- 无标题文档
查看论文信息

中文题名:

 面向时分双工的多小区F-OFDM动态资源分配技术研究    

姓名:

 樊思涵    

学号:

 17011210439    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 电子信息    

研究方向:

 宽带无线通信    

第一导师姓名:

 卢小峰    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 盛传贞    

完成日期:

 2020-04-07    

答辩日期:

 2020-05-22    

外文题名:

 Study on Multi-cell F-OFDM Dynamic Resource Allocation Technology for Time Division Duplex    

中文关键词:

 预留资源 ; 状态压缩 ; 信道特征拟合 ; 多用户MIMO ; 子帧配置    

外文关键词:

 resource reservation ; state compression ; channel feature fitting ; multi-user MIMO ; sub-frame configuration    

中文摘要:

5G凭借快速、高质量的资源分配和系统的高度灵活性,使其可以通过自适应的调整自身性能来面对外界的变化和发展趋势。为了实现对频谱资源的快速和高质量分配,同时考虑降低信道预留资源计算过程中的复杂度,通过信道拟合建立信道预留资源和等效容量之间的理论关系,可以使得系统所提供的服务满足用户业务的时延服务质量(Quality of Service,QoS)约束。为了进一步提升系统资源分配的灵活度,考虑到不同小区内不同的用户业务类型和用户不平衡的上下行业务需求,可以凭借时分双工下的基于滤波器组的正交频分复用(Filtered- Orthogonal Frequency Division Multiplexing,F-OFDM)技术,使得每个小区能够通过获得不同参数的资源块以适配不同类型的业务,并且小区内部能够通过动态调整上下行子帧配置因子以达到用户上下行业务接入率的适配,从而使得整体系统在资源分配时具有高度灵活性。

依据以上系统优化思路,本文以提升多小区多用户多输入多输出(Multiple Input Multiple Output,MIMO)系统的频谱利用率和业务接入率为目的,针对不同小区内不同的用户业务类型和不平衡的上下行业务需求,研究了面向时分双工的多小区F-OFDM动态资源分配技术,具体工作如下:

首先,利用有限状态马尔科夫模型,进行信道状态预测,具体包括利用有限状态马尔科夫模型预测MIMO空间信道状态矩阵和利用有限状态马尔科夫信道模型计算一个调度时隙内的信道预留资源。考虑到有限状态马尔科夫信道模型状态数过多的问题,提出了该模型的状态压缩方法,压缩和合并信道状态数,重建信道模型,因而,在求解具体用户和资源块间信道预留资源时,相关计算的复杂度得到下降。

然后,针对分析在业务时延QoS约束下的资源分配问题,采用混合高斯函数拟合的方法实现对信道容量概率分布的逼近,搭建物理层中的信道预留资源与MAC层中基于业务时延QoS指数的等效容量之间的关系,使得系统所提供的服务可以满足用户业务的时延QoS约束,为后续研究系统资源分配提供理论支撑。

最后,研究了在多小区多用户MIMO系统中如何利用时分双工技术联合上行链路和下行链路,动态的实现系统预留资源与每个小区内用户业务需求的适配,小区内部完成物理层和MAC层的资源跨层迭代过程,即各小区灵活的设置各自的子带参数和上下行子帧配置因子,利用虚拟MIMO技术、F-OFDM技术和时分双工技术,以均衡用户上行和下行业务接入率为目标,对小区内用户上行和下行业务需求进行资源适配,各小区基站间通过非合作博弈竞争系统预留资源,并针对所提出的资源分配模型进行了相应的算法求解。

本文通过仿真验证了压缩后的马尔科夫信道模型的优越性和利用混合高斯拟合函数表征信道预留资源的可行性,之后也验证了所提出资源分配模型在保证计算速度和服务质量的前提下,其频谱效率、业务接入率、计算复杂度和上下行业务接入率适配等方面的优越性和稳定性。

外文摘要:

5G has fast, high-quality resource allocation and a highly flexible system, allowing it to adjust its performance adaptively to face external changes and development trends. In order to achieve fast and high-quality allocation of spectrum resources, it can be considered to reduce the complexity in the calculation process of channel reserved resources. Then, by establishing a theoretical relationship between the channel reserved resources and the effective capacity through channel fitting, the services provided by the system can meet the delay-bounded QoS requirements of user traffic flows. In order to improve the flexibility of system resource allocation, considering the different types of user traffic flows in different cells and the asymmetric uplink and downlink traffic flow requirements of users, we used the F-OFDM technology and the dynamic time division duplex technology in the resource allocation process, thus the resource block with different parameters can be obtained in each cell to adapt to different types of traffic flows, and the cell can adjust the uplink and downlink sub-frame configuration factor dynamically to achieve the adaptation of the user's uplink and downlink traffic flow access ratios. This makes the overall system flexible in resource allocation highly.

 

Based on the above system optimization ideas, the multi-cell F-OFDM dynamic resource allocation technology is studied for time division duplex in this paper to improve the spectrum utilization and the user traffic flow access ratio of the multi-cell multi-user MIMO system. The specific work is as follows:

 

First, the finite-state Markov model is used to perform channel state prediction, which specifically includes using the finite-state Markov model to predict the MIMO spatial channel state matrix and using the finite-state Markov channel model to calculate channel reservation resources in a scheduling slot. Considering the problem of the large number of states of the channel state, a state compression method of the model is proposed, including compressing and merging the number of channel states, and reconstructing the channel model. Therefore, when calculating the channel reserved resources between users and resource blocks, the complexity of related calculations can be reduced.

 

Then, to analyze the resource allocation problem under the delay-bounded QoS constraint, the method of mixed Gaussian function fitting is used to achieve the best approximation of the channel capacity probability distribution. We establish the relationship between the channel reserved resources in the physical layer and the effective capacity based on the delay-bounded QoS index in the MAC layer. It makes the services provided by the system meet the delay QoS constraints of user traffic flows, and provides theoretical support for subsequent research on system resource allocation.

 

Finally, we studied how to use the time division duplex technology to combine uplink and downlink in the multi-cell multi-user MIMO system to achieve the best adaptation dynamically of the system resources to the traffic flow requirements in each cell. Each cell completes the resource cross-layer iterative process between the physical layer and the MAC layer. During this process, each cell sets its own sub-band parameters and the uplink and downlink configuration factor flexibly. We use the virtual MIMO technology, the F-OFDM technology and the time division duplex technology to balance the user's uplink and downlink traffic flow access ratio and to complete the resource adaptation. In the system, the base stations compete for system reservation resources through non-cooperative games. Then, we solve the proposed resource allocation model with corresponding algorithms.

 

In this paper, the superiority of the compressed Markov channel model and the feasibility of using the mixed Gaussian fitting function to characterize the channel reserved resources are verified through simulation, meanwhile, the advantages and the stability of the proposed model in the spectrum efficiency, the traffic flow access ratio, the computational complexity and the adaptation of access ratio of uplink and downlink traffic flows are also verified by simulation.

参考文献:
Wan L, Anthony C, Liu J, et al. 5G System Design[M]. Berlin: Springer, 2020.

Patzold M. 5G is Coming Around the Corner[J]. IEEE Vehicular Technology Magazine, 2019, 14(1): 4-10.

Begum N, Amer M. PAPR Reduction in UF-OFDM and F-OFDM 5G Systems using ZCT Precoding Technique[J]. International Research Journal of Engineering and Technology, 2019, 6(4): 2395-0072.

Schroder F. 5G: New Opportunities[M]. Berlin: Springer, 2019.

Vaezi M, Ding Z, Poor H. Multiple Access Techniques for 5G Wireless Networks and Beyond[M]. Berlin: Springer International Publishing AG, part of Springer Nature, 2019.

Ding M, Perez L, Xue R, et al. On Dynamic Time-Division-Duplex Transmissions for Small-Cell Networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65(11): 8933-8951.

Alliance N. 5G white paper[J]. Next generation mobile networks, white paper, 2015: 1-125.

Eldred C, Kenney M, Kushida K, et al. 5G: Revolution or Hype[OL]. Social Science Research Network Electronic Journal, 2019, 10.2139/ssrn.3443740.

Babic A, Vlacic E, Sokolic D. Strategic Positioning of Emerging 5G Technology-Barriers and Perspectives[C]. Governance Research and Development Centre, Zagreb, 2019, 332-345.

Zhou N. Research on Several Key Technologies for 5G[C]. 3rd International Conference on Mechatronics Engineering and Information Technology, Atlantis Press, 2019.

Schaich F. Filterbank based multi carrier transmission (FBMC)-evolving OFDM: FBMC in the context of WiMAX[C]. 2010 European Wireless Conference, Lucca, 2010: 1051-1058.

Ma J. Design for Cost: The Key of Success for 5G and Beyond[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(1): 16-16.

Duplicy J, Badic B, Balraj R, et al. MU-MIMO in LTE systems[J]. EURASIP Journal on Wireless Communications and Networking, 2011, 2011(1):1-13.

Schulz P, Wolf A, Gerhard P, et al. Network Architectures for Demanding 5G Performance Requirements: Tailored Toward Specific Needs of Efficiency and Flexibility[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 33-43.

Kashyap S, Mollen C, Bjornson E, et al. Performance analysis of (TDD) massive MIMO with Kalman channel prediction[C]. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, New Orleans, 2017: 3554-3558.

韩丛端. LTE-A上行链路无线网络虚拟化中的资源分配技术研究[D]. 西安电子科技大学,2017.

Gilbert E. Capacity of a burst-noise channel[J]. The Bell System Technical Journal, 1960, 39(5): 1253-1265.

Elliott E. Estimates of error rates for codes on burst-noise channels[J]. The Bell System Technical Journal, 1963, 42(5): 1977-1997.

Wang H, Moayeri N. Finite-state Markov channel-a useful model for radio communication channels[J]. IEEE Transactions on Vehicular Technology, 1995, 44(1): 163-171.

Wang H. On verifying the first-order Markovian assumption for a Rayleigh fading channel model[C]. Proceedings of 1994 3rd IEEE International Conference on Universal Personal Communications, San Diego, CA, USA, 1994: 160-164.

She C, Dong R, Hardjawana W, et al. Optimizing Resource Allocation for 5G Services with Diverse Quality-of-Service Requirements[C]. 2019 IEEE Global Communications Conference, Waikoloa, HI, USA, 2019: 1-6.

Xiong C, Li G, Liu Y, et al. Energy-Efficient Design for Downlink OFDMA with Delay-Sensitive Traffic[J]. IEEE Transactions on Wireless Communications, 2013, 12(6):3085-3095.

Yu W, Musavian L, Quddus A, et al. Low Latency Driven Effective Capacity Analysis for Non-Orthogonal and Orthogonal Spectrum Access[C]. 2018 IEEE Globecom Workshops, Abu Dhabi, United Arab Emirates, 2018:1-6.

Lu X, Yang K, Fan N, et al. Joint Clustering of Users and Resources for Multi-Cell VMIMO-SC-FDMA Uplink Systems[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1417-1430.

Lu X, Ni Q, Li W, et al. Dynamic User Grouping and Joint Resource Allocation With Multi-Cell Cooperation for Uplink Virtual MIMO Systems[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3854-3869.

Lu X, Ni Q, Zhao D, et al. Resource Virtualization for Customized Delay- Bounded QoS Provisioning in Uplink VMIMO-SC-FDMA Systems[J]. IEEE Transactions on Communications, 2019, 67(4): 2951-2967.

Chang C, Zajic T. Effective bandwidths of departure processes from queues with time varying capacities[C]. Proceedings of INFOCOM’95, Boston, MA, USA, 1995, 3: 1001-1009.

Wu D, Negi R. Effective capacity: a wireless link model for support of quality of service[J]. IEEE Transactions on Wireless Communications, 2003, 2(4): 630-643.

Vlachos C, Sabella D, Tyagi K, et al. 5G网络研究进展[M]. 湖北: 科研出版社, 2019.

Imtiaz S, Dahman G, Rusek F, et al. On the directional reciprocity of uplink and downlink channels in Frequency Division Duplex systems[C]. IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication, Washington, DC, 2014: 172-176.

Shrivastava R, Samdanis K, Sciancalepore V. Towards service-oriented soft spectrum slicing for 5G TDD networks[J]. Journal of Network and Computer Applications, 2019, 137(1): 78-90.

Esswie A, Pedersen K. Inter-Cell Radio Frame Coordination Scheme Based on Sliding Codebook for 5G TDD Systems[C]. 2019 IEEE 89th Vehicular Technology Conference, Kuala Lumpur, Malaysia, 2019:1-6.

Esswie A, Pedersen K, Mogensen P. Quasi-Dynamic Frame Coordination for Ultra-Reliability and Low-Latency in 5G TDD Systems[C]. 2019 IEEE International Conference on Communications Workshops, Shanghai, China, 2019: 1-6.

3GPP TS 36.211 v10.5.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access; Physical Channels and Modulation (Release 10).

赵丹萍. 基于F-OFDM的联合上下行资源分配和业务接入技术研究[D]. 西安电子科技大学, 2019.

Zhang X, Jia M, Chen L, et al. Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks[C]. IEEE Global Communications Conference, San Diego, CA, 2015:1-6.

Liu Y, Tan Z, Hu H, et al. Channel estimation for OFDM[J]. IEEE Communications Surveys & Tutorials, 2014, 16(4):1891-1908.

Chen H, Hua J, Li F, et al. Interference analysis in the asynchronous F-OFDM systems[J]. IEEE Transactions on Communications, 2019, 67(5):3580-3596.

Schellmann M, Zhao Z, Lin H, et al. FBMC-based air interface for 5G mobile: Challenges and proposed solutions[C]. IEEE International Conference on Cognitive Radio Oriented Wireless Networks and Communications. Oulu: IEEE Press, 2014:102-107.

Schaich F, Wild T, Chen Y. Waveform Contenders for 5G - Suitability for ShortPacket and Low Latency Transmissions[C]. IEEE Vehicular Technology Conference. Seoul: IEEEPress, 2014:1-5.

Vakilian V, Wild T, Schaich F, et al. Universal-filtered multi-carrier technique forwireless systems beyond LTE[C]. IEEE Globecom Workshops. Atlanta: IEEE Press, 2013: 223-228.

Schaich F, Wild T. Waveform contenders for 5G-OFDM vs. FBMC vs.UFMC[C]. IEEE International Symposium on Communications, Control and Signal Processing. Athens: IEEE Press, 2014:457-460.

Fetishist G, Krondorf M, Bittner S. GFDM-Generalized Frequency Division Multiplexing[C]. IEEE Vehicular Technology Conference, Vtc Spring 2009. Barcelona: IEEEPress, 2009:1-4.

Abdoli J, Jia M, Ma J. Filtered OFDM: A new waveform for future wireless systems[C]. IEEE International Workshop on Signal Processing Advances in Wireless Communications. Stockholm: IEEE Press, 2015: 66-70.

Weitkemper P, Bazzi J, Kusume K, et al. Adaptive filtered OFDM with regular resource grid[C]. IEEE International Conference on Communications Workshops. Kuala Lumpur: IEEE Press, 2016:462-467.

Dahlman E, Parkvall S, Skold J. 5G NR: The Next Generation Wireless Access Technology[M]. New York: Academic Press, 2018.

Jia B, Hu H, Zeng Y, et al. The Upper Bound of Energy Efficiency for Virtual. MIMO System with User Pairing[C]. Global Communications Conference, 2016:4-8.

Gupta B, Saini D. BER performance improvement in MIMO systems using various equalization techniques[C]. 2012 2nd IEEE International Conference on Parallel, Distributed and Grid Computing, Solan, 2012:190-194.

Zhang X, Su Y, Tao G. Signal detection technology research of MIMO-OFDM system[C]. 2010 3rd International Congress on Image and Signal Processing, Yantai, 2010: 3031-3034.

李文娜. VMIMO-SC-FDMA系统中联合用户分组和资源分配技术研究[D]. 西安电子科技大学大学, 2017.

Raeesi O, Zou Y, Tolli A, et al. Closed-form analysis of channel non-reciprocity due to transceiver and antenna coupling mismatches in multi-user massive MIMO network[C]. 2014 IEEE Globecom Workshops, Austin, TX, 2014:333-339.

Papoulis A, Saunders H. Probability, Random Variables and Stochastic Processes[C]. American Society of Mechanical Engineers, 1989, 111(1): 123-125.

Zhang Q, Kassam S. Finite-state Markov model for Rayleigh fading channels[J]. IEEE Transactions on Communications, 1999, 47(11):1688-1692.

Zhao Y, Zhao M, Xiao L, et al. Capacity of time-varying Rayleigh fading MIMO channels[C]. IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, 2005:547-551.

Peel C, Swindlehurst A. Capacity-optimal training for space-time modulation over a time-varying channel[C]. IEEE International Conference on Communications, Anchorage, AK, 2003, 5: 3036-3040.

Misra S, Swami A, Tong L. Optimal training over the Gauss-Markov fading channel: a cutoff rate analysis[C]. 2004 IEEE International Conference on Acoustics, 2004, 3: iii-809.

范宁. 上行链路多小区虚拟MIMO技术的研究[D]. 西安电子科技大学, 2018.

Silvey S, Kemeny J, Snell J. Finite Markov Chains[OL]. Proceedings of the Edinburgh Mathematical Society, 12(1): 61-62.

Chee T, Lim C, Choi J. Channel Prediction Using Lumpable Finite-State Markov Channels in OFDMA Systems[C]. 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, 2006:1560-1564.

William J. Probability, Markov Chains, Queues, and Simulation[M]. Princeton: Princeton University Press, 2009.

Yu W, Musavian L, Ni Q. Tradeoff analysis and joint optimization of link-layer energy efficiency and effective capacity toward green communications[J]. IEEE Transactions on Wireless Communications, 2016, 15(5):3339-3353.

Bilmes J. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models[C]. International Computer Science Institute, Berkerley CA, 1998.

Faliszewski P, Rothe I, Rothe J. Noncooperative Game Theory[M]. Berlin: Springer, Heidelberg, 2016.

Zhang H, Du J, Cheng J, et al. Incomplete CSI Based Resource Optimization in SWIPT Enabled Heterogeneous Networks: A Non-Cooperative Game Theoretic Approach[J]. IEEE Transactions on Wireless Communications, 2018, 17(3): 1882-1892.

Mohammadi A, Rezvani M. Optimization of virtual machines placement based on microeconomics theory in cloud network[C]. 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation, Tehran, 2017:0299-0303.

Fudenberg D, Tirole J. Game Theory[M]. Cambridge, MA: MIT Press, 1991.

Zhang H, Ruyet D, Roviras D, et al. Noncooperative Multicell Resource Allocation of FBMC-Based Cognitive Radio Systems[J]. IEEE Transactions on Vehicular Technology, 2012, 61(2): 799-811.

Lau M, Yue W, Wang P, et al. A branch-and-bound method for power minimization of IDMA[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6):3525-3537.

Zhang S, Wang R, Zhang X. Identification of overlapping community structure in complex networks using fuzzy c-means clustering[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(1): 483-490.

Newman M. Fast algorithm for detecting community structure in network[J]. Physics, 2003, 69(6): 066133.

Newman M. Modularity and community structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582.
中图分类号:

 TN92    

馆藏号:

 47216    

开放日期:

 2020-12-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式