- 无标题文档
查看论文信息

中文题名:

 易燃易爆场所雷电灾害风险评估方法研究    

姓名:

 曾诚    

学号:

 1475960056    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0854    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 信息与通信工程    

研究方向:

 易燃易爆场所雷电灾害风险评估方法研究    

第一导师姓名:

 孙万蓉    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 杨碧轩    

完成日期:

 2020-11-30    

答辩日期:

 2020-12-09    

外文题名:

 Study on risk assessment method of lightning disaster in inflammable and explosive places    

中文关键词:

 雷电 ; 风险评估 ; 反击绕击 ; 跨步电压 ; 区域评估    

外文关键词:

 Thunder and lightning ; Risk assessment ; Back striking and shielding failure ; Step voltage ; Regional assessment    

中文摘要:

近年来油气化工项目规模越来越大,各种电子设备仪表越来越精密,对于雷电活动非常敏感,从而引发的各种雷电灾害事故也日趋增多,雷电灾害带来的危险度及损失度也更加巨大,同时由于此类易燃易爆场所的特殊性质,一旦发生雷电灾害事故,甚至造成恶劣的社会影响。因而很有必要对雷电机制原理及风险因素进行研究,有针对性的进行合理的防范,尽可能降低或避免雷电导致的风险,这就是雷电灾害风险评估的主要工作。现有的雷电灾害评估方法主要还是分析计算单体建筑物的风险,面对煤油气开采、运输、储存及地铁轨道交通等复杂大项目往往无能为力,为更全面、精准的分析大项目的雷电风险,开展多样化的雷电灾害风险评估方法研究显得十分必要。

本文以煤油气化工等易燃易爆场所为研究对象,利用雷电电气理论对项目模型进行了研究,结合现有的雷电灾害风险评估方法,对项目内部各系统因素和外部雷电环境因素进行了综合考虑,提出新的多样化雷电灾害风险评估方法,进而对相关反击绕击、跨步电压安全性、区域评估原理进行论述。通过电气-几何模型,分析确定出的雷电流幅值分布公式,在此基础上计算确定出相应的绕击率与反击率,这样在绕击率与反击率更高的油气场站可针对性的加强电源系统防雷措施,采取多级防浪涌保护。通过研究雷电流泄放入大地模型,推导分析雷电流接地点四周的跨步电压、跨步电流,对比人体可承受电流强度得到风险阈值,若超出人体承受值采取对地面作均衡电位处理等防护措施,降低跨步电压风险。根据项目所在地雷电数据,结合层次分析法、模糊数学计算法,组建区域评估模型,总结出区域评估气象指标、地物环境指标、承载体风险指标等因子参数,最终实现对项目区域划分、风险计算、风险等级区划。最后基于实际项目的雷电灾害风险评估案列,具体说明了雷电评估方法的应用情况,且根据所得雷电环境结果及风险等级划分提出适当的雷电应对预防和保护措施。

本文对易燃易爆场所雷电灾害风险评估方法进行了研究,且在实际的项目基础上进行验证,所得结果发现这种方法有一定应用推广价值,可为同类型项目的防雷保护措施选择提供支持,也为此方面的研究起到参考作用。

外文摘要:

In recent years, the scale of oil and gas chemical projects is becoming larger and larger, and various electronic equipment and meters are more and more precise, which are very sensitive to lightning activities. As a result, various lightning disaster accidents are also increasing, and the risk and loss caused by lightning disasters are more and more huge. At the same time, due to the special nature of this kind of flammable and explosive places, once the lightning disaster accident occurs, it will even cause bad Social impact. Therefore, it is necessary to study the mechanism and risk factors of lightning, and take reasonable precautions to reduce or avoid the risk caused by lightning as far as possible, which is the main work of lightning disaster risk assessment. The existing lightning disaster assessment methods are mainly to analyze and calculate the risk of single building. In the face of complex large projects such as kerosene gas exploitation, transportation, storage and subway rail transit, it is necessary to carry out diversified lightning disaster risk assessment methods for more comprehensive and accurate analysis of lightning risk of large projects.

 

In this paper, kerosene gas chemical and other flammable and explosive places are taken as the research object, and the project model is studied by using the lightning electrical theory. Combined with the existing lightning disaster risk assessment methods, the internal system factors and external lightning environmental factors of the project are comprehensively considered, and a new diversified lightning disaster risk assessment method is proposed, and then the related counter strike and step voltage safety assessment methods are analyzed The principle of comprehensive and regional evaluation is discussed. Through the electrical geometric model, the distribution formula of lightning current amplitude is analyzed and determined. On this basis, the corresponding shielding failure rate and counterattack rate are calculated and determined. In this way, the oil and gas stations with higher shielding failure rate and counterattack rate can strengthen the lightning protection measures of power supply system and adopt multi-level surge protection. By studying the earth model of lightning discharge, the step voltage and step current around the lightning current grounding point are deduced and analyzed, and the risk threshold is obtained by comparing with the current intensity that the human body can bear. If it exceeds the value that the human body can bear, protective measures such as equalizing potential treatment are taken to reduce the risk of step voltage. According to the mine electricity data of the project, combined with analytic hierarchy process (AHP) and fuzzy mathematics calculation method, the regional evaluation model is established, and the factors and parameters such as meteorological index, surface environmental index and risk index of the bearing body are summarized. Finally, the regional division, risk calculation and risk grade zoning of the project are realized. Finally, based on the lightning disaster risk assessment case of the actual project, the application of lightning assessment method is explained in detail, and appropriate lightning prevention and protection measures are proposed according to the obtained lightning environmental results and risk classification.

 

This paper studies the risk assessment method of lightning disaster in flammable and explosive places, and verifies it on the basis of the actual project. The results show that this method has a certain application value, which can provide support for the selection of lightning protection measures for the same type of projects, and also play a reference role for the research in this aspect.

参考文献:
[1]张义军. 雷电灾害[M]. 气象出版社, 2009.
[2]肖稳安, 张小青. 雷电与防护技术基础[M]. 气象出版社, 2006.
[3]杨仲江. 雷电灾害风险评估与管理基础[M]. 气象出版社, 2010.
[4]陈渭民. 雷电学原理[M]. 气象出版社, 2003.
[5]王瑜娉, 宁霞, 路云涯. 雷电灾害风险评估推广中的问题[C]// 中国气象学会年会. 2012.
[6]张楠, 程学会, 曾诚. 西安乐华城欢乐世界雷击跨步电压安全性分析[C]// 第33届中国气象学会年会 S19 雷电物理和防雷新技术——第十四届防雷减灾论坛. 2016.
[7]陈琳, 陈彩珠, 吴健,等. 跨步电压在雷电灾害风险评估中的分析应用[C]// 创新驱动发展 提高气象灾害防御能力——第30届中国气象学会年会. 0.
[8]包炳生. 关于闪电闪击跨步电压及其风险探讨[C]// S13 第十届防雷减灾论坛——雷电灾害与风险评估. 2012.
[9]尹媛媛, 纪璐, 赵栋,等. 国电谏壁发电厂扩建工程雷电灾害风险评估[C]// 长三角气象科技论坛. 2012.
[10]王百朋. 陕西地区雷电特征及风险评估系统研究[D]. 西安电子科技大学, 2014.
[11]曹文. 化工企业雷击风险评估及其应用[D]. 华东理工大学, 2013.
[12]钟万强. 雷电灾害风险评估的参数研究与模型设计[D]. 南京气象学院, 2004.
[13]余蜀豫. 雷电风险评估方法和参数研究及实践[D]. 南京信息工程大学, 2012.
[14]柴健, 王学良. 精细化雷击风险评估方法的研究[J]. 实验室研究与探索, 2015, 034(001):284-288.
[15]段弢, 徐萌, 史雅静, et al. 区域气象与雷电活动对雷击风险评估的细化与改进[J]. 电子测试, 2013, 000(015):11-13.
[16]韩文玲. 光伏发电站雷电灾害风险评估研究[J]. 现代农业科技, No.675(13):250-255.
[17]钟国明, 吕许君. 浅析雷电放电基本特征及相关参数计算[J]. 电器与能效管理技术, 2009, 000(004):32-35.
[18]陈家宏, 童雪芳, 谷山强, et al. 雷电定位系统测量的雷电流幅值分布特征[J]. 高电压技术, 2008, 34(009):1893-1897.
[19]佚名. 雷击大地密度和等效截收面积计算方法[J]. 气象科技(6):752-757.
[20]王祎菲, 仇一凡, 冯世涛,等. 雷电流特性及其波形分析[J]. 黑龙江电力, 2010, 032(006):404-407.
[21]王林. 雷电的危害及防护[J]. 科技资讯, 2014, 012(014):234,236.
[22]崔倩. 雷击感应电压简化计算方法的推导[J]. 软件, 2013, 34(002):79-81.
[23]张桂琴. 化工企业危险性场所雷击风险评估[J]. 化工管理, 2015, 000(019):127-128.
[24]张秋云, 刘文军. 建筑工地防雷安全[J]. 现代职业安全, 2010, 000(008):78-80.
[25]杨光, 张九营. 从雷击的选择性谈雷电防御[J]. 气象与环境科学, 2008, 31(B09):P.202-204.
[26]杨东旭, 刘佳, 关久旭,等. 危险化工企业的雷电灾害风险评估探讨[J]. 气象与环境科学, 2011, 34(B09):P.171-174.
[27]张楠, 曾诚, 侯涛. 大型危险化工项目雷电灾害风险区域评估[J]. 陕西气象, 2015, 000(0z1):17-19.
[28]甘庆辉, 许薇, 汤强. 高层建筑绕击概率分析及在雷击风险评估中应用[J]. 气象研究与应用, 2010, 31(0z2):149-150.
[29]谭洪恩, 刘波, 张新明. 山区220kV线路雷电反击与绕击分析[J]. 华中电力, 2000, 13(006):33-36.
[30]张家祥, 张桂林. 杆塔接地体冲击对输电线路雷电反击分析[J]. 电瓷避雷器, 2016, 000(006):171-175.
[31]杜林, 陈寰, 陈少卿,等. 架空输电线路雷电绕击与反击的识别[J]. 高电压技术, 2014, 40(009):2885-2893.
[32]丁旻, 甘文强, 曹志建,等. 模糊层次综合法在区域雷电灾害风险评估中的应用[J]. 成都信息工程学院学报, 2011(05):522-526.
[33]曾金全, 冯真祯, 张烨方,等. 区域雷电灾害风险评估模型与应用[J]. 气象科技, 2017, 45(001):179-183.
[34]Frydenlund M M . Lightning Risk Assessment[M]// Lightning Protection for People and Property. Springer US, 1993.
[35]Gallego L E , Duarte O , Torres H , et al. Lightning risk assessment using fuzzy logic[J]. Journal of Electrostatics, 2004, 60(2-4):233-239.
中图分类号:

 X43    

开放日期:

 2021-07-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式