- 无标题文档
查看论文信息

中文题名:

 碱金属注入对等离子体多物理场影响的研究    

姓名:

 张顺    

学号:

 17131212933    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0804J6    

学科名称:

 工学 - 仪器科学与技术 - 空间科学与技术    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 空间科学与技术学院    

专业:

 仪器科学与技术    

研究方向:

 碱金属注入对等离子体电子数密度影响    

第一导师姓名:

 李小平    

第一导师单位:

 西安电子科技大学    

完成日期:

 2020-04-01    

答辩日期:

 2020-05-21    

外文题名:

 A Study on the Influence of Alkali Metal Implantation on the Multiphysics of Plasma    

中文关键词:

 等离子体 ; 碱金属注入 ; 多物理场 ; 电子数密度 ; 多相反应流 ; 计算流体力学    

外文关键词:

 Plasma ; alkali metal injection ; multiphysics ; electron number density ; multiphase reaction flow ; computational fluid dynamics(CFD)    

中文摘要:

等离子体在科研和工业生产中有很多重要应用。在磁流体发电和等离子体鞘套地面模拟装置产生的气流中,温度通常只有3000K左右,因此往往将碱金属注入工作介质,利用碱金属的热电离来提高气体的电子数密度和电导率。国内外在磁流体发电中大量应用了碱金属作为电离种子,但是考虑到等离子体鞘套地面验证装置环境的不同及其多物理场耦合性,关于碱金属注入参数对工作介质的温度、速度和电子数密度等物理场影响的研究十分必要。

针对这一问题,本文从注入碱金属这一物理化学过程出发,抽象出问题模型。在自行设计的仿真模型基础上,用CFD软件进行三维数值模拟,预测出不同工作参数下的温度、组分浓度的分布;探索注入形式、粉末尺寸和流量、边界温度与注入速度等因素的影响规律。本文的主要内容包括以下几个部分:

(1) 本文介绍了碱金属载气与工作介质两股射流相交的运动规律;碱金属与高温气体之间相互作用规律,即离散相和连续相之间的动量、热量和质量传递过程;推导出各组分的控制方程和组分之间的反应速率计算方式。

(2) 根据射流运动规律,本文对比了不同的碱金属粉末的注入模型:垂直入射、斜入射、切向入射和旋转进气。在进行数值计算时,本文选择 模型作为湍流模型,根据粒子负载情况采用Discrete Phase Model描述了离散相和连续相之间的相互作用关系,同时也借助化学反应模型计算碱金属注入之后的汽化过程和电离反应结果,并根据工程中的实际情况设置了全方面的边界条件。

(3)进行了多组不同参数下的碱金属粉末注入过程的仿真,分析各个变量对于热力参数(温度、速度和压强等)和浓度分布的影响规律。对不同注入结构下的场分布结果进行比较,发现在实际应用中选择斜入射结构,同时主管道采用旋转进气的方式可能会有更高的出口电子数密度和更好的一致性。通过对比不同的碱金属粒径和注入量下的计算结果,发现颗粒尺寸越小,出口电子数密度和均匀程度都越高,所以在成本可以接受的范围内应该尽量减小颗粒尺寸;碱金属的注入量存在一个最佳值,对于以金属单质钾作为电离种子的情况,推荐注入量为主气流流量的2.5%。计算得到出口电子数密度随主气流温度和载气温度升高而增大的规律。最后也提出通过改变载气流量(射流速度)来控制混合强度的思路,给出了达到各种射流穿透深度所需的边界条件。

本文的研究内容是等离子体鞘套地面验证装置中重要的组成部分,随着对碱金属提高电子数密度研究的不断深入,本课题中提出的不同碱金属注入形式具有较大的应用价值;另一方面,文章中对碱金属的粒径、注入量、边界温度以及载气流量等参数影响的仿真工作为后续关于优化非平衡等离子体产生的研究提供了参考。

外文摘要:

Plasma has many important applications in scientific research and industrial production. In the flow generated by the magnetic fluid power generation and the plasma sheath ground simulation device, the temperature is usually only about 3000K, so alkali metals are often injected into the working medium, and the thermal ionization of the alkali metals is used to improve the electron number density and electrical conductivity of the gas. A large number of alkali metals have been used as ionization seeds in both domestic and foreign magnetic fluid power generation. Considering the environment difference between the plasma sheath ground simulation device and MHD with also its multi-physics coupling, studies on the effects of alkali metal injection parameters on the physical fields such as temperature, velocity and electron number density of the working medium are very necessary.

 

Aiming at this problem, this article starts with the physical and chemical process of alkali metal injection and abstracts model of the problem. Based on a self-designed simulation model, CFD software is used to perform 3D numerical simulation to predict the distribution of temperature and component concentration under different operating parameters; it also explores the influencing factors of  injection form, powder size and flow, boundary temperature and injection speed. The main content of this article is described as below:

 

(1) This article introduces the motion law of the two jets intersection, which are the carrier gas of the alkali metal and the working medium; it also describes the interaction law between the alkali metal and the high-temperature gas, that is, the process of momentum, heat and mass transfer between the discrete phase and the continuous phase; and it finds out the governing equation of each component and the calculation method of the reaction rate between the components.

 

(2) According to the law of jet motion, different injection models of alkali metal powder are compared in this paper: vertical incidence, oblique incidence, tangential incidence, and rotating intake air. During the numerical calculation, the  model is selected as the turbulence model, according to the particle loading the Discrete Phase Model is used to describe the interaction between the discrete phase and the continuous phase. At the same time, the vaporization process and the ionization reaction after the injection of alkali metals are also calculated using the chemical reaction model, and this article sets all the boundary conditions according to the actual situation in the project.

 

(3) The simulation of alkali metal powder injection process under different groups of parameters was performed, and the influence of each variable on the thermal parameters (temperature, velocity, pressure, etc.) and concentration distribution is analyzed. Comparing the field distribution results under different injection models, it is found that selecting the oblique incidence structure while the main pipe adopting the rotary inlet may result in higher outlet electron number density and better distribution consistency in practical application. By comparing the calculation results of different alkali metal particle sizes and injection amounts, it is found that smaller particle size will make outlet electron number density and the degree of uniformity higher, so the particle size should be minimized as far as the cost is acceptable; there is an optimal value for the injection volume of alkali metal. For the case where metal elemental potassium is used as the ionization seed, the recommended injection volume is 2.5% of the main gas flow rate. After simulation we found that outlet electron number density increases with the increase of the main gas flow temperature and the carrier gas temperature. Finally, the idea of controlling the mixing intensity by changing the carrier gas flow rate (jet velocity) is also proposed. The boundary conditions of implementing different penetration depth are given.

 

The research content of this article is an important part of the plasma sheath ground simulation device. With the continuous deepening of the research on how alkali metals improves the electron number density, on one hand, the different alkali metal injection forms proposed in this subject have great application value; on the other hand, the simulation on the effects of parameters such as particle size, injection volume, boundary temperature, and carrier gas flow rate of the alkali metal in this paper provides reliable reference for subsequent research on optimizing non-equilibrium plasma generation.

参考文献:
[1] Rosa, Richard J . Physical Principles of Magnetohydrodynamic Power Generation[J]. Physics of Fluids, 1961, 4(2):182.
[2] Rosa R J , Krueger C H , Shioda S . Plasma in MHD power generation[J]. IEEE Transactions on Plasma Science, 1992, 19(6):1180-1190.
[3] Kayukawa N . Open-cycle magnetohydrodynamic electrical power generation: a review and future perspectives[J]. Progress in Energy and Combustion Science, 2004, 30(1):p.33-60.
[4] T. Murakami, Y. Okuno. Experiments and numerical simulations on high-density magnetohydrodynamic electrical power generation[J]. Journal of Applied Physics, 2008, 104(6):063307.
[5] Olsen, H. N . Thermal and Electrical Properties of an Argon Plasma[J]. Physics of Fluids, 1959, 2(6):614.
[6] 李大骥. 一种有发展前途的添加剂[J]. 东南大学学报(自然科学版), 1979(S1):80-85.
[7] B.J. McBride, S. Gordon, M.A. Reno, Coefficients for calculating thermodynamic and transport properties of individual species[R]. NASA Report TM-4513 (1993).
[8] Stern, Kurt H . High Temperature Properties and Decomposition of Inorganic Salts Part 3, Nitrates and Nitrites[J]. Journal of Physical and Chemical Reference Data, 1972, 1(3):747.
[9] H.S. Pergament, H.F. Calcote. Thermal and chemi-ionization processes in afterburning rocket exhausts[J]. Symposium on Combustion, 1967, 11(1):597-611.
[10] 崔平远, 窦强, 高艾. Review of Communication Blackout Problems Encountered During Mars Entry Phase[J]. 宇航学报, 2014, 035(001):1-12.
[11] H. S. PERGAMENT, D. E. JENSEN. Influence of Chemical Kinetic and Turbulent Transport Coefficients on Afterburning Rocket Exhaust Plume Properties[J]. Journal of Spacecraft & Rockets, 1971, 8(6):28.
[12] Gillman E D , Amatucci W E . Early results of microwave transmission experiments through an overly dense rectangular plasma sheet with microparticle injection[J]. Physics of Plasmas, 2014, 21(6):060701.
[13] C.R. Bedick, L. Kolczynski, and C.R. Woodside. Combustion plasma electrical conductivity model development for oxy-fuel MHD applications[J]. Combustion and Flame, 2017.
[14] Richard J. Rosa. Experimental Magnetohydrodynamic Power Generator[J]. Journal of Applied Physics, 1960, 31(4).
[15] 赵伟灼, 李益文, 魏小龙, 李应红. 基于碱金属辅助电离的等离子鞘套模拟方法[J]. 宇航学报, 2018, v.39(07):115-122..
[16] S. Way, S.M. DeCorso, R.L. Hundstad, G.A. Kemeny, W. Stewart, and W.E. Young. Experiments With MHD Power Generation[J]. Eng. Power, 1960.
[17] Jeong-Yeol Choi, In-Seuck Jeung, Youngbin Yoon. Computational Fluid Dynamics Algorithms for Unsteady Shock-Induced Combustion, Part 1: Validation[J]. AIAA Journal, July 2000, 38(7):1179-1187.
[18] Jeong-Yeol Choi, In-Seuck Jeung, Youngbin Yoon, Computational Fluid Dynamics algorithms for Unsteady Shock-Induced Combustion, Part 2: Comparison[J], AIAA Journal, July 2000, 38(7):1188.
[19] J. Lineberry, L. Begg, J. Castro, R. Litchford, J. Donohue. HVEPS Scramjet-Driven MHD Power Demonstration Test Results[C]// 38th AIAA Plasmadynamics and Lasers Conference In Conjunction with the 16th International Conference on MHD Energy Conversion, Miami, FL, June 25-28, 2007. 2007.
[20] MORI,Yasuo, OHTAKE,Kazutomo, YAMAMOTO,Mitsuyoshi. Thermodynamic and Electrical Properties of Combustion Gas and Its Plasma[J]. Bulletin of Jsme, 1968, 11.
[21] S. Gordon and B. J. McBride. Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations[R]. NASA SP-273,1971.
[22] H. C. Yee, Judy L. Semi-implicit and fully implicit shock-capturing methods for hyperbolic conservation laws with stiff source terms[J]. Aiaa Journal, 1986.
[23] E.S. Oran, J.P. Boris Numerical approaches to combustion modeling[M]. Naval Research Laboratory. Washington, DC. 1991.
[24] Thilo Schoenfeld, Christian Angelberger, Jean-Philippe Legier. Numerical simulation of compressible reactive flows on unstructured grids[C]// 37th Aerospace Sciences Meeting and Exhibit. 1999.
[25] V.A. Bityurin, A. Bocharov, A.V.K. Nikov, A.V. Mikhailov. Experimental study of MHD electrical power generation[J]. American Institute of Aeronautics and Astronautics, 2003.
[26] 郭廷杰. 磁流体(MHD)发电技术研究开发简介[J]. 能源技术, 1995(1):36-39.
[27] 李益文, 李应红, 张百灵等. 基于激波风洞的超声速磁流体动力技术实验系统[J]. 航空学报, 2011, 32(6):1015-1024.
[28] 沙次文, 居滋象, 董承康等. 75MW燃油磁流体发电高温燃烧室[J]. 电工电能新技术, 1987(02):47-52.
[29] 李益文, 张百灵, 高岭等. 磁流体发电高温燃气的产生与控制研究[J]. 推进技术, 2017(06):225-232.
[30] 沙次文, 居滋象, 陈元利等. 开环磁流体发电工质——燃气等离子体的化学平衡组成及热力和电物理性质[J]. 工程热物理学报, 1980, V1(4):329-336.
[31] 王朝阳, 梁翠芳. MHD燃烧室中种子蒸发电离数学模型[J]. 电工电能新技术, 2000(1).
[32] 容易, Huiqiang Z , 张会强等. 气固两相圆湍射流流动的大涡模拟[J]. 清华大学学报(自然科学版), 2007, 47(2).
[33] 董志勇. 射流力学[M]. 北京: 科学出版社, 2005.
[34] 沈忠厚. 水射流理论与技术[J]. 中国安全科学学报, 1999(S1).
[35] 章旋,徐通模,郭宏生,惠世恩. 有限空间内平面相交射流的数值模拟[J]. 热能动力工程(6):313-316.
[36] 王凌, 张景松. 自由淹没气体旋转射流压力场实验和数值模拟[J]. 煤炭学报, 2010(12):2088-2093.
[37] 建筑技术通讯:暖通空调, 1980(03):12-15.
[38] 张健, 尚庆, 樊小安等. 旋流燃烧室内同向和反向旋转射流湍流流动的数值模拟[J]. 计算物理, 2002, 19(3).
[39] 王凌. 旋转射流研究新进展[J]. 采矿技术(1):66-70+98.
[40] 孔珑. 两相流体力学[M]. 北京: 高等教育出版社, 2004.
[41] Jost Seifert. A review of the Magnus effect in aeronautics[J]. Progress in Aerospace Sciences, 55(none):17-45.
[42] 王建航. 高速湍流反应流的数值计算[D]. 上海交通大学, 2014.
[43] J. Conzalez, C. Santolaria, F. Castro, M. Parra. Numerical model for unsteady flow behavior inside double suction pump[M]. Proceedings of the ASME/JSME joint Fluids Engineering Conference, 2003,2B: 1149~1155.
[44] 田艳丽. 旋转射流搅拌全流场数值模拟及喷嘴结构优化[D]. 浙江大学, 2005.
[45] 刘宏灿. 反应流场中的化学热、动力学计算与应用[D]. 南京理工大学, 2004.
[46] R. Kee, G. Dixon-Lewis, J. Warnatz, M. Coltrin, J.Miller and H. Moffat. A FORTRAN Computer Code Package for the Evaluation of Gas-Phase[R]. Multicomponent Transport Properties, Technical Report SAND86-8246B, 1998.
[47] 曾学军, 李海燕. Effects of Alkali Impurity on the Electron Density for the Vehicles with Ablation[J]. 宇航学报, 2017, 038(002):109-114.
[48] Pergament H S , Calcote H F . Thermal and chemi-ionization processes in afterburning rocket exhausts[J]. Symposium (International) on Combustion, 1967, 11(1):597-611.
[49] Pergament H S , Jensen D E . Influence of Chemical Kinetic and Turbulent Transport Coefficients on Afterburning Rocket Exhaust Plume Properties[J]. Journal of Spacecraft and Rockets, 1971, 8(6):28.
中图分类号:

 P35    

馆藏号:

 46670    

开放日期:

 2020-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式