- 无标题文档
查看论文信息

中文题名:

 应用于微波近场成像的伪影去除方法研究    

姓名:

 何桂演    

学号:

 17021210827    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080904    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 电磁场与微波技术    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 电子科技与技术    

研究方向:

 电磁场与微波技术    

第一导师姓名:

 赵建勋    

第一导师单位:

  西安电子科技大学    

完成日期:

 2020-03-10    

答辩日期:

 2020-05-23    

外文题名:

 Research on Artifact Removal Method Applied to Microwave Near-field Imaging    

中文关键词:

 微波近场成像 ; 伪影去除方法 ; 微波共焦成像 ; 超宽带脉冲信号    

外文关键词:

 Microwave near-field imaging ; Artifact removal method ; Confocal microwave imaging ; Ultra-wideband pulse signal    

中文摘要:

乳腺癌一直危害着女性的身体健康,因此乳腺癌的早期检测能让患者获得及时的治疗,这对提高患者的预后存活率极其重要。由于具有辐射小、成本低等优点,乳腺癌的微波近场成像逐渐受到人们关注,成为主要研究方向之一。微波共焦成像主要依据肿瘤组织与正常组织之间电特性的差异导致的超宽带脉冲信号在不同组织间发生的散射效应。对这些散射回波信号进行分析提取可获得肿瘤的位置、形状等信息。但由于回波信号中大部分均为皮肤、脂肪等组织的杂波信号,所需的肿瘤响应被掩盖。直接对回波信号进行微波共焦成像会产生大量伪影,无法呈现出肿瘤。针对这一问题,本文通过使用多种信号处理方法从回波信号中去除伪影信号,提取出肿瘤响应,并使用微波共焦成像检验伪影去除效果。

在以往的一些伪影去除研究中,模型的构建主要考虑皮肤、脂肪以及肿瘤等组织,很少考虑乳腺等组织构成的复杂组织分布。因此本文使用核磁共振成像生成的两种不同组织分布的二维仿真模型用以拟合真实情况。鉴于人体组织具有色散效应,本文论证了正常组织和肿瘤组织在不同频率下的电特性以及Cole-Cole模型,并研究超宽带脉冲信号为微波共焦成像提供的理论基础。在进行伪影去除的过程中,本文通过使用基于熵的时间窗算法确定时间窗口,并将该窗口长度应用于维纳滤波器构建滤波信号。由于最小二乘回归容易受到多重共线性影响,本文使用偏最小二乘回归进行求解得到滤波信号。对信号进行频谱分析发现肿瘤响应的频率相对较低,且伪影信号主要出现于信号早期阶段,因此本文使用小波变换对滤波信号进行降噪处理获得期望肿瘤响应。由于在单站方案的成像结果依然有部分伪影,本文通过对多站方案下的回波信号进行分组,计算各自分组的相似程度,将达到一定程度的分组信号分别进行伪影去除方法处理。

在单站方案中,本文对期望肿瘤响应进行微波共焦成像并与混合伪影去除方法(Hybrid Artifact Removal, HAR)和理想去除方法对比。在30个采集位置的情况下本文提出方法与HAR方法的结果相差不大。但在12个采集位置HAR方法无法呈现肿瘤的情况下,本文提出方法成功得到肿瘤图像。在多站方案中,本文对期望肿瘤响应进行微波共焦成像并与理想去除方法对比。得益于多站方案的信号分组,本文提出方法能成功去除伪影信号并呈现出准确的肿瘤图像,与理想去除方法的成像结果对比仅有较小差距。

外文摘要:

Breast cancer has endangered women's health since years. Therefore, patients detected by the early detection of breast cancer can receive timely treatment, which is important to improve the prognosis of patients. Due to the advantages of less radiation and low cost, microwave near-field imaging become one of the major research directions, attracting attention from the researchers. Microwave confocal imaging relies on the scattering effect of ultra-wide band pulse signals propagating in different tissues caused by the difference of electrical characteristics between tumor and normal tissues. The information describing the location, shape of tumor can be extracted from the analysis of the scattered signals. However, since most of the energy in the scattered signals is occupied by the clutter signals of tissues such as skin and fat, the tumor response is obscure. Microwave confocal imaging of the scattered signals will produce artifacts and cannot present the tumor. Aiming at this problem, this thesis uses several signal processing methods to remove artifacts from the signals, extracts the tumor response, and then uses microwave confocal imaging to verify the effect of artifact removal method.

 

In some previous studies of artifact removal methods, the model merely considered skin, fat, and tumor, rather than the complex tissue such as gland and others. Therefore, two different two-dimensional simulation model constructed by MRI to fit the reality situation are illustrated. In view of the dispersive effect of the human tissues, this thesis demonstrates the electrical characteristics of normal and tumor tissues at different frequency and the Cole-Cole model, with the study of the precondition provided by ultra-wideband pulse signals for microwave confocal imaging. In the process of artifact removal, the entropy-based time window algorithm is used to determine the time window which helps the Wiener filter to construct the filtered signal. Due to the least square’s regression solution method is vulnerable to multicollinearity influence, the partial least square’s regression method is more effective to get the filtered signal. Through the spectrum analysis of the signal, it is found that the frequency of tumor response is relatively low, and the artifact signal mainly appears at the early stage of the signal. Therefore, the advantages of wavelet transform are stimulated for performing noise reduction of the filtered signal and obtaining expected tumor response. Because several artifacts in the image of the monostatic is nonnegligible, scattered signals are required to be grouped in the multistatic. The similarity degree in each group is calculated to evaluating the qualification whether the grouped signal deserves to process by artifact removal methods.

 

In the monostatic, the expected tumor response is processed by using microwave confocal imaging to produce image, compared with HAR and the ideal. It was found that in 30 acquisition positions, the results of the proposed method make little difference with HAR. Whereas, in the case of the results of HAR unable to depict the tumor in 12 acquisition positions, the results of the proposed illustrate the tumor precisely. In the multistatic, the proposed method will be compared with the ideal. Benefit by the signal grouping, the proposed method removes artifacts and present an image of the tumor accurately, with a small gap compared with the ideal removal method.

参考文献:
Bray Freddie, Ferlay Jacques, Soerjomataram Isabelle, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a cancer journal for clinicians, 2018, 68(6): 394–424.
Oeffinger Kevin C, Fontham Elizabeth T H, Etzioni Ruth, et al. Breast Cancer Screening for Women at Average Risk: 2015 Guideline Update From the American Cancer Society[J]. JAMA, 2015, 314(15): 1599-1614.
郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析[J] . 中华肿瘤杂志, 2019, 41(1): 19-28.
孙可欣, 郑荣寿, 张思维, 等. 2015年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2019, 28(1): 1-11.
Li Tong, Mello-Thoms Claudia, Brennan Patrick C. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence[J]. Breast cancer research and treatment, 2016, 159(3): 395-406.
Wang Fei, Yu Zhi-Gang. Current status of breast cancer prevention in China[J]. Chronic diseases and translational medicine, 2015, 1(1): 2-8.
Savithiri Ratnapalan, Yedidia Bentur, Gideon Koren. Review: "Doctor, will that x-ray harm my unborn child?"[J]. Canadian Medical Association, 2008, 179(12): 1293-1296.
Nothacker Monika, Duda Volker, Hahn Markus, et al. Early detection of breast cancer: benefits and risks of supplemental breast ultrasound in asymptomatic women with mammographically dense breast tissue. A systematic review[J]. BMC Cancer,2009,9(1): 335-340.
Giampiero Beluffi. Breast MRI: Fundamentals and technical aspects[J]. La radiologia medica, 2011, 116(5): 823-824.
余立君. 乳腺癌早期诊断设备及其技术进展——超声、磁共振、核医学乳腺成像技术进展(二)[J]. 中国医疗设备, 2010, 25(08): 51-53.
Tsz-King Chan, Kuga, Y., Ishimaru, A.. Circular SAR imaging using frequency and angular correlation techniques in a clutter environment: IEEE International Geoscience and Remote Sensing Symposium Proceedings, 1998[C]. Seattle: IEEE, 1998.
Hagness S C, Taflove A, Bridges J E. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors[J]. IEEE Transactions on Bio-medical Engineering, 1998, 45(12): 1470-1479.
Paci E. Mammography and beyond: developing technologies for the early detection of breast cancer[J]. Breast Cancer Research, 2002, 4(3): 123.
Rubek T, Meaney P M, Meincke P, et al. Nonlinear Microwave Imaging for Breast-Cancer Screening Using Gauss–Newton’s Method and the CGLS Inversion Algorithm[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(8): 2320-2331.
Paulsen K D, Poplack S P, Li D, et al. A clinical prototype for active microwave imaging of the breast[J]. IEEE Transactions on Microwave Theory and Techniques, 2000, 48(11): 1841-1853.
Naghibi A, Rad M S H, Khorashadi-Zadeh V, et al. Skin Artifact Removal Algorithms for Radar-based Microwave Breast Cancer Detection: The International Conference on Electrical Engineering, 2018[C]. Mashhad: IEEE, 2018.
Fear E C, Stuchly M A. Microwave system for breast tumor detection[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(11): 470-472.
Fear E C, Stuchly M A. Microwave breast cancer detection: 2000 IEEE MTT-S International Microwave Symposium Digest[C]. Boston: IEEE, 2000.
毛钰博. 基于共焦算法的微波成像系统研究[D]. 东华大学, 2016.
Bond E J, Xu Li, Hagness S C, et al. Microwave imaging via space-time beamforming for early detection of breast cancer[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(8): 1690-1705.
Sill J M, Fear E C. Tissue sensing adaptive radar for breast cancer detection - experimental investigation of simple tumor models[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(11): 3312-3319.
W. Zhi, F. Chin. Entropy-Based Time Window for Artifact Removal in UWB Imaging of Breast Cancer Detection[J]. IEEE Signal Processing Letters, 2006, 13(10): 585-588.
M. Klemm, I. J. Craddock, A. Preece, et al. Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging[J]. Radio Science, 2008, 43(6): 1-15.
Maskooki A, Gunawan E, Soh C B, et al. Frequency Domain Skin Artifact Removal Method for Ultra-Wideband Breast Cancer Detection[J]. Progress In Electromagnetics Research, 2009, 98: 299-314.
Mariya Lazebnik, Leah McCartney, Dijana Popovic, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries[J]. Physics in medicine and biology, 2007, 52(10): 2637-2656.
Maklad B, Curtis C, Fear E C, et al. Neighborhood-Based Algorithm to Facilitate the Reduction of Skin Reflections in Radar-Based Microwave Imaging[J]. Progress In Electromagnetics Research B, 2012, 39(39): 115-139.
Elahi M A, Shahzad A, Glavin M, et al. Hybrid Artifact Removal for Confocal Microwave Breast Imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 149-152.
Elahi M A, Glavin M, Jones E, et al. Adaptive artifact removal for selective multistatic microwave breast imaging signals[J]. Biomedical Signal Processing and Control, 2017, 34: 93-100.
张驰, 李悦丽, 周智敏. 基于独立分量分析法的稀疏阵列穿墙成像雷达直达波干扰抑制[J]. 雷达学报, 2014, 3(05): 524-532.
王宪楠. 冲击脉冲探地雷达系统关键技术基础研究[D]. 吉林大学, 2018.
杨廷怡. 探地雷达信号处理的研究与应用[D]. 电子科技大学, 2014.
葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.
Ramsay D T, Kent J C, Hartmann R A, et al. Anatomy of the lactating human breast redefined with ultrasound imaging[J]. Journal of anatomy, 2005, 206(6): 525-534.
Nicholson B T, Lorusso A P, Smolkin M, et al. Accuracy of Assigned BI-RADS Breast Density Category Definitions[J]. ACADEMIC RADIOLOGY, 2006, 13(9): 1143-1149.
Vorst A, Rosen A, Kotsuka Y. RF/Microwave Interaction with Biological Tissues[M]. Piscataway: Wiley-IEEE Press, 2006.
Gabriel C, Gabriel S, Corthout E. The dielectric properties of biological tissues: I. Literature survey[J]. Physics in Medicine and Biology, 1996, 41(11): 2231-2249.
England T S, Sharples N A. Dielectric properties of the human body in the microwave region of the spectrum[J]. Nature, 1949, 163(4143): 487.
Chaudhary S S, Mishra R K, Swarup A, et al. Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies[J]. Indian journal of biochemistry & biophysics, 1984, 21(1): 76-79.
Sha L, Ward E R, Stroy B. A review of dielectric properties of normal and malignant breast tissue: SoutheastCon, 2002[C]. Columbia: IEEE, 2002.
Mariya Lazebnik, Dijana Popovic, Leah McCartney, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries[J]. Physics in medicine and biology, 2007, 52(60): 93-115.
Meaney P M, Gregory A P, Epstein N R, et al. Microwave open-ended coaxial dielectric probe: interpretation of the sensing volume re-visited[J]. BMC Medical Physics, 2014, 14(1): 1-11.
Shannon C E. A mathematical theory of communication[J]. Bell Labs Technical Journal, 1948, 27(4): 379-423.
Rényi A. On measures of entropy and information: The 4th Berkeley Symp on on Mathematical Statistics and Probability, 1961[C]. California: University of California Press, 1961.
Haykin S. Adaptive Filter Theory[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2002.
Montgomery D C, Peck E A, Vining G G. Introduction to linear regression analysis[M]. Hoboken: Wiley, 1982.
王惠文. 偏最小二乘回归方法及其应用[M]. 北京: 国防工业出版社, 1999.
Qian S, Chen D. Joint time-frequency analysis[J]. IEEE Signal Processing Magazine, 1999, 16(2): 52-67.
唐向宏, 李齐良. 时频分析与小波变换[M]. 北京: 科学出版社, 2008.
潘泉, 张磊, 孟晋丽, 等. 小波滤波方法与应用[M]. 北京: 清华大学出版社, 2005.
Li X, Hagness S C. A confocal microwave imaging for breast cancer detection[J]. IEEE Microwave and Wireless Components Letters, 2001, 11(3): 130-132.
Klemm M, Craddock I J, Leendertz J A, et al. Improved Delay-and-Sum Beamforming Algorithm for Breast Cancer Detection[J]. International Journal of Antennas and Propagation, 2008, 2008(2): 1-9.
Lim Hooi Been, Nhung Nguyen Thi Tuyet, Li Er-Ping, et al. Confocal microwave imaging for breast cancer detection: delay-multiply-and-sum image reconstruction algorithm[J]. IEEE transactions on bio-medical engineering, 2008, 55(6): 1697–1704.
Zastrow E, Davis S K, Lazebnik M. Database of 3d grid-based numerical breast phantoms for use in computational electromagnetics simulations[DB/OL]. Wisconsin: University of Wisconsin-Madison Press, 2008.
Douglas Kurrant, Jeremie Bourqui, Charlotte Curtis, et al. Evaluation of 3-D Acquisition Surfaces for Radar-Based Microwave Breast Imaging[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4910-4920.
周蓓蓓. 基于半球状乳房模型的超宽带微波早期乳腺癌检测成像方案研究[D]. 江苏大学, 2005.
Bourqui J , Okoniewski M , Fear E C . Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(7): 2318-2326.
Elahi M A, Curtis C, Lavoie B R, et al. Performance of leading artifact removal algorithms assessed across microwave breast imaging prototype scan configurations[J]. Computerized Medical Imaging and Graphics, 2017, 58: 33-44.
中图分类号:

 TN91    

馆藏号:

 47644    

开放日期:

 2020-12-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式