- 无标题文档
查看论文信息

中文题名:

 基于量子测距和天文测角的编队卫星自主定轨技术研究    

姓名:

 刘姝妍    

学号:

 20131213314    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位:

 机械硕士    

学校:

 西安电子科技大学    

院系:

 空间科学与技术学院    

专业:

 机械(专业学位)    

研究方向:

 编队卫星自主定轨    

第一导师姓名:

 孙景荣    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 谢强    

完成日期:

 2023-04-10    

答辩日期:

 2023-05-23    

外文题名:

 Research on autonomous orbit determination of formation satellites based on quantum ranging and astronomical Angle measurement    

中文关键词:

 自主定轨算法 ; 编队卫星 ; 量子测距 ; 天文测角 ; 无迹卡尔曼滤波    

外文关键词:

 autonomous orbit determination algorithm ; formation satellites ; quantum ranging ; astronomical angle measurement ; unscented kalman filter    

中文摘要:

编队卫星技术是一种将多颗卫星组成编队,利用相互协作完成特定任务的技术,该技术已经被广泛应用于地球观测、通信、导航等领域。其中,自主定轨技术是编队卫星技术中的重要内容,它可以使编队卫星实现精确定位和控制,从而更好地完成任务。本文针对地球轨道多星编队,研究了基于量子测距和天文测角的编队卫星自主定轨方法,主要工作如下:

首先,研究了基于量子测距和天文测角的观测方法。观测方法是编队卫星自主定轨的重要组成部分,其中星间测距和测角是关键观测手段。量子测距采用发出纠缠双光子进而获得相关函数计算出测距值的方法;星间测角利用星敏感器对星座内卫星和恒星的拍照观测方法,在拍照之前模拟出星图图像以提高测量精度和准确性,同时加入星敏感器测量得到的轨道高度。通过研究量子测距、天文测角和轨道测高的组合导航方法,并将它们应用于编队卫星自主定轨中,为实现高精度、高可靠性的卫星定轨提供重要支持。

之后,研究了双星和三星编队自主定轨方法。通过建立状态模型、量测模型和估计模型,在此基础上设计了基于无迹卡尔曼滤波的双星自主定轨方法。对于三星编队,由于卫星数量增加后,角度测量实施较为困难,提出在三星编队中存在两颗主星和一颗副星的假设,主星采用量子测距、天文测角和轨道测高的组合测量方法,由三边定位法给出副星采用量子测距和轨道测高的观测量进行自主定轨,省略了其角度测量。使用仿真验证了所提出的双星和三星自主定轨方法的有效性,仿真结果表明双星的定位精度达到1m以内,三星定轨方法的定位精度达到1.5m以内。

最后,研究了多卫星编队自主定轨方法。该方法中主星采用量子测距、天文测角和轨道测高的组合测量方法,副星由三边定位法仅采用量子测距方法,通过融合算法层和测量层对多颗卫星进行定轨。由于各卫星间的测量距离值到达副卫星不是同时刻,利用插值法来估计副星和其他各颗卫星间的相对距离。在仿真中,通过对七颗编队卫星进行模拟,结果表明在空间圆形编队半径约为1km的情况下,该方案实现了40cm以内的多卫星相对导航精度。当主卫星数量减少时会大大降低多卫星角度测量的实施难度,此时精度仅会轻微减小。因此,该方法既满足了高精度,又满足了扩展性的要求。

外文摘要:

Formation satellite technology is a technique that forms a team of multiple satellites to accomplish specific tasks through mutual cooperation, which has been widely applied in fields such as Earth observation, communication, and navigation. Autonomous orbit determination technology is an important part of formation satellite technology, which enables precise positioning and control of formation satellites, thus better accomplishing tasks. This paper focuses on the study of formation satellite autonomous orbit determination methods based on quantum ranging and astronomical observation for multiple satellites in Earth orbit. The main work is as follows:

Firstly, the observation methods based on quantum ranging and astronomical observation are studied. Ranging and angle measurement between stars are critical observation means for formation satellite autonomous orbit determination. The quantum ranging uses the method of emitting entangled two photons and obtaining the correlation function to calculate the ranging value. Inter-satellite Angle measurement uses the star sensor to take pictures of satellites and stars in the constellation. Before taking pictures, star map images are simulated to improve the measurement accuracy and accuracy. At the same time, orbital altitude measured by the star sensor is added. By studying the combined navigation method of quantum ranging, astronomical observation, and orbit height measurement, and applying them to formation satellite autonomous orbit determination, important support is provided to achieve high-precision and high-reliability satellite orbit determination.

Next, autonomous orbit determination methods for dual-star and triple-star formations are studied. By establishing state models, measurement models, and estimation models, an autonomous orbit determination method based on the unscented Kalman filter for dual-star formation is designed. For a triple-star formation, due to the difficulty in angle measurement with an increasing number of satellites, the hypothesis of two main stars and one auxiliary star is proposed. The main stars adopted a combined measurement method of quantum ranging, astronomical observation, and orbit height measurement. The auxiliary star used only quantum ranging and orbit height measurement for autonomous orbit determination by three-point localization. The angle measurement is omitted. The effectiveness of the proposed autonomous orbit determination methods for dual-star and triple-star formations is verified by simulation, and the results showed that the positioning accuracy of the dual-star formation is within 1m, and the positioning accuracy of three-star orbit determination method is less than 1.5m.

Finally, a method for autonomous orbit determination of multi-satellite formations is studied. In this method, the main star adopted a combined measurement method of quantum ranging, astronomical observation, and orbit height measurement, and the auxiliary stars used only quantum ranging for autonomous orbit determination by fusion algorithms and measurement layers. Since the measurement distance values between each satellite and the auxiliary satellite did not arrive simultaneously, interpolation is used to estimate the relative distance between the auxiliary satellite and other satellites. In the simulation, by simulating seven formation satellites, the results showed that this method achieved a relative navigation accuracy of less than 40cm in a circular formation with a radius of about 1km. When the number of main satellites is reduced, the difficulty of angle measurement for multiple satellites would be greatly reduced, and the accuracy would only decrease slightly. Therefore, this method not only meets the requirements of high precision but also satisfies the requirements of scalability.

参考文献:
[1]龚柏春, 王沙, 张伟夫等. 近地轨道航天器编队仅测距相对导航方法[J]. 宇航学报, 2022, 43(08): 1088-1096.
[2]Zhang Z, Deng L, Feng J, et al. A Survey of Precision Formation Relative State Measurement Technology for Distributed Spacecraft[J]. Aerospace, 2022, 9(7):362.
[3]邵凯. 星载GNSS低轨卫星精密定轨性能提升方法研究[D]. 湖南: 国防科技大学, 2020.
[4]魏亚旭, 李广云, 李建胜. 基于纠缠光子的量子测距技术研究进展[J]. 导航定位学报, 2023, 11(01): 1-8.
[5]Hu Y, Sharf I, Chen L. Three-spacecraft autonomous orbit determination and observability analysis with inertial angles-only measurements[J]. Acta Astronautica, 2020, 170:106-121.
[6]Markley F L. Attitude determination using vector observations and the singular value decomposition[J]. Journal of the Astronautical Sciences, 1988, 36(3):245-258.
[7]Psiaki M L . Block Acquisition of Weak GPS Signals in a Software Receiver[J]. Ion Gps Salt Lake City Ut Sept, 2001:2838-2850.
[8]Ananda M P , Bernstein H , Cunningham K E , et al. Global Positioning System (GPS) autonomous navigation[C] IEEE Symposium on Position Location & Navigation A Decade of Excellence in the Navigation Sciences. IEEE, 2002.
[9]Komjathy A, Zavorotny V U, Axelrad P, et al. GPS Signal Scattering from Sea Surface: Wind Speed Retrieval Using Experimental Data and Theoretical Model[J]. Remote Sensing of Environment, 2000, 73(2):162-174.
[10]Woffinden D C, Geller D K. Observability criteria for angles-only navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1194-1208.
[11]Franquiz F J, Munoz J D, Udrea B, et al. Optimal range observability maneuvers of a spacecraft formation using angles-only navigation[J]. Acta Astronautica, 2018, 153: 337-348.
[12]Christian J A. Relative navigation using only intersatellite range measurements[J]. Journal of Spacecraft and Rockets, 2017, 54(1): 13-28.
[13]刘林, 刘迎春. 关于星-星相对测量自主定轨中的亏秩问题[J]. 飞行器测控学报, 2000, 19(3):13-16.
[14]陈金平, 焦文海, 马骏等. 基于星间测距/轨道定向参数约束的导航卫星自主定轨研究[J]. 武汉大学学报(信息科学版), 2005, 30(05):439-443.
[15]张艳. 基于星间观测的星座自主导航方法研究. 长沙:国防科技大学博士论文,2005.
[16]陈艳玲, 胡小工, 周善石等. 基于星间测距的导航卫星自主定轨新算法[J]. 中国科学:物理学 力学 天文学, 2015(07):79511-79518.
[17]辛洁, 李晓杰, 王冬霞等. 分布式导航星座自主定轨性能评估[J]. 测绘科学, 2020, 45(7):6.
[18]申洋赫. 应用于卫星编队星间距离测量的量子测距技术研究[D]. 陕西: 西安电子科技大学, 2016.
[19]丛爽, 段士奇. 基于量子卫星“墨子号”的量子测距过程仿真实验研究[J]. 系统仿真学报, 2021,33(2): 377.
[20]胡云鹏. 基于星间光学观测的多航天器协同自主定轨研究[D]. 湖南: 国防科技大学,2020.
[21]Wei K, Zhang H F, He Z X, et al. Multi-parameter global calculations of fission fragments using a simplified two-dimensional scission-point model[J]. Chinese Physics C, 2021, 45(2): 024109.
[22]Wang X G, Qin W T, Bai Y L, et al. A novel decentralized relative navigation algorithm for spacecraft formation flying[J]. Aerospace Science and Technology, 2016, 48: 28-36.
[23]Clohessy W H, Wiltshire R S. Terminal Guidance System for Satellite Rendezvous[J]. Journal of Aerospace Science, 1960, 27: 653-658.
[24]李爽, 龚翼飞, 李克行等. 时变拓扑卫星集群分布式自主相对导航方法[J].宇航学报, 2023, 44(01): 119-131.
[25]罗宇阳. 椭圆轨道卫星编队构型设计与姿态协同控制技术研究[D]. 上海: 上海交通大学, 2012.
[26]杨盛庆, 陈筠力, 王禹等. 基于轨道拟平根的合作目标机动跟踪UKF相对导航方法[J]. 航天控制, 2022, 40(05): 3
[27]王蛟龙. 基于自适应卡尔曼滤波器的编队卫星相对导航技术研究[D]. 上海: 上海交通大学, 2019.
[28]Hamel J F, Jean D L. Linearized Dynamics of Formation Flying Spacecraft on a J2-Perturbed Elliptical Orbit[J]. Journal of Guidance, Navigation and Control, 2007, 30(6): 1649-1658.
[29]刘林. 航天器轨道理论. [M]. 北京:国防工业出版社,2000.
[30]王谦, 于丹. 卫星集群星间链路拓扑设计与相对导航[J]. 南京航空航天大学学报(英文版), 2022(004):039.
[31]秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998.
[32]付梦印, 邓志红, 张继伟. Kalman 滤波理论及其在导航系统中的应用[M]. 北京: 科学出版社, 2003.
[33]杨盛庆, 陈筠力, 王禹等. 基于轨道拟平根的合作目标机动跟踪UKF相对导航方法[J]. 航天控制, 2022, 40(05): 39-46.
[34]张艾, 程瑞, 郭兰杰等. 基于改进UKF的空间非合作目标相对导航方法[J]. 航天返回与遥感, 2022, 43(01): 129-138.
[35]王栋, 杨静, 熊凯. 基于自适应UKF的卫星星座自主导航方法研究[J]. 北京航空航天大学学报, 2023, 1-16.
[36]Yang H, Li H, Xia Y, et al. Distributed Kalman Filtering Over Sensor Networks With Transmission Delays[J]. IEEE Trans Cybern, 2021, 51(11): 5511-5521.
[37]刘立峥. 基于线性光学的量子网络及量子传感的关键问题研究[D]. 湖南: 中国科学技术大学, 2022.
[38]任钊恒, 苗强, 吴德伟等. 基于杂化纠缠量子信号的导航测距方案[J/OL]. 光学学报, 2023, 1-14.
[39]Sun X, Li W, Tian Y, et al. Quantum positioning and ranging via a distributed sensor network[J]. Photonics Research, 2022, 10(12):2886-2892.
[40]魏亚旭, 李广云, 李建胜. 基于纠缠光子的量子测距技术研究进展[J]. 导航定位学报, 2023, 11(01): 1-8.
[41]段士奇. 基于卫星的量子测距系统仿真平台的设计与实现[D]. 湖南: 中国科学技术大学, 2021.
[42]杨玉. 基于HOM干涉仪的量子精密测距方法研究[D]. 西安: 西安电子科技大学, 2019.
[43]杜扬钦. 基于双目视觉卫星编队的空间态势感知关键技术研究[D]. 浙江: 浙江大学, 2020.
[44]刘磊, 曹建峰. 基于天基光学测角的高轨空间目标轨道确定[J]. 光学学报, 2021, 41(19): 155-161.
[45]郭金权, 李国元, 裴亮等. 激光测高卫星波形饱和识别与测高误差改正初步研究[J]. 遥感学报, 2022, 26(08):1674-1684.
[46]Wang J, Butcher E A, Tansel Y. Space-Based Relative Orbit Estimation Using Information Sharing and the Consensus Kalman Filter[J]. Journal of Guidance Control and Dynamics, 2019, 42(3): 491-507.
[47]Mo S, Jin X, Lin C, et al. Multi-Satellite Relative Navigation Scheme for Microsatellites Using Inter-Satellite Radio Frequency Measurements[J]. Sensors, 2021, 21(11):3725.
[48]Mo S, Jin X, Hu W, et al. Distributed multi-satellite measurement scheme oriented towards microsatellite formations[J]. Electronics Letters, 2020, 56(5): 252-255.
[49]杜荣华, 廖文和, 张翔. 基于自适应均方根EKF的惯性辅助航天器仅测角导航方法[J]. 中国惯性技术学报, 2022, 30(02): 210-217.
[50]胡伟强. 基于双边双程的多星编队星间高精度测量技术研究[D]. 浙江: 浙江大学, 2020.
[51]毛悦, 宋小勇, 贾小林等.星间链路观测数据归化方法研究[J]. 武汉大学学报, 2013, 38(10): 1201-1206.
[52]李敏, 施闯, 赵齐乐等. 多模全球导航卫星系统融合精密定轨[J]. 测绘学报, 2011(S1):5.
中图分类号:

 V44    

馆藏号:

 56905    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式