLETT M. Transcranial magnetic stimulation: a primer[J]. Neuron, 2007, 55(2): 187-199.
[92] LATTARI E, ROSA FILHO B J, JUNIOR S J F, et al. Effects on volume load and ratings of perceived exertion in individuals' advanced weight training after transcranial direct current stimulation[J]. The Journal of Strength & Conditioning Research, 2020, 34(1): 89-96.
[93] FRAZER A K, WILLIAMS J, SPITTLE M, et al. Cross-education of muscular strength is facilitated by homeostatic plasticity[J]. European journal of applied physiology, 2017, 117(4): 665-677.
[94] SASADA S, ENDOH T, ISHII T, et al. Polarity-dependent improvement of maximal-effort sprint cycling performance by direct current stimulation of the central nervous system[J]. Neuroscience letters, 2017, 657: 97-101.
[95] TARASOVA O, BOROVIK A, TSVIRKOUN D, et al. Orthostatic response in rats after hindlimb unloading: effect of transcranial electrical stimulation[J]. Aviation, space, and environmental medicine, 2007, 78(11): 1023-1028.
[96] YARMANOVA E N, KOZLOVSKAYA I B, KHIMORODA N N, et al. Evolution of Russian microgravity countermeasures[J]. Aerospace medicine and human performance, 2015, 86(12): A32-A37.
[97] KOZLOVSKAYA I B, YARMANOVA E N, VINOGRADOVA O L, et al. Prospects for using an exercise device to support and rehabilitate the condition of the musculature in various professional and age groups of the population[J]. Teoriya i Praktika Fizicheskoi Kultury, 2009, 3(1): 18-20.
[98] MAYR W, BIJAK M, GIRSCH W, et al. MYOSTIM‐FES to prevent muscle atrophy in microgravity and bed rest: preliminary report[J]. Artificial organs, 1999, 23(5): 428-431.
[99] FREILINGER G, MAYR W. Electrical stimulation as a countermeasure to muscle alteration in space[J]. Journal of gravitational physiology: a journal of the International Society for Gravitational Physiology, 2002, 9(1): P319-22.
[100] SHIBA N, MATSUSE H, TAKANO Y, et al. Electrically stimulated antagonist muscle contraction increased muscle mass and bone mineral density of one astronaut-initial verification on the international space station[J]. PLoS One, 2015, 10(8): e0134736.
[101] MULAVARA A P, PETERS B T, MILLER C A, et al. Physiological and functional alterations after spaceflight and bed rest[J]. Medicine and science in sports and exercise, 2018, 50(9): 1961.
[102] DEMANGEL R, TREFFEL L, PY G, et al. Early structural and functional signature of 3‐day human skeletal muscle disuse using the dry immersion model[J]. The Journal of physiology, 2017, 595(13): 4301-4315.
[103] KOZLOVSKAIA I B. Fundamental and applied objectives of investigations in immersion[J]. Aviakosmicheskaia i ekologicheskaia meditsina= Aerospace and environmental medicine, 2008, 42(5): 3-7.
[104] KORYAK Y A. Neuromuscular electrical stimulation in conditions of gravitational unloading[J]. Sciences of Europe, 2018 (23-3): 3-10.
[105] REIDY P T, MCKENZIE A I, BRUNKER P, et al. Neuromuscular electrical stimulation combined with protein ingestion preserves thigh muscle mass but not muscle function in healthy older adults during 5 days of bed rest[J]. Rejuvenation research, 2017, 20(6): 449-461.
[106] ZANGE J, SCHOPEN K, ALBRACHT K, et al. Using the Hephaistos orthotic device to study countermeasure effectiveness of neuromuscular electrical stimulation and dietary lupin protein supplementation, a randomised controlled trial[J]. PloS one, 2017, 12(2): e0171562.
[107] WALL B T, DIRKS M L, VERDIJK L B, et al. Neuromuscular electrical stimulation increases muscle protein synthesis in elderly type 2 diabetic men[J]. American Journal of Physiology-Endocrinology and Metabolism, 2012, 303(5): E614-E623.
[108] 孙静, 李小涛, 杨长斌等. 电针刺激对人体 4d 头低位卧床心血管调节功能的影响[J]. 航天医学与医学工程, 2014, 27(2): 146-148.
[109] 谢晶军, 李金霞, 孙琦. 经皮穴位电刺激治疗脑卒中后上肢功能障碍的随机对照研究[J]. 中国中医基础医学杂志, 2019, 25(7): 969-971.
[110] 赵方超, 高岩林, 蔡华山等. 经皮穴位电刺激对经皮冠状动脉介入术后患者血管内皮功能及炎性因子的影响[J]. 针刺研究, 2021, 46(08): 684-689
[111] 石海旺, 段锐, 刘承宜. 电刺激对失重导致的废用性骨骼肌萎缩的影响[J]. 华南师范大学学报(自然科学版). 2020, 52(6): 57-66
[112] LIEBER R L, KELLY M J. Factors influencing quadriceps femoris muscle torque using transcutaneous neuromuscular electrical stimulation[J]. Physical therapy, 1991, 71(10): 715-721.
[113] GONDIN J, BROCCA L, BELLINZONA E, et al. Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis[J]. Journal of applied physiology, 2011, 110(2): 433-450.
[114] GOBBO M, MAFFIULETTI N A, ORIZIO C, et al. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use[J]. Journal of neuroengineering and rehabilitation, 2014, 11(1): 1-6.
[115] MAFFIULETTI N A. Physiological and methodological considerations for the use of neuromuscular electrical stimulation[J]. European journal of applied physiology, 2010, 110(2): 223-234.
[116] KIFT J, WILLIAMS E. Ventilatory capacity and its utilisation during exercise[J]. Lung, 2008,
[117] 周东坡, 刘爱杰, 黄杰明等. 对中国优秀女子赛艇运动员动态心率无氧阈的探讨[J].体育科学, 1990(06): 95-96.
[118] 余健凡. 对递增负荷运动中肌氧拐点与无氧阈间关系的研究[J]. 吉林体育学院学报, 2021, 37(06): 75-80.
[119] 刘炳坤, 陈文娟, 李志利等. 15d-6°头低位卧床对女性运动心肺功能影响及对抗措施效果[J]. 航天医学与医学工程, 2011, 24(04): 241-245.
[120] 耿捷, 孙喜庆, 刘玉盛等. 30d头低位卧床期间下肢运动锻炼对心脏功能的影响[J]. 航天医学与医学工程, 2009, 22(2): 85-88
[121] 小珍, 格日力, 陈秋红等. 海拔3417m世居及移居者无氧代谢阈与左心功能关系的探讨[J]. 航天医学与医学工程, 1996, (03): 50-54.
[122] WOOD SJ, PALOSKI WH, CLARK JB. Assessing sensorimotor function following ISS with computerized dynamic posturography. Aerosp[J]. Med. Hum. Perform, 2015, 86:45–53.
[123] 郭立国, 郭志峰, 谢俊水等. -6°卧床7d对平衡功能的影响[J]. 航天医学与医学工程, 2001, 14 (04): 248-252.
[124] SAUMUR T M, GREGOR S, MOCHIZUKI G, et al. The effect of bed rest on balance control in healthy adults: A systematic scoping review[J]. Journal of Musculoskeletal & Neuronal Interactions, 2020, 20(1): 101.
[125] MUSIENKO P, COURTINE G, TIBBS JE, et al. Somatosensory control of balance during locomotion in decerebrated cat. J. Neurophysiol, 2012,107, 2072–2082.
[126] MIDDLEKAUFF H R. Acupuncture in the treatment of heart failure[J]. Cardiology in review, 2004, 12(3): 171-173.
[127] 姜韬, 吴淼, 孔立红等. 内关与足三里预针刺对运动性疲劳的影响[J]. 中国针灸, 2019, 39(10): 1063-1066.
[128] 刘汉平, 梁波, 曾常春等. 针刺足三里不同组穴对疲劳大鼠运动耐力骨骼肌及肝脏抗氧化酶活性的影响[J]. 中华中医药学刊, 2009, 27(07): 1369-1372.
[129] 刘玉盛, 黄伟芬, 刘兴华等. 21d -6°头低位卧床期间运动训练对动态姿态平衡的影响[J]. 航天医学与医学工程, 2003(04): 264-268.
中图分类号:

 G80    

馆藏号:

 53883    

开放日期:

 2023-08-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式