- 无标题文档
查看论文信息

中文题名:

 弱电生物电磁感知机理研究    

姓名:

 邱春炎    

学号:

 20181214107    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085401    

学科名称:

 工学 - 电子信息 - 新一代电子信息技术(含量子技术等)    

学生类型:

 硕士    

学位:

 电子信息硕士    

学校:

 西安电子科技大学    

院系:

 广州研究院    

专业:

 电子信息    

研究方向:

 生物仿生及信号处理    

第一导师姓名:

 周生华    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 王雪    

完成日期:

 2023-04-10    

答辩日期:

 2023-05-29    

外文题名:

 Research on the mechanism of weak bioelectromagnetic perception    

中文关键词:

 弱电鱼 ; 水下电场探测 ; 电子图像 ; 有限元仿真分析 ; 细胞感知机理    

外文关键词:

 Weekly electric fish ; underwater electric field detection ; electronic image ; finite element analysis ; cellular perception mechanism    

中文摘要:

弱电鱼是一种能够依靠电场进行水下环境探测的鱼类。受弱电鱼水下电磁感知的启发,延展出了极低频水下电场感知的研究方向。当前的研究主要分为三个分支进 行:第一,基于生物行为实验研究弱电鱼感知机理。第二,弱电鱼感知器官的神经学 研究。第三,基于电场的水下目标探测研究。当前,这三个主要方向的研究都以弱电 鱼为基础,但并没有深入的去研究弱电鱼的感知机理。因此,本文以电磁学和神经科 学为理论基础,从弱电鱼信号测量和处理、弱电鱼探测和感知细胞感知的仿真模型构 建的角度出发,对弱电鱼电磁感知机理进行研究。研究工作包括以下三个部分:

第一,弱电鱼电磁感知机理的研究。基于弱电鱼生物特性的研究和基本电磁场理 论,物体的存在会对弱电鱼的电场造成扰动,弱电鱼皮肤的感觉器官能感知到电场的 变化,由于电场扰动形成与视觉类似的“电子图像”,因此认为基于电场扰动的“电子图像”是弱电鱼实现物体感知和环境探测的基础理论。在该理论的基础上,以弱电鱼的生物特性和水下电场信号测量为依据,将弱电鱼的电器官用一对偶极子模拟,并 基于 COMSOL 多物理场仿真软件平台建立了弱电鱼探测物体的有限元仿真模型。仿 真结果证明,物体的存在对电场造成了扰动,初步验证了“电子图像”理论的科学性。

第二,弱电鱼基于“电子图像”感知机理的验证。首先,基于上述的有限元仿真 模型,对不同物体在不同距离和大小下的电子图像进行仿真分析。结果表明:基于电 子图像的特征,弱电鱼可以实现对物体大小、位置和形状的预测,证明了“电子图像” 理论的正确性。其次,建立了前馈神经网络模型,可以实现通过电子图像数据,对物 体距离、大小、形状三个参数的预测。最后,建立了基于弱电鱼仿生的运动探测模型, 从模拟弱电鱼水下物体探测的角度,证明了弱电鱼基于电场扰动的“电子图像”理论 的正确性。该部分的研究,不仅验证了弱电鱼“电子图像”的感知机理,也为基于弱 电鱼仿生的水下电场探测提供理论基础,同时还提供了相应的信号分析方法。

第三,探索了弱电鱼感知的细胞机理和信号接收转换模型,验证了弱电鱼能够感 知到物体造成的电场扰动。基于弱电鱼信号特征和感知细胞结构,借鉴神经科学研究 里的 H­H(Hodgkin­Hexley)模型,建立了弱电鱼感知细胞的 H­H 模型,研究弱电鱼 电感知细胞对外界信号进行感知的机理。在此基础上,针对弱电鱼细胞参数特征,对 细胞模型进行仿真分析,探究了细胞对外界不同信号的响应特征,并计算了引起感知 细胞响应的最小电流阈值。随后,建立基于弱电鱼感知细胞的物体探测仿真模型,仿 真了弱电鱼探测物体时的电子图像数据,通过计算得知电场的扰动对应的电流值超 过引起细胞响应的最小幅值,得出弱电鱼能够对电场扰动进行探测结论。证明弱电鱼基于电场扰动的“电子图像”感知理论具有相应实现基础。为后续弱电鱼细胞层面感 知机理的研究奠定了基础,为弱电鱼接收器官的仿生实现提供了理论依据。

外文摘要:

The weakly electric fish is a type of fish that can rely on electric field for underwater environment detection. Inspired by the underwater electromagnetic perception of weakly electric fish, the research direction of extremely low frequency underwater electric field perception is extended. The current research is divided into three main branches: First, the study of biological behavior. Second, Neurological research on sensory organs of weak electric fish. Third, the research on underwater target detection based on electric field. At present, the research in these three main directions is based on weakly electric fish, but there is no in­depth study of the perception mechanism of weakly electric fish. Therefore, based on the theory of electromagnetism and neuroscience, this paper studies the electromagnetic perception mechanism of weakly electric fish from the perspective of signal measurement processing and simulation model construction of weakly electric fish. The research work includes the following three parts:

Firstly, the study of electromagnetic perception mechanism of weakly electric fish. Based on the study of the biological characteristics of weakly electric fish and the basic electromagnetic field theory, the presence of objects will disturb the electric field of weakly electric fish. The sensory organs of the skin of weakly electric fish can perceive the change of electric field. Due to the formation of ”electronic images” similar to vision caused by electric field disturbances, it is believed that ”electronic images” based on electric field disturbances is the fundamental theory for weak electric fish to achieve object perception and environmental detection. Based on this theory, we simulated the electrical organs of the weakly electric fish with a pair of dipoles based on the biological characteristics of the weakly electric fish and the underwater electric field signal measurement. And then establish a finite element simulation model of the weakly electric fish to detect objects based on the COMSOL multiphysics field simulation software platform. The simulation results prove that the presence of the object causes perturbation to the electric field, which initially verifies the scientificity of the ”electronic image” theory.

Secondly, the verification of the ”electronic image” perception mechanism of the weak electric fish. First, based on the finite element simulation model, the electronic images of different objects at different distances and sizes are simulated and analyzed. The results show that based on the characteristics of electronic image as object change, weakly electric fish can predict the size, position and shape of the object, which proves the correctness of the ”electronic image” theory. Second, the feedforward neural network model is established. The neural network model can predict the distance, size and shape of the object through the electronic image data after the training. Finally, a motion detection model based on the bionic of weakly electric fish is established. From the perspective of simulating the detection of underwater objects by weakly electric fish, the correctness of the ”electronic image” theory based on electric field disturbance has been proven. This section of the study not only verifies the accuracy of the electric field perturbation­based ”electronic image” theory of the weakly electric fish, but also provides the results of the underwater object detection.

Thirdly, the cellular mechanism and signal reception conversion model of weakly electric fish perception are explored, verifying that weakly electric fish can perceive the electric field disturbance caused by objects. Based on the signal characteristics of weakly electric fish and the structure of sensing cells, and referring to the H­H model in neuroscience research, the H­H model of sensing cells of weakly electric fish is established to study the mechanism of sensing external signals by the electro­sensing cells of weak electric fish. On this basis, the simulation analysis of the cell model is conducted to explore the response characteristics of the cell to different signals from the outside world, and the minimum current threshold to cause the response of the perceptual cell was calculated for the characteristics of the weakly charged fish cell parameters. Subsequently, an object detection simulation model based on the perceptual cells of the weakly electric fish is established, and the electric image data when detecting objects are simulated. The result calculated that the current value corresponding to the perturbation of the electric field exceeds the minimum amplitude value that causes the cell response, which means the weekly electric fish is able to detect the perturbation of the electric field. It is proved that the ”electronic image” perception theory of weakly electric fish based on electric field disturbance has a corresponding realization basis. It laid the foundation for the follow­up research on the perception mechanism of weakly electric fish at the cell level and provides a theoretical basis for the bionic realization of the weak electric fish receiving organ.

参考文献:
[1] LISSMANN H W. Continuous electrical signals from the Tail of a Fish, Gymnarchus niloticus Cuv.[J]. Nature, 1951, 167 : 201 – 202.
[2] LISSMAN H W. On the function and evolution of electric organs in fish[J]. Journal of Experimental Biology, 1958, 35(1) : 156 – 191.
[3] MOLLER P. Multimodal sensory integration in weakly electric fish: a behavioral account[J]. Journal of Physiology­Paris, 2002, 96(5­6) : 547 – 556.
[4] 张劲硕, 吴海峰. 蝙蝠与超声波、回声定位 (1)[J]. 生物学通报, 2015, 50(3) : 5.
[5] 李志忠, 赵宏伟, 周昶, et al. 我国海洋油气开发与未来潜力分析 [J]. 中国能源, 2015, 37(4) : 4.
[6] 刘洪生, 姜朝宇. 美俄潜艇声纳装备的发展 [J]. 舰船电子工程, 2015, 35(5) : 4.
[7] 徐硕, 姜言清, 李晔, et al. 智能水下机器人自主回收的双目视觉定位 [J]. 哈尔滨工程大学学报,2022(008) : 043.
[8] SCHWARZ S, von der EMDE G. Distance discrimination during active electrolocation in the weakly electric fish Gnathonemus petersii[J]. Journal of Comparative Physiology A, 2001, 186 : 1185 –1197.
[9] 谢广明、郑君政、王晨. 水下仿生电场感知综述 [J]. 系统仿真学报, 2020, 32(12) : 17.
[10] HEILIGENBERG W. Theoretical and experimental approaches to spatial aspects of electrolocation[J]. Journal of comparative physiology, 1975, 103(3) : 247 – 272.
[11] Von der EMDE G. Active electrolocation of objects in weakly electric fish[J]. Journal of experimental biology, 1999, 202(10) : 1205 – 1215.
[12] RASNOW B, BOWER J M. Imaging with electricity: how weakly electric fish might perceive objects[J]. Computational Neuroscience: Trends in Research, 1997, 1997 : 795 – 800.
[13] ENGELMANN J, BACELO J, METZEN M, et al. Electric imaging through active electrolocation:implication for the analysis of complex scenes[J]. Biological cybernetics, 2008, 98 : 519 – 539.
[14] CAPUTI A A, BUDELLI R, GRANT K, et al. The electric image in weakly electric fish: physical images of resistive objects in Gnathonemus petersii.[J]. The Journal of experimental biology, 1998,201(14) : 2115 – 2128.
[15] Von der EMDE G, BLECKMANN H. Finding food: senses involved in foraging for insect larvae in the electric fish Gnathonemus petersii[J]. The Journal of experimental biology, 1998, 201(7) :969 – 980.
[16] HEILIGENBERG W. Neural nets in electric fish[M]. [S.l.] : MIT press, 1991.
[17] RASNOW B. The effects of simple objects on the electric field of Apteronotus[J]. Journal of Comparative Physiology­Section A­Sensory Neural and Behavioral Physiology, 1996, 178(3) : 397 –412.
[18] VON DER EMDE G, SCHWARZ S, GOMEZ L, et al. Electric fish measure distance in the dark[J].Nature, 1998, 395(6705) : 890 – 894.
[19] ASSAD C. Electric field maps and boundary element simulations of electrolocation in weakly electric fish[M]. [S.l.] : California Institute of Technology, 1997.
[20] BABINEAU D, LONGTIN A, LEWIS J E. Modeling the electric field of weakly electric fish[J].Journal of experimental biology, 2006, 209(18) : 3636 – 3651.
[21] KELLY M, BABINEAU D, LONGTIN A, et al. Electric field interactions in pairs of electric fish:modeling and mimicking naturalistic inputs[J]. Biological cybernetics, 2008, 98 : 479 – 490.
[22] FUJITA K, KASHIMORI Y. Modeling the electric image produced by objects with complex impedance in weakly electric fish[J]. Biological cybernetics, 2010, 103 : 105 – 118.
[23] HOFMANN V, SANGUINETTI­SCHECK J I, GÓMEZ­SENA L, et al. From static electric images to electric flow: towards dynamic perceptual cues in active electroreception[J]. Journal of Physiology­Paris, 2013, 107(1­2) : 95 – 106.
[24] FUJITA K, KASHIMORI Y. Representation of object’s shape by multiple electric images in electrolocation[J]. Biological Cybernetics, 2019, 113(3) : 239 – 255.
[25] SCHEICH H, BULLOCK T H, HAMSTRA JR R. Coding properties of two classes of afferent nerve fibers: high­frequency electroreceptors in the electric fish, Eigenmannia.[J]. Journal of neurophysiology, 1973, 36(1) : 39 – 60.
[26] NELSON M, XU Z, PAYNE J. Characterization and modeling of P­type electrosensory afferent responses to amplitude modulations in a wave­type electric fish[J]. Journal of Comparative Physiology, 1997, 181(5) : 532 – 544.
[27] GUSSIN D, BENDA J, MALER L. Limits of linear rate coding of dynamic stimuli by electroreceptor afferents[J]. Journal of Neurophysiology, 2007, 97(4) : 2917 – 2929.
[28] CHACRON M J. Nonlinear information processing in a model sensory system[J]. Journal of Neurophysiology, 2006, 95(5) : 2933 – 2946.
[29] MULLER S Z, ZADINA A N, ABBOTT L, et al. Continual learning in a multi­layer network of an electric fish[J]. Cell, 2019, 179(6) : 1382 – 1392.
[30] HOFMANN M H. DETECTION AND GENERATION OF ELECTRIC SIGNALS | Physiology of Ampullary Electrosensory Systems[J]. Encyclopedia of Fish Physiology, 2011 : 359 – 365.
[31] JOSBERGER E E, HASSANZADEH P, DENG Y, et al. Proton conductivity in ampullae of Lorenzini jelly[J]. Science Advances, 2016, 2(5) : e1600112.
[32] BELLONO N W, LEITCH D B, JULIUS D. Molecular basis of ancestral vertebrate electroreception[J]. Nature, 2017, 543(7645) : 391 – 396.
[33] ENGELMANN J, WALLACH A, MALER L. Linking active sensing and spatial learning in weakly electric fish[J]. Current opinion in neurobiology, 2021, 71 : 1 – 10.
[34] ASSAD C, RASNOW B, STODDARD P, et al. The electric organ discharges of the gymnotiform fishes: II. Eigenmannia[J]. Journal of Comparative Physiology A, 1998, 183 : 419 – 432.
[35] SOLBERG J R, LYNCH K M, MACIVER M A. Active electrolocation for underwater target localization[J]. The International Journal of Robotics Research, 2008, 27(5) : 529 – 548.
[36] BOYER F, GOSSIAUX P B, JAWAD B, et al. Model for a sensor inspired by electric fish[J]. IEEE transactions on robotics, 2011, 28(2) : 492 – 505.
[37] LEBASTARD V, CHEVALLEREAU C, GIRIN A, et al. Environment reconstruction and navigation with electric sense based on a Kalman filter[J]. The International Journal of Robotics Research, 2013,32(2) : 172 – 188.
[38] BAI Y, SNYDER J B, PESHKIN M, et al. Finding and identifying simple objects underwater with active electrosense[J]. The International Journal of Robotics Research, 2015, 34(10) : 1255 – 1277.
[39] BAZEILLE S, LEBASTARD V, LANNEAU S, et al. Model based object localization and shape estimation using electric sense on underwater robots[J]. IFAC­PapersOnLine, 2017, 50(1) : 5047 –5054.
[40] WANG K, DO K D, CUI L. An underwater electrosensor for identifying objects of similar volume and aspect ratio using convolutional neural network[C] // 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017 : 4963 – 4968.
[41] REN Q, PENG J, CHEN H. Amplitude information­frequency characteristics for multi­frequency excitation of underwater active electrolocation systems[J]. Bioinspiration & Biomimetics, 2019,15(1) : 016004.
[42] BAZEILLE S, LEBASTARD V, BOYER F. A purely model­based approach to object pose and sizeestimation with electric sense[J]. IEEE Transactions on Robotics, 2020, 36(5) : 1611 – 1618.
[43] PENG H, HU Q, JIANG G, et al. Direction Identification of Underwater Moving Target with Active Electrosense and CNN[C] // 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2021 : 732 – 737.
[44] CAPUTI A. DETECTION AND GENERATION OF ELECTRIC SIGNALS| Electric Organs[J],2011.
[45] KAWASAKI M. DETECTION AND GENERATION OF ELECTRIC SIGNALS| Generation of
Electric Signals[J], 2011.
[46] CARLSON B. Detection and generation of electric signals| Detection and Generation of Electric Signals in Fishes: An Introduction[G] // Encyclopedia of Fish Physiology. [S.l.] : Elsevier Inc.2011 : 347 – 349.
[47] FIELDS R D, FIELDS K D, FIELDS M C. Semiconductor gel in shark sense organs?[J]. Neuroscience letters, 2007, 426(3) : 166 – 170.
[48] FORTUNE E, CHACRON M. Physiology of tuberous electrosensory systems[J]. Encyclopedia of fish physiology: from genome to environment, 2011, 1 : 366 – 374.
[49] AGUILERA P A, CAPUTI A A. Electroreception in G. carapo: detection of changes in waveform of the electrosensory signals[J]. Journal of Experimental Biology, 2003, 206(6) : 989 – 998.
[50] JAEYOON J J, ANDRé L, LEONARD M, et al. Real­Time Localization of Moving Dipole Sources for Tracking Multiple Free­Swimming Weakly Electric Fish[J]. Plos One, 2013, 8(6) : e66596.
[51] KALMIJN A J. Sensory Biology of Aquatic Animals[M]. [S.l.] : Sensory Biology of Aquatic Animals, 1988.
[52] CAMPERI M, TRICAS T C, BROWN B R. From morphology to neural information: the electric sense of the skate[J]. PLoS Computational Biology, 2007, 3(6) : e113.
[53] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. The Journal of physiology, 1952, 117(4) : 500.
[54] IZHIKEVICH E M, DESAI N S, WALCOTT E C, et al. Bursts as a unit of neural information:selective communication via resonance[J]. Trends in neurosciences, 2003, 26(3) : 161 – 167.
[55] YUSTE R. From the neuron doctrine to neural networks[J]. Nature reviews neuroscience, 2015,16(8) : 487 – 497.
[56] 尼科尔斯, 杨雄里. 神经生物学: 从神经元到脑 [J]. 科学出版社, 2014.
[57] J., CERVERA, B., et al. A Poisson/Nernst­Planck model for ionic transport through synthetic conical nanopores[J]. Epl, 2005.
[58] DEVANEY A J. Mathematical Foundations of Neuroscience[M]. [S.l.] : Mathematical Foundations of Neuroscience, 2010.
[59] SHUAI J, KASHIMORI Y, KAMBARA T. Electroreceptor model of the weakly electric fish Gnathonemus petersii. I. The model and the origin of differences between A­and B­receptors[J].Biophysical journal, 1998, 75(4) : 1712 – 1726.
[60] EGEBERG C A, KEMPSTER R M, THEISS S M, et al. The distribution and abundance of electrosensory pores in two benthic sharks: a comparison of the wobbegong shark, Orectolobus maculatus, and the angel shark, Squatina australis[J]. Marine and Freshwater Research, 2014, 65(11) :1003.
中图分类号:

 Q811    

馆藏号:

 58915    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式