- 无标题文档
查看论文信息

中文题名:

 薄膜结构褶皱分析及抑制方法研究    

姓名:

 李鹏飞    

学号:

 20041211764    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080202    

学科名称:

 工学 - 机械工程 - 机械电子工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 机电工程学院    

专业:

 机械工程    

研究方向:

 星载可展开天线    

第一导师姓名:

 段宝岩    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 杜敬利    

完成日期:

 2023-05-31    

答辩日期:

 2023-05-28    

外文题名:

 Wrinkling Analysis and Suppression Method of Membrane Structure Research    

中文关键词:

 薄膜结构 ; 褶皱 ; 纤维增强薄膜 ; 屈曲分析 ; 振动特性    

外文关键词:

 Membrane structure ; Wrinkling ; Fiber reinforced membrane ; Buckling analysis ; Vibration characteristics    

中文摘要:

薄膜结构具有质轻、易折展等明显优点,可被广泛应用于合成孔径雷达、可展开天线、太阳帆等各种空间装备与结构中。同时,薄膜结构本身弯曲刚度很小,易产生折痕和褶皱问题,影响薄膜的形面精度,进而影响其结构和功能特性。因此,深入进行薄膜结构褶皱分析及抑制方法研究,已成为国内外的研究热点,意义重大。

本文主要工作与成果:

1. 建立了对角受拉方膜产生褶皱的理论预测与仿真分析模型,可通过基于该模型的能量法获得薄膜起皱时的临界屈曲应力,进而导出了褶皱的波长和幅值理论预测公式,为依托纤维增强结构来抑制薄膜褶皱提供了理论依据。

2. 提出了抑制薄膜褶皱的纤维增强结构方法。首先,通过预测三向纤维增强薄膜力学特性,建立了对角受拉纤维增强薄膜褶皱理论预测模型,得到其起皱的临界屈曲应力、褶皱波长与幅值的理论预测公式。其次,从褶皱波长与幅值分析了纤维增强结构对薄膜褶皱的抑制作用,得出了纤维排列间距、弹性模量、排列方向等与薄膜褶皱间的定量关系。再者,将所提方法应用于扭转圆环薄膜与剪切矩形薄膜的褶皱抑制中,得到了满意结果。

3. 建立了褶皱薄膜动态分析模型。以对角受拉方膜为对象,应用褶皱薄膜动态分析模型,深入分析了在考虑褶皱情况下,薄膜振动频率和模态的变化,并分析了褶皱构型与薄膜振动特性的相关性。对于纤维增强薄膜,分析了纤维排列间距、排列方向对其褶皱后的振动特性产生的影响。

4. 研制了1m口径径向肋式静电成形薄膜反射面天线样机。基于参与研制的静电成形薄膜反射面可展开天线样机,建立了反射面薄膜与电极膜的静、动力学褶皱分析模型,分析结果验证了本文所提出的数学模型与分析方法的正确性和有效性。

 

外文摘要:

Mambrane structure has obvious advantages such as light weight and easy folding, and can be widely applied in various space equipment and structures such as synthetic aperture radar, deployable antenna, solar sail. At the same time, the bending stiffness of the membrane is very small, which is easy to wrinkle, affecting the shape accuracy of the membrane, and then affecting its structure and function characteristics. Therefore, it is of great significance to further research wrinkling analysis and suppression method of membrane structure.

 

The main contents of this paper:

 

1. The theoretical prediction and simulation analysis model of diagonal tensile square membrane wrinkling is established. The critical buckling stress was obtained by energy method based on the model, and the theoretical prediction formulas of wavelength and amplitude of wrinkle were obtained, which provide a theoretical basis for suppressing wrinkle by fiber reinforced structure.

 

2. A fiber reinforced structure method to suppress membrane wrinkling is proposed. Firstly, by predicting the mechanical properties of the triaxial fiber reinforced membrane, a theoretical prediction model for diagonal tensile fiber reinforced membrane was established, and the theoretical prediction formulas for the critical buckling stress, wrinkle wavelength and amplitude of the membrane were obtained. Secondly, the inhibitory effect of fiber reinforced structure on membrane wrinkling was analyzed from the wavelength and amplitude of wrinkling, and the quantitative relationship between fiber arrangement spacing, elastic modulus, arrangement direction and membrane wrinkling was obtained. Furthermore, the proposed method has been applied to the wrinkling suppression of torsional ring films and shear rectangular films, and satisfactory results have been obtained.

 

3. The dynamic characteristic analysis model of the wrinkling membrane was established.

Taking diagonally strained square membrane as the object, the dynamic analysis model of the wrinkling membrane was applied to analyze the changes of vibration frequency and modes of membrane with wrinkling, and the correlation between wrinkling configurations and vibration characteristics was analyzed. For fiber reinforced membrane, the effects of fiber arrangement spacing and direction on the vibration characteristics were analyzed.

 

4. A 1m diameter radial ribbed electrostatically controlled membrane reflector antenna prototype is developed. The static and dynamic wrinkling analysis models of the reflector membrane and the electrode membrane were established based on the deployable electrostatically controlled membrane reflector antenna prototype. The analysis results verified the correctness and effectiveness of the mathematical model and analysis method proposed in this paper.

参考文献:
[1] 彭福军, 谢超, 张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战[J]. 载人航天, 2017, 23(4): 427-39.
[2] R.E. Freeland, G. Bilyeu. In-step inflatable antenna experiment[J]. Acta astronautica, 1993, 30: 29-40.
[3] M. Eiden, T. Niederstadt, M. Rezazad, et al. Solar sail technology development and demonstration[J]. Acta astronautica, 2003, 52(2/6): 317-326.
[4] David Roylance, C. H. Jenkins, S. K. Khanna. Innovations in Teaching Mechanics of Materials in Materials Science and Engineering Departments[M]. 2001 American Society for Engineering Education Annual conference & Exposition. 2001: 1794-1797.
[5] Costas Cassapakis, Randall J. Knize, Geoff P. Andersen, et al. Large-aperture holographically corrected membrane telescope[J]. Optical Engineering, 2002, 41(7): 1603-1607.
[6] Michael Lou, Lih-Min Hsia, John Huang, et al. Inflatable Structure for a Three-Meter Reflectarray Antenna[J]. Journal of spacecraft and rockets, 2004, 41(4): 543-550.
[7] John K. H. Lin, Houfei Fang. Concept Study of a 35- m Spherical Reflector System for NEXRAD in Space Application[M]. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, RI(US). 2006: 1-6.
[8] John Huang, Houfei Fang, Bernardo Lopez, et al. THE DEVELOPMENT OF INFLATABLE ARRAY ANTENNAS[C]. Space 2003 Conference and Exhibit, September 2003.
[9] Leipold M, Widani C, Groepper P, et al. The european solar sail deployment demonstration mission[C]. 57th International Astronautical Congress. 2006: A3. 4.07.
[10] Johnson. Les, Whorton. Mark, Heaton. Andy, et al. NanoSail-D: A solar sail demonstration mission[J]. Acta Astronautica, 2011, 68(5-6): 571-575.
[11] RIQUE GARAIZAR O. Design of a solar Sail as the propulsion system for a Nanosatellite[D]. Catalunya:University of Catalonia, 2013.
[12] R. Funase, Y. Tsuda, T. Endo, et al. Flight status of IKAROS deep space solar sail demonstrator[J]. Acta astronautica, 2011, 69(9/10): 833-840.
[13] 黄小琦, 王立, 刘宇飞, 等. 大型太阳帆薄膜折叠及展开过程数值分析[J]. 中国空间科学技术, 2014, 34(4): 31-38.
[14] 谢博. 光帆1号 迎接挑战[J]. 天文爱好者, 2015(7): 38-44.
[15] Lappas V, Fernandez J, Visagie L, et al. Demonstrator flight missions at the Surrey space centre involving Gossamer sails[J]. Advances in Solar Sailing, 2014: 153-167.
[16] 郝晓明. 我国首次完成太阳帆在轨关键技术试验[P/OL]. 2020-03-26 [2023-03-25]. http://www.cas.cn/ cm/202003/t20200326_4738890.shtml.
[17] Wang Changguo, Mao Lina, Du Xingwen, He Xiaodong. Influence parameter analysis and wrinkling control of space membrane structure[J]. International Journal of Mechanics of Advanced Materials and Structures, 2010, 17(1): 49-59.
[18] 徐彦, 关富玲, 管瑜. 充气可展开天线精度分析和形面调整[J]. 空间科学学报, 2006, 26(4): 292-297.
[19] 黄河. 充气可展开薄膜反射面结构的型面分析与优化[D]. 浙江: 浙江大学, 2016.
[20] Chen Xin-hua, Tang Min-xue, Shen Wei-min. Membrane mirror deformed by electrostatic pressure[M]. Large mirrors and telescopes : Chengdu(CN). 2007(19): 1-8.
[21] 张鹏, 金光, 石广丰, 等. 空间薄膜反射镜的研究发展现状[J]. 中国光学与应用光学, 2009, 02(2): 91-101.
[22] 高峰. 静电成形薄膜反射面天线形面综合优化设计及实验研究[D]. 陕西: 西安电子科技大学, 2014.
[23] 姜文明. 静电成形薄膜反射面天线形面调整与试验[D]. 陕西: 西安电子科技大学, 2017.
[24] McInnes. C, MacDonald. M. Solar sail science mission applications and advancement[J]. Advances in Space Research: The Official Journal of the Committee on Space Research(COSPAR), 2011, 48(11): 1702-1716.
[25] 蔡祈耀. 可伸展太阳帆结构力学行为与帆面制备技术[D]. 上海: 上海交通大学, 2015.
[26] 李洋. 柔性航天器在轨振动主动控制研究[D]. 陕西: 西安电子科技大学, 2013.
[27] 刘明君. 平面张拉薄膜褶皱变形机理与调控方法[D]. 陕西: 西安电子科技大学, 2018.
[28] 王雅丽. 空间薄膜结构的褶皱分析及调控方法研究[D]. 陕西: 西安电子科技大学, 2015.
[29] Wong YW and Pellegrino S. Wrinkled membranes part III: Numerical Simulations[J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 61-93.
[30] Senda K, Petrovic M, Nakanishi K. Wrinkle generation in shear-enforced rectangular membrane[J]. Acta Astronaut, 2015, 111: 110–135.
[31] Wong YW and Pellegrino S. Wrinkled membranes part I: Experiments[J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 3–25.
[32] Wong YW and Pellegrino S. Computation of wrinkle amplitudes in thin membranes[C]. Structural Dynamicsand Materials Conference, Denver, 2002: 1369-1380.
[33] H. Wagner, W. Ballerstedt. Tension Fields in Originally Curved ThinSheets During Shearing Stresses[C]. National Advisory Committee for Aeronautics Technology. Memoranda, 1995: 774-782.
[34] Kuhn P , Peterson J P , Levin L R . A summary of diagonal tension Part I : methods of analysis[R]. Technical Report Archive & Image Library, 1952.
[35] C. Cheng, X. Lui. Buckling and Post-Buckling of Annular Plates in Shearing, Part I: Buckling[J]. Computer Methods Application Mechanical Engineering, 1991, 92(2): 157-172.
[36] C. Cheng, X. Lui. Buckling and Post-Buckling of Annular Plates in Shearing, Part II: Post-Buckling[J]. Computer Methods Application Mechanical Engineering, 1991, 92(2): 173-191.
[37] C. Cheng, X. Shang. The Effect of Large Rotation on Post-Buckling of Annular Plates[J]. Acta Mechanica Solida Sinca, 1992, 5(3): 277-284.
[38] Wong YW and Pellegrino S. Wrinkled membranes part II: Analytical Models [J]. Journal of Mechanics of Materials and Structures, 2006, 1(1): 27-61
[39] Stein, J.M. Hedgepeth. Analysis of partly wrinkled membranes[C]. National Aeronautics and Space Administration Technology. Washington, 1991: 813-826.
[40] R.K. Miller, J.M. Hedgepeth. Finite element analysis of partly wrinkled membranes[J]. Computer Structure, 1995, 20(1-3): 631-639.
[41] Hongli Ding. Modeling and analysis of wrinkled membranes[D]. Southern California: University of Southern California, 2003.
[42] M. Fujikake, O. Kojima, S. Fukushima. Analysis of fabric tension structures[J]. Computers and Structures, 1990, 32(34): 537-547.
[43] T. Suzuki, T. Ogawa, S Motoyui. Investigation on wrinkling problem of membrane structure[C]. International Association for Shell and Spatial Structures. Istanbul, 1998: 695-702.
[44] Yan D, Zhang K, Peng F, et al. Tailoring the wrinkle pattern of a microstructured membrane[J]. Applied Physics Letters, 2014, 105(7): 071905.
[45] Kim J Y, Lee J B. A new technique for optimum cutting pattern generation of membrane structures[J]. Engineering structures, 2002, 24(6): 745-756.
[46] Punurai W, Tongpool W, Morales J H. Implementation of genetic algorithm for optimum cutting pattern generation of wrinkle free finishing membrane structures[J]. Finite elements in analysis and design, 2012, 58: 84-90.
[47] Akita T, Natori M C. Sensitivity analysis method for membrane wrinkling based on the tension-field theory[J]. AIAA journal, 2008, 46(6): 1516-1527.
[48] Lim C W, Toropov V, Ye J. Shape optimization of membrane structures based on finite element simulation; Proceedings of the eleventh international conference on computational structures technology[M]. Civil-Comp Press, 2012.
[49] Y. Luo, J. Xing, Y. Niu, M. Li, Z. Kang. Wrinkle-Free Design of Thin Membrane Structures Using Stress-Based Topology Optimization[J]. Journal of the Mechanics and Physics, 2017(102): 277-293.
[50] 王珂. 含切口薄膜结构的皱曲与撕裂行为分析[D]. 黑龙江: 哈尔滨工业大学, 2019.
[51] Xiaoyun Wang, Christian Sulik, Wanping Zheng, et al. High-Fidelity wrinkling analysis of membrane structures and elliptical cut optimization[C]. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, April 7-10, 2008: 2255.
[52] Greschik G, White C, Salama M. On the precisely uniform and uniaxial tensioning of a film sheet via integrated catenary[C]. 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003: 1906.
[53] Sakamoto H, Park KC, Miyazaki Y. Dynamic wrinkle reduction strategies for cable-suspended membrane structures[J].Spacecr Rockets, 2005, 42(5): 850-858.
[54] Bonin A.S., Seffen K.A. De-wrinkling of pre-tensioned membranes[J]. International Journal of Solids and Structures, 2014, 51(19-20): 3303-3313.
[55] 谈炳东. 短纤维增强三元乙丙薄膜包覆层的力学性能研究[D]. 江苏: 南京理工大学, 2017.
[56] Kim. Tae-Eon, Juon. So Me, Park. Jeong Ho, et al. Silicon carbide fiber-reinforced composite membrane for high-temperature and low-humidity polymer exchange membrane fuel cells[J]. International journal of hydrogen energy, 2014, 39(29): 16474-16485.
[57] 佛山市日日圣科技有限公司. 一种聚酰亚胺纳米纤维增强的多孔薄膜: 中国, CN201810523835.3[P]. 2018-12-04.
[58] 郑州大学. 一种超疏水聚乙烯纤维薄膜的制备方法: 中国, CN201710159411.9[P]. 2017-7-21.
[59] Shmoylova E, Dorfmann A. Wrinkling of a Fiber-Reinforced Membrane[J]. Journal of Applied Mechanics: Transactions of the ASME, 2009, 76(1): 271-276.
[60] Anders Klarbring, Bo Torstenfelt1, Peter Hansbo, et al. Optimal design of fibre reinforced membrane structures[J]. Structural and multidisciplinary optimization, 2017, 56(4): 781-789.
[61] 李阳阳. 纤维薄膜褶皱力学行为影响研究[D]. 辽宁: 大连理工大学, 2019.
[62] 王长国. 空间薄膜结构皱曲行为与特性研究[D]. 黑龙江: 哈尔滨工业大学, 2007.
[63] L. Lan, C. G. Wang, H. F. Tan. Experiment and evaluation of wrinkling strain in a corner tensioned square membrane[J]. Acta Mechanica Sinica, 2014, 30(3): 430-436.
[64] 王长国. 空间薄膜结构的皱曲, 弯折与振动[M]. 黑龙江: 哈尔滨工业大学出版社, 2020.
[65] 周承倜. 薄壳弹塑性稳定理论[M]. 北京, 国防出版社, 1979: 320-328.
[66] 刘鸿文, 林建兴等. 板壳理论[M]. 浙江: 浙江大学出版社, 1987: 149-156.
[67] E. Cerda, C. K. Ravi, L. Mahadevan. Wrinkling of an elastic sheet under tension[J]. Nature, 2002, 419: 579-580.
[68] 曹进军. 柔性薄膜褶皱变形的理论分析与数值模拟[D]. 重庆: 重庆大学, 2021.
[69] 曹进军, 张卉婷, 张亮, 等. 对角受拉方膜褶皱变形幅值的理论预测及实验验证[J]. 力学学报, 2019, 51(5): 1403-1410.
[70] HUANG Z. Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model[J]. Composites Part A: Applied Science and Manufacturing, 2001, 32(2): 143-172.
[71] 黄敏杰, 马利锋, 尚福林. 基于等效特征应变原理的复合材料有效模量细观力学分析[J]. 固体力学学报, 2022, 43(3): 271-283.
[72] 黄争鸣. 复合材料细观力学引论[M]. 北京: 科学出版社, 2004: 1-16.
[73] 张淼, 周宏伟. 复合材料概化力学模型的理论分析[C]. 北京力学会第16届学术年会论文集. 2010: 145-146.
[74] 段宝岩. 大型空间可展开天线的研究现状与发展趋势[J]. 电子机械工程, 2017, 33(1): 1-14.
[75] Gu Y Z, Du J L, Jiang W M, et al. Initial shape optimization for ECDMA based on coupled structural-electrostatic theory[C]. Fifth Asia International Symposium on Mechatronics, 2015.
[76] 秦东宾, 杜敬利, 谷永振, 等. 静电成形薄膜反射面设计[J]. 振动与冲击, 2018, 37(11): 130-135.
中图分类号:

 V21    

馆藏号:

 56844    

开放日期:

 2023-12-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式