- 无标题文档
查看论文信息

中文题名:

 基于舰/岸基雷达回波信号的蒸发波导预测研究    

姓名:

 王霞    

学号:

 20051212159    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070208    

学科名称:

 理学 - 物理学 - 无线电物理    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 西安电子科技大学    

院系:

 物理学院    

专业:

 物理学    

研究方向:

 蒸发波导研究    

第一导师姓名:

 弓树宏    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-06-16    

答辩日期:

 2023-05-29    

外文题名:

 Evaporation Waveguide Prediction Based on Ship/Shore-based Radar Echo Signal    

中文关键词:

  雷达回波 ; 大气波导 ; 蒸发波导 ; 大气折射指数 ; 斯奈尔定律    

外文关键词:

  Radar echoes ; Atmospheric waveguide ; Evaporation waveguide ; Atmospheric refraction index ; Snell's Law    

中文摘要:

舰载雷达在对海面目标进行探测时,由于蒸发波导环境的存在,对雷达评估性能产生极大影响,它不仅能增加雷达传播距离,而且还造成大面积的探测盲区,因此能够准确可靠地预报大气波导,对提高舰船等海面军事目标的生存能力、打击能力有极大帮助。本文提出了一种新的预测方法来反演蒸发波导参数,从理论仿真和试验两方面验证此方法的可行性。本文研究的主要内容可分为几个部分:

首先从大气折射指数的角度出发,研究了大气波导的形成原因、条件及分类。给出了不同波导环境(表面波导,蒸发波导和悬空波导)的物理特性、波导参数和环境特征。重点研究了蒸发波导的物理特性和参数模型以及其对电磁波传播所产生的影响,给出了蒸发波导环境会对雷达评估性能产生极大影响的结论。

其次研究了抛物方程的由来和模型以及抛物方程的解法,分步傅里叶变换法(SSFT)、离散混合傅里叶变换法(DMFT)、有限差分方法等,同时开展了初始场求解和边界条件设置等理论工作。随后通过抛物方程的有限差分法仿真模拟了三种不同大气环境中的电波传播损耗,结果表明波导环境下的电波传播损耗明显比标准大气环境下的损耗小的多,阐明了超视距传播的本质。最后结合射线追踪法呈现了蒸发波导环境下的电磁波传播轨迹,并与抛物方程法的计算结果进行了比较,两种方法的计算结果整体趋势一致。

最后依据雷达反射点的轨迹分布特点,结合电磁波在蒸发波导环境下传输轨迹的特点来判断研究区域有无波导环境存在。在此基础上将雷达回波数据进行“分组”“聚类”,然后选取某一方位角上的回波数据,将Snell定律和射线传播的几何关系结合起来,来反演这一方位角上大气折射指数,再利用波导强度计算公式得出蒸发波导参数。并且通过模拟仿真理论和工程试验证明了这种方法的可行性。

本文提出的大气波导反演方法与现有大气波导反演技术相比,该方法不需要海杂波的实际测量数据和雷达电波传播模式正向模拟结果之间相互比拟,而是利用雷达海面杂波反射点轨迹分布,对探测方向上大气波导环境内的大气折射指数布计算,从而进行大气波导诊断。基于大气折射效应进行分析,分析过程更能体现大气波导内电波的传播特性且计算过程更为简洁,具有更高的效率和良好的精度,适用性更好,同时,实施本方法所需要的装置简便、成本低、易于实现。

外文摘要:

When naval radar detects sea surface targets, the presence of evaporative waveguide environment greatly affects the radar evaluation performance, which not only increases the radar propagation distance, but also causes a large detection blind area, thus being able to accurately and reliably predict the atmospheric waveguide is of great help to improve the survivability and strike capability of naval surface military targets such as ships. In this paper, a new prediction method is proposed to invert evaporative waveguide parameters, and the feasibility of this method is verified from both theoretical simulations and experiments. The main elements of the research in this paper can be divided into several parts:

 

Firstly, the causes, conditions and classification of atmospheric waveguides are studied from the perspective of the atmospheric refraction index. The physical properties, waveguide parameters and environmental characteristics of different waveguide environments (surface waveguide, evaporative waveguide and overhanging waveguide) are given. The focus is on the physical characteristics and parametric modelling of evaporative waveguides and their effect on electromagnetic wave propagation, giving the conclusion that the evaporative waveguide environment can have a significant impact on the performance of radar evaluation.

 

Next, the origin and model of the parabolic equation and the solution methods of the parabolic equation, split step Fourier transform (SSFT), discrete mixed Fourier transform (DMFT) and finite difference methods are investigated, while theoretical work such as initial field solution and boundary condition setting is carried out. The finite difference method of parabolic equations is then used to simulate the wave propagation losses in three different atmospheric environments. The results show that the wave propagation losses in the waveguide environment are significantly smaller than those in the standard atmospheric environment, elucidating the nature of over-the-horizon propagation. Finally, the electromagnetic wave propagation trajectory in the evaporating waveguide environment is presented in combination with the ray-tracing method and compared with the calculation results of the parabolic equation method. The overall trend of the calculation results of both methods is consistent.

 

Finally, based on the trajectory distribution characteristics of radar reflection points, combined with the characteristics of electromagnetic wave transmission trajectory in the evaporative waveguide environment to determine the existence of waveguide environment in the study area. On this basis, the radar echo data are "grouped" and "clustered", and then the echo data at a certain azimuth are selected, and Snell's law and the geometric relationship of ray propagation are combined to invert the atmospheric refraction index at this azimuth, and then use The waveguide intensity formula is then used to derive the evaporative waveguide parameters. The feasibility of this method has been demonstrated by simulation theory and engineering tests.

 

Compared with existing atmospheric waveguide inversion techniques, the method proposed in this paper does not require a comparison between actual measurements of sea clutter and the forward simulation results of radar wave propagation patterns, but rather uses the point trajectory distribution of radar sea clutter reflections to calculate the atmospheric refraction index within the atmospheric waveguide environment in the detection direction, thus performing atmospheric waveguide diagnosis. Based on the atmospheric refraction effect, the analysis process better reflects the wave propagation characteristics within the atmospheric waveguide and the calculation process is more concise, with higher efficiency and good accuracy, better applicability, and at the same time, the implementation of the method requires simple, low-cost and easy to implement devices.

参考文献:
[1] Babin S M, Young G S, Carton J A. A new model of the oceanic evaporation duct[J]. Journal of Applied Meteorology and Climatology, 1997, 36(3): 193-204.
[2] Bean B R , Dutton E J . Radio Meteorology[J]. Technical Report Archive & Image Library, 1966.
[3] 弓树宏. 电磁波在对流层中传输与散射若干问题研究[D]. 博士论文], 西安电子科技大学, 2008.
[4] 宋雪梅, 朱旭东. 对流层散射实现雷达信号超视距传输的研究[J]. 现代雷达, 2011, 33(7): 9-12.
[5] 胡荣旭, 吴振森, 张金鹏. 中国近海蒸发波导反演中最佳雷达参数分析[J]. 电波科学学报, 2015 (4): 653-660.
[6] HUANG X, ZHANG Y, WANG H, et al. Evaluation and experimental analysis of radar anomalous detection influenced by atmospheric ducts[J]. Acta Electonica Sinica, 2006, 34(4): 722.
[7] 盛峥, 徐如海, 石汉青. 海洋大气波导对雷达探测性能影响的研究[J]. 现代雷达, 2008 (4): 18-20.
[8] 滕哲, 徐卫明, 明中正, 等. 大气波导对岸基警戒雷达影响研究[J]. 现代雷达, 2013, 35(9): 10-14.
[9] Patterson W L. Climatology of Marine Atmospheric Refractive Effects. A Compendium of the Integrated Refractive Effects Prediction System (IREPS) Historical Summaries[R]. NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA, 1982.
[10] 黄小毛, 张永刚, 罗宁, 等. 大气波导对电磁波陷获传播影响的数值模拟和试验验证[J]. 微波学报, 2007, 23(B08): 177-184.
[11] Douchin N, Bolioli S, Christophe F, et al. Theoretical study of the evaporation duct effects on satellite-to-ship radio links near the horizon[J]. IEE Proceedings-Microwaves, Antennas and Propagation, 1994, 141(4): 272-278.
[12] Jeske H. State and limits of prediction methods of radar wave propagation conditions over sea[C]//Modern Topics in Microwave Propagation and Air-Sea Interaction: Proceedings of the NATO Advanced Study Institute held at Sorrento, Italy, June 5–14, 1973. Springer Netherlands, 1973: 130-148.
[13] Paulus R A. Practical application of an evaporation duct model[J]. Radio science, 1985, 20(4): 887-896.
[14] Musson-Genon L, Gauthier S, Bruth E. A simple method to determine evaporation duct height in the sea surface boundary layer[J]. Radio science, 1992, 27(05): 635-644.
[15] Jeske H. The state of radar-range prediction over sea[C]. Tropospheric radio wave propagation—Part II. 1971.
[16] Anderson K D . 94-GHz Propagation in the Evaporation Duct[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(5):746-753.
[17] Stapleton J K, Wiss V R, Marshall R E. Measured anomalous radar propagation and ocean backscatter in the Virginia coastal region[C]. Pro­ceedings of the 31st International Conference on Radar Meteorology, Seattle, 2003.
[18] Atktnson R W, Li J G, Plant R S. Numerical modeling of the propagation environment in the at­mospheric boundary layer over the Persian Gulf[J]. Journal of applied meteorology, 2001 (40),586-603.
[19] Anderson, Brooks K, Caffrey B, et al. The RED Experiment: An Assessment of Boundary Layer Effects in a Trade Winds Regime on Microwave and Infrared Propagation over the Sea[J]. Bulletin of the American Meteorological Society, 2007, 85(9):1355-1365.
[20] D, R, Siddle. Signal strength variations at 2 GHz for three sea paths in the British Channel Islands: Observations and statistical analysis[J]. Radio Science, 2007.
[21] Wang Q, Alappppattu D P, Billingsley S, et al. CASPER coupled air-sea processes and electromagnetic ducting research[J]. Bulletin of the American Meteorological Society, 2017, 1449-1471.
[22] Kulessa A S, Barrios A, Claverie J, et al. The tropical air-sea propagation study (TAPS) [J]. Bulletin of the American Meteorological Society, 2017, 98(3): 517-537.
[23] 潘中伟,刘成国. 东南沿海波导结构的预报方法[J]. 电波科学学报, 1996, 11(3): 58-63.
[24] 张玉生, 康士峰, 赵振维,等. 大气波导与气象物理量场相关性的模拟分析[J]. 电波科学学报, 2009, 24(4): 742-747.
[25] Zhang J P, Wu Z S, Zhang Y S, et al Evapora­tion duct retrieval using changes in radar sea clutter power versus receiving height [J]. Progress in elec­tromagnetics research, 2012, 126: 555-571.
[26] 张金鹏, 张玉石, 吴振森,等. 基于雷达海杂波的区域性非均匀蒸发波导反演方法[J]. 物理学报, 2015(12): 136-146.
[27] 张金鹏. 海上对流层波导的雷达海杂波/GPS信号反演方法研究[D]. 西安电子科技大学, 2014.
[28] 杨超, 陈竞, 王一旨,等. 雷达海杂波反演大气波导的改进回溯搜索算法[J]. 系统工程与电子技术, 2018, 40(8): 1743-1749.
[29] Liu A G , Hao C , Xi Z M , et al. Estimation of Refractivity Profile from Radar Sea Clutter and Key Problems[C] International Conference on Radar. IEEE, 2007, 1705-1707.
[30] 刘爱国, 察豪, 刘峰. 基于雷达海杂波的大气折射率剖面估计技术[J]. 电波科学学报, 2007, 22(5): 867-871.
[31] 刘成国, 黄际英, 江长荫, 等. 用伪折射率和相似理论计算海上蒸发波导剖面[J]. 电子学报, 2001, 29(7): 970-972.
[32] 郭相明, 刘永胜, 赵栋梁,等. C波段蒸发波导传播衰落特征的试验研究[J]. 电波科学学报, 2019, 34(5): 622-627.
[33] 康士峰 张玉生 王红光. 对流层大气波导[M]. 科学出版社, 2014.
[34] 戴福山, 大气波导及其军事应用[M]. 北京: 解放军出 版社, 2002, 113-150.
[35] 焦林, 张永刚. 大气波导条件下雷达电磁盲区的研究[J]. 西安电子科技大学学报(自然科学版), 2004. 31(5): 815-820.
[36] 官莉, 顾松山, 火焰,等. 大气波导形成条件及传播路径模拟[J]. 南京气象学院学报, 2003, 26(5):631-637.
[37] 黄小毛, 张永刚, 王华,等. 蒸发波导中雷达异常性能的仿真与分析[J]. 系统仿真学报, 2006, 18(2): 513-516.
[38] 胡晓华, 费建芳, 李娟, 等. 一次受台风影响的大气波导过程分析和数值模拟[J]. 海洋预报, 2007, 21(2): 17-25
[39] 成印河. 海上低空大气波导的遥感反演及数值模拟研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2009.
[40] Anderson R, Vasudevan S, Krolik J L, et al. Maximum a posteriori refractivity estimation from radar clutter using a Markov model for microwave propagation[C]. IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2001.
[41] PETER GERSTOFT, L. TED ROGERS, JEFFREY L. KROLIK, et al. Inversion for refractivity parameters from radar sea clutter[J]. Radio science,2003,38(3):M18.1-M18.22.
[42] Sathyanarayanan, Vasudevan. Recursive Bayesian electromagnetic refractivity estimation from radar sea clutter[J]. Radio Science, 2007, 42(2):-.
[43] 程焕, 谢洪森, 孙大军,等. 用雷达海杂波反演蒸发波导的蚁群算法[J]. 四川兵工学报, 2013(001):034.
[44] 张瑜, 周文静, 邢孟女. 基于雷达海杂波的蒸发波导GA-PSO算法[J]. 兵器装备工程学报, 2021, 042(008):P.239-244.
[45] 胡树贞王志成张雪芬陶法丁虹鑫李翠娜. 毫米波雷达海雾回波特征分析及能见度反演[J]. 气象, 2022, 48(10):1270-1280.
[46] 曹鑫. 蒸发波导预测设备检验方法研究[J]. 雷达与对抗, 2016, 36(2):4.
[47] 张爱丽, 王艳军, 张瑜. 蒸发波导测量仪器的精度分析与检验[J]. 西安电子科技大学学报, 2012, 39(4):6.
[48] 王波, 吴振森, 赵振维,等. 基于蚁群算法的雷达海杂波反演蒸发波导研究[J]. 电波科学学报, 2009, 24(4):7.
[49] 左雷, 察豪, 周沫,等. 基于免疫算法的雷达海杂波反演蒸发波导研究[J]. 电子学报, 2011(10):168-172.
[50] 盛峥, 陈加清, 徐如海. 利用粒子滤波从雷达回波实时跟踪反演大气波导[J]. 物理学报, 2012, 61(6):6.
[51] 郑琴, 巩向武, 吴文华. 结合PSO的PF用于雷达海杂波反演大气波导[J]. 解放军理工大学学报:自然科学版, 2013, 14(3):7.
[52] 张金鹏, 张玉石, 吴振森,等. 基于雷达海杂波的区域性非均匀蒸发波导反演方法 优先出版[J]. 物理学报, 2015.
[53] 张瑜, 周文静, 王晓雪,等. 反演蒸发波导的改进粒子群优化算法[J]. 电光与控制, 2021.
[54] Bean B R, Dutton E J. Radio meteorology[M]. US GovernmentPrint, 1966.
[55] Pekeris, C. L . Accuracy of the Earth-Flattening Approximation in the Theory of Microwave Propagation[J]. Physical Review, 1946, 70(7-8): 518-522.
[56] 郭立新, 弓树宏, 吴振森, 等. 对流层传播与散射及其对无线电系统的影响[M]. 陕西: 西安电子科技大学出版社, 2018.
[57] 周朋, 张海勇, 贺寅, 等. 大气波导在海上通信中的应用[J]. 电讯技术, 2014, 54(8):6.DOI:10.3969/j.issn.1001-893x.2014.08.018.
[58] Smith E K , Weintraub S . The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies[J]. Proceedings of the IRE. 1953, 41(8): 1035-1037.
[59] ITU-R. The radio refractive index: its formula and refractivity data[S], International Telecommunication Union, Geneva, 1999. 453-7.
[60] J.A.孔, 霍美瑜. 电磁波理论[M]. 人民教育出版社, 1980.
[61] Barrios A E . Terrain parabolic equation model for propagation in the troposphere[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(1):90-98.
[62] Marcus S W . A model to calculate em fields in tropospheric duct environments at frequencies through SHF[J]. RADIO SCIENCE, 1982.
[63] Beck A , Corson H H , Simon A B . Multiscale solutions for the high-frequency propagators in an inhomogeneous background random medium[J]. Proceedings of the American Mathematical Society, 1958, 9(4):648-652.
[64] Hall M . Effects of the troposphere on radio communication[J]. Stevenage Herts England Peter Peregrinus Ltd IEE Electromagnetic Waves Series, 1980, 8.
[65] Dougherty, H, Hart, et al. Recent progress in duct propagation predictions[J]. Antennas and Propagation, IEEE Transactions on, 1979, 27(4):542-548.
[66] Websteru U , Akbarpour R . Ray-tracing and parabolic equation approaches applied to an experimental tropospheric microwave link[J]. 280 Pm9 Rd International Workshop P.valtr & P.pechac.
[67] Levy M . Parabolic Equation Methods for Electromagnetic Wave Propagation[M]. IET Digital Library, 2000.
[68] 李德鑫, 杨日杰, 蔡晓琳,等. 水平非均匀大气条件下的抛物方程模型研究[J]. 宇航学报, 2011.
[69] Gerstoft P, Rogers L T, Hodgkiss W S, et al. Refractivity Estimation using Multiple Elevation Angles[J]. IEEE Journal of Oceanic Engineering, 2003, 28(3): 513-525.
[70] Shen X, Austin J, Vilar E. Modelling enhanced spherical diffraction and troposcattering on a transhorizon path with the aid of the parabolic equation and ray tracing methods[J]. 1996.
[71] Lee D, McDaniel S T. Ocean acoustic propagation by finite difference methods[M]. Elsevier, 2014.
[72] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of computational physics, 1994, 114(2): 185-200.
[73] Tabrikian J, Krolik J L. Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements[J]. IEEE Transactions on antennas and propagation, 1999, 47(11): 1727-1734.
[74] Vasudevan S, Krolik J L. Refractivity estimation from radar clutter by sequential importance sampling with a Markov model for microwave propagation[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221). IEEE, 2001, 5: 2905-2908.
[75] Gerstoft P, Rogers L T, Krolik J L, et al. Inversion for refractivity parameters from radar sea clutter[J]. Radio science, 2003, 38(3).
[76] Yardim C, Gerstoft P, Hodgkiss W S. Estimation of radio refractivity from radar clutter using Bayesian Monte Carlo analysis[J]. IEEE transactions on antennas and propagation, 2006, 54(4): 1318-1327.
[77] 盛峥,黄思训,曾国栋. 利用Bayesian-MCMC方法从雷达回波反演海洋波导[J]. 物理学报,2009,58(6):4335-4341. DOI:10.3321/j.issn:1000-3290.2009.06.113.
[78] 盛峥. 扩展卡尔曼滤波和不敏卡尔曼滤波在实时雷达回波反演大气波导中的应用[J]. 物理学报,2011,60(11):812-818.
[79] 韩星星. 基于遗传算法的蒸发波导高度反演[J]. 青春岁月,2012(22):428.
[80] 杨超,陈竞,王一旨,等. 雷达海杂波反演大气波导的改进回溯搜索算法[J]. 系统工程与电子技术,2018,40(8):1743-1749. DOI:10.3969/j.issn.1001-506X.2018.08.11.
[81] 中国人民解放军国防科技大学. 基于粒子滤波的雷达回波资料反演大气波导的方法:CN202111342927.X[P]. 2022-02-11.
[82] Guoxu Feng, Jun Huang, Mingxu Yi. 有效地球半径和修正折射指数的一般公式[J]. IEEE Access, 2021.
中图分类号:

 11    

馆藏号:

 56443    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式