- 无标题文档
查看论文信息

中文题名:

 基于磁光响应氧化铁复合发光材料的癌症靶向热治疗纳米平台    

姓名:

 李晨煦    

学号:

 20121213200    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085409    

学科名称:

 工学 - 电子信息 - 生物医学工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 生命科学技术学院    

专业:

 电子信息    

研究方向:

 生物医学工程    

第一导师姓名:

 吕锐婵    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 吕卫东    

完成日期:

 2023-05-12    

答辩日期:

 2023-05-25    

外文题名:

 Nanoplatform for targeted thermal therapy of cancer based on magneto-optical responsive iron oxide composite luminescent materials    

中文关键词:

 磁性纳米粒子 ; 光热治疗 ; 离子掺杂 ; 稀土材料 ; 磁热治疗    

外文关键词:

 Magnetic nanoparticles ; Photothermal therapy ; Ion doping ; Rare earth materials ; Magnetic therapy    

中文摘要:

随着纳米医学的发展,现在可应用于癌症治疗的材料越来越多,而由于可修饰的基团多种多样,能实现的功能也多种多样,但是大部分都没有应用于生物安全的研究。而其中氧化铁纳米粒子是一种被批准用于成像与治疗贫血症的相对生物相容性较高与生物毒性较低的材料,基于其低毒性和易排出等特性,将其与荧光染料以及稀土发光材料相结合设计出癌症治疗的复合药物。而氧化铁纳米粒子具有绝大部分材料所没有的成像和磁靶向效果,为多模态成像与治疗提供新的癌症治疗思路。

光热治疗已经经过很长时间的研究,对于很多光疗的表征已经非常完善,此时对于材料本身光热特性的研究就比较着重,对于提高光热转换效率以及降低生物毒性和提高生物相容性的研究就比较重要,光疗对于浅表性的肿瘤的治疗还是很有优势的,而人体组织以及血液等对于近红外光的淬灭是十分严重的,所以对于较深部位的肿瘤是无法通过表皮照射而达到对于病灶部位的治疗的。

磁热疗作为一种癌症治疗方法已被广泛研究,由于交变磁场具有优异的组织穿透深度(>15 cm)、磁性靶向能力和低副作用,所以它可以穿透组织并用磁性纳米颗粒加热和靶向肿瘤。对于加热较深病灶部位的优点是可以实现的,但是由于磁热效率慢,磁性纳米粒子通常需要长时间暴露在交变磁场中以引起热量的产生,并且深层组织中建立具有足够聚集的磁场是比较具有技术难度的。人体长时间暴露于磁场中的风险还是不可避免的,所以此时对于磁热效率较好的材料的研究是非常必要的。

我们可以看到,任何一种单独疗法都有着其优点和缺点,而我们可以通过不同材料的结合来达到更优异的效果与更少的缺点,而材料结合的选择问题,和材料的连接方式与特性冲突的问题还是需要进行更多的研究。

本篇文章中,主要采用了水热法制备的氧化铁纳米粒子作为合成复合材料的主要组成部分,分别结合荧光染料吲哚菁绿(ICG)和稀土纳米颗粒(RENP)来进行光热和磁热对于癌症治疗的探究:

(1)设计了氧化铁纳米粒子与荧光染料吲哚菁绿结合的方案,并装配上牛血清白蛋白(BSA),增加复合材料的生物相容性。在808 nm激光器的激发下,由于氧化铁纳米粒子对于二区发光的淬灭是比较大的,这样吲哚菁绿对于光热效率的增强是比较好的,计算了复合材料的光热转换效率可以达到30.534%,探究了复合材料的毒性并在体外细胞以及体内分别进行了研究与治疗。

(2)设计了一种离子掺杂模式来增强NaYF4:Yb3+, Er3+, x Fe3+稀土材料的下转换发光,并通过氧化铁纳米粒子与稀土纳米粒子的结合来探究磁热的治疗。通过对于发光光谱以及二区成像的表征方法,探究了稀土发光材料中的Fe3+的不同百分比的掺杂对于稀土发光材料的光强的影响,可以看到5% Fe3+的离子掺杂对于稀土材料的发光增强是最高的,本研究选择了一种较以往连接方式不同的方法:在合成稀土发光材料的同时复合氧化铁纳米粒子,并在粒子上修饰PEG基团。本研究探究了在交变磁场下对于材料的加热效果。氧化铁纳米粒子与稀土发光材料在体外细胞中和活体上的一些毒性检测,还有磁热治疗效果的表征。

外文摘要:

With the development of nanomedicine, there are more and more materials that can be applied to cancer treatment, and due to the variety of modifiable groups, the functions that can be realized are also diverse, but most of them are low in biosafety. Among them, iron oxide nanoparticles are a kind of material with high biocompatibility and low biotoxicity approved for imaging and treatment of anemia. Based on its low toxicity and easy discharge, it is combined with fluorescent dyes and rare earth luminescent materials to design compound drugs for cancer treatment. Iron oxide nanoparticles have imaging and magnetic targeting effects that most materials do not have, providing new ideas for multimodal imaging and the treatment of cancer.

 

Photothermal therapy has been studied for a long time, and the characterization of many phototherapy has been very perfect. At this time, the research on the photothermal characteristics of the material itself is more focused. It is important to improve the photothermal conversion efficiency, reduce biotoxicity and improve biocompatibility during the research. Phototherapy is very advantageous for the treatment of superficial tumors while not for deep tissues, due to the serious quenching of near-infrared light by human tissues and blood.

 

Magnetic hyperthermia has been extensively studied as a cancer treatment method, which can penetrate tissue and target tumors with magnetic nanoparticles due to the excellent tissue penetration depth (>15 cm), magnetic targeting ability, and low side effects of alternating magnetic fields. Advantages for heating deeper lesion sites are achievable. However, due to the slow magnetocaloric efficiency, magnetic nanoparticles usually need to be exposed to alternating magnetic fields for a long time to cause heat generation, and it is technically challenging to establish a magnetic field with a sufficient concentration in deep tissues. The risk of the human body being exposed to the magnetic field for a long time is still inevitable, so research on materials with better magnetocaloric efficiency is very necessary at this time.

 

We can see that any single therapy has its advantages and disadvantages, and we can achieve better results and fewer disadvantages through the combination of different materials. The choice of material combination, the linking method of materials, and the problem of feature conflict still need to be studied.

 

In this article, the iron oxide nanoparticles prepared by the hydrothermal method are mainly used as the main component of the composite material, and the fluorescent dye indocyanine green (ICG) and the rare-earth nanoparticles (RENP) are combined for cancer photothermal and magnetic therapy:

 

(1) A scheme of combining iron oxide nanoparticles with the fluorescent dye indocyanine green was designed, and bovine serum albumin (BSA) was assembled to increase the biocompatibility of the composite material. Since the iron oxide nanoparticles quench the luminescence of the near-infrared ii regions is relatively large, indocyanine green is fairly good for enhancing the photothermal efficiency, and the photothermal conversion efficiency of the composite material can be calculated to reach 30.534% under the excitation of the 808 nm laser. The toxicity of composite materials and treatment in vitro and in vivo were explored respectively.

 

(2) An ion doping mode was designed to enhance the down-conversion luminescence of NaYF4:Yb3+, Er3+, xFe3+ rare earth materials, and the magnetothermal treatment was explored through the combination of iron oxide nanoparticles and rare earth nanoparticles. Through emission spectrum and near-infrared ii imaging, the influence of different percentages of Fe3+ doping in rare earth luminescent materials on the emission intensity of rare earth luminescent materials was explored. It can be seen that the ion doping of 5 % Fe3+ achieved the greatest influence on the luminescence enhancement, and a method different from the previous connection method was chosen: rare earth luminescent materials and iron oxide nanoparticles were compounded at the same time, and PEG groups were modified on the particles. The heating effect on materials under an alternating magnetic field was explored.  Toxicity and the effect of magnetothermal therapy of iron oxide nanoparticles and rare earth luminescent materials were tested in cells and animal models.

参考文献:
参考文献
[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022 [J]. CA: A cancer journal for clinicians, 2022, 72(1): 7-33.
[2] SIEGEL R L, MILLER K D, WAGLE N S, et al. Cancer statistics, 2023 [J]. CA: A cancer journal for clinicians, 2023, 73(1): 17-48.
[3] HASHIM D, BOFFETTA P, LA VECCHIA C, et al. The global decrease in cancer mortality: trends and disparities [J]. Annals of Oncology, 2016, 27(5): 926-933.
[4] WONG M C S, GOGGINS W B, WANG H H X, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries [J]. European Urology, 2016, 70(5): 862-874.
[5] BARKER H E, PAGET J T E, KHAN A A, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence [J]. Nature Reviews Cancer, 2015, 15(7): 409-425.
[6] MARTIN O A, ANDERSON R L, NARAYAN K, et al. Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? [J]. Nature Reviews Clinical Oncology, 2017, 14(1): 32-44.
[7] SONG G S, CHENG L, CHAO Y, et al. Emerging nanotechnology and advanced materials for cancer radiation therapy [J]. Advanced Materials, 2017, 29(32): 26.
[8] ORDITURA M, GALIZIA G, SFORZA V, et al. Treatment of gastric cancer [J]. World Journal of Gastroenterology, 2014, 20(7): 1635-1649.
[9] BONJER H J, DEIJEN C L, HAGLIND E, et al. A randomized trial of laparoscopic versus open surgery for rectal cancer reply [J]. New England Journal of Medicine, 2015, 373(2): 194-194.
[10] SULLIVAN R, ALATISE O I, ANDERSON B O, et al. Global cancer surgery: delivering safe, aff ordable, and timely cancer surgery [J]. Lancet Oncology, 2015, 16(11): 1193-1224.
[11] RHODES K R, GREEN J J. Nanoscale artificial antigen presenting cells for cancer immunotherapy [J]. Molecular Immunology, 2018, 98: 13-18.
[12] WANG J, LI Y Y, NIE G J. Multifunctional biomolecule nanostructures for cancer therapy [J]. Nature Reviews Materials, 2021, 6(9): 766-783.
[13] YHEE J Y, LEE S, KIM K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy [J]. Nanoscale, 2014, 6(22): 13383-13390.
[14] HASSAN H, SMYTH L, WANG J T W, et al. Dual stimulation of antigen presenting cells using carbon nanotube-based vaccine delivery system for cancer immunotherapy [J]. Biomaterials, 2016, 104: 310-322.
[15] YETISGIN A A, CETINEL S, ZUVIN M, et al. Therapeutic nanoparticles and their targeted delivery applications [J]. Molecules, 2020, 25(9): 31.
[16] BAO W E, TIAN F L, LYU C L, et al. Experimental and theoretical explorations of nanocarriers' multistep delivery performance for rational design and anticancer prediction [J]. Science Advances, 2021, 7(6): 15.
[17] SWEENEY E E, BALAKRISHNAN P B, POWELL A B, et al. PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function [J]. Nano Research, 2020, 13(3): 736-744.
[18] HAN H S, CHOI K Y. Advances in nanomaterial-mediated photothermal cancer therapies: toward clinical applications [J]. Biomedicines, 2021, 9(3): 15.
[19] ZOU L L, WANG H, HE B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics [J]. Theranostics, 2016, 6(6): 762-772.
[20] ABADEER N S, MURPHY C J. Recent progress in cancer thermal therapy using gold nanoparticles [J]. Journal of Physical Chemistry C, 2016, 120(9): 4691-4716.
[21] CHEN J Q, NING C Y, ZHOU Z N, et al. Nanomaterials as photothermal therapeutic agents [J]. Progress in Materials Science, 2019, 99: 1-26.
[22] FAY B L, MELAMED J R, DAY E S. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells [J]. International Journal of Nanomedicine, 2015, 10: 6931-6941.
[23] GORMLEY A J, GREISH K, RAY A, et al. Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery [J]. International Journal of Pharmaceutics, 2011, 415(1-2): 315-318.
[24] GORMLEY A J, LARSON N, BANISADR A, et al. Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers [J]. Journal of Controlled Release, 2013, 166(2): 130-138.
[25] RILEY R S, DAY E S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment [J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2017, 9(4): 16.
[26] GOLSTEIN P, KROEMER G. Cell death by necrosis: towards a molecular definition [J]. Trends in Biochemical Sciences, 2007, 32(1): 37-43.
[27] CHRISTOFFERSON D E, YUAN J Y. Necroptosis as an alternative form of programmed cell death [J]. Current Opinion in Cell Biology, 2010, 22(2): 263-268.
[28] GALLUZZI L, KROEMER G. Necroptosis: a specialized pathway of programmed necrosis [J]. Cell, 2008, 135(7): 1161-1163.
[29] ZHANG Y J, ZHAN X L, XIONG J, et al. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells [J]. Scientific Reports, 2018, 8: 9.
[30] KNAVEL E M, BRACE C L. Tumor ablation: common modalities and general practices [J]. Techniques in vascular and interventional radiology, 2013, 16(4): 192-200.
[31] PARIDA S, MAITI C, RAJESH Y, et al. Gold nanorod embedded reduction responsive block copolymer micelle-triggered drug delivery combined with photothermal ablation for targeted cancer therapy [J]. Biochimica Et Biophysica Acta-General Subjects, 2017, 1861(1): 3039-3052.
[32] THOMPSON S M, CALLSTROM M R, BUTTERS K A, et al. Heat stress induced cell death mechanisms in hepatocytes and hepatocellular carcinoma: in vitro and in vivo study [J]. Lasers in Surgery and Medicine, 2014, 46(4): 290-301.
[33] MOURATIDIS P X E, RIVENS I, TER HAAR G. A study of thermal dose-induced autophagy, apoptosis and necroptosis in colon cancer cells [J]. International Journal of Hyperthermia, 2015, 31(5): 476-488.
[34] NOMURA S, MORIMOTO Y, TSUJIMOTO H, et al. Highly reliable, targeted photothermal cancer therapy combined with thermal dosimetry using a near-infrared absorbent [J]. Scientific Reports, 2020, 10(1): 7.
[35] DENG K R, HOU Z Y, DENG X R, et al. Enhanced antitumor efficacy by 808 nm laser-induced synergistic photothermal and photodynamic therapy based on a indocyanine-green-attached W18O49 nanostructure [J]. Advanced Functional Materials, 2015, 25(47): 7280-7290.
[36] SHIRATA C, KANEKO J, INAGAKI Y, et al. Near-infrared photothermal/photodynamic therapy with indocyanine green induces apoptosis of hepatocellular carcinoma cells through oxidative stress [J]. Scientific Reports, 2017, 7: 8.
[37] CHEN W R, ADAMS R L, CARUBELLI R, et al. Laser-photosensitizer assisted immunotherapy: A novel modality for cancer treatment [J]. Cancer Letters, 1997, 115(1): 25-30.
[38] LI X S, FERREL G L, GUERRA M C, et al. Preliminary safety and efficacy results of laser immunotherapy for the treatment of metastatic breast cancer patients [J]. Photochemical & Photobiological Sciences, 2011, 10(5): 817-821.
[39] LI S, BOUCHY S, PENNINCKX S, et al. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy [J]. Nanomedicine, 2019, 14(3): 317-333.
[40] LIU K, ZHENG Y H, LU X, et al. Biocompatible gold nanorods: one-step surface functionalization, highly colloidal stability, and low cytotoxicity [J]. Langmuir, 2015, 31(17): 4973-4980.
[41] BISCAGLIA F, RIPANI G, RAJENDRAN S, et al. Gold nanoparticle aggregates functionalized with cyclic RGD peptides for targeting and imaging of colorectal cancer cells [J]. Acs Applied Nano Materials, 2019, 2(10): 6436-6444.
[42] ROSENSWEIG R E. Heating magnetic fluid with alternating magnetic field [J]. Journal of Magnetism and Magnetic Materials, 2002, 252(1-3): 370-374.
[43] WANG Y F, KOHANE D S. External triggering and triggered targeting strategies for drug delivery [J]. Nature Reviews Materials, 2017, 2(6): 14.
[44] HO D, SUN X L, SUN S H. Monodisperse magnetic nanoparticles for theranostic applications [J]. Accounts of Chemical Research, 2011, 44(10): 875-882.
[45] GAVILAN H, AVUGADDA S K, FERNANDEZ-CABADA T, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer [J]. Chemical Society Reviews, 2021, 50(20): 11614-11667.
[46] GUARDIA P, RIEDINGER A, NITTI S, et al. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate [J]. Journal of Materials Chemistry B, 2014, 2(28): 4426-4434.
[47] LIU X L, YANG Y, NG C T, et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors [J]. Advanced Materials, 2015, 27(11): 1939-1944.
[48] PRABU P, VEDAKUMARI W S, SASTRY T P. Time-dependent biodistribution, clearance and biocompatibility of magnetic fibrin nanoparticles: an in vivo study [J]. Nanoscale, 2015, 7(21): 9676-9685.
[49] ARAMI H, KHANDHAR A, LIGGITT D, et al. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles [J]. Chemical Society Reviews, 2015, 44(23): 8576-8607.
[50] ANGELAKERIS M. Magnetic nanoparticles: a multifunctional vehicle for modern theranostics [J]. Biochimica Et Biophysica Acta-General Subjects, 2017, 1861(6): 1642-1651.
[51] XIE W S, GUO Z H, GAO F, et al. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics [J]. Theranostics, 2018, 8(12): 3284-3307.
[52] TONG S, QUINTO C A, ZHANG L L, et al. Size-dependent heating of magnetic iron oxide nanoparticles [J]. ACS Nano, 2017, 11(7): 6808-6816.
[53] KALLUMADIL M, TADA M, NAKAGAWA T, et al. Suitability of commercial colloids for magnetic hyperthermia [J]. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1509-1513.
[54] SHOKROLLAHI H. A review of the magnetic properties, synthesis methods and applications of maghemite [J]. Journal of Magnetism and Magnetic Materials, 2017, 426: 74-81.
[55] HEDAYATNASAB Z, ABNISA F, DAUD W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application [J]. Materials & Design, 2017, 123: 174-196.
[56] ZHANG L Z, LIU Z Y, LIU Y M, et al. Ultrathin surface coated water-soluble cobalt ferrite nanoparticles with high magnetic heating efficiency and rapid in vivo clearance [J]. Biomaterials, 2020, 230: 14.
[57] THOMAS R, PARK I K, JEONG Y Y. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer [J]. International Journal of Molecular Sciences, 2013, 14(8): 15910-15930.
[58] AADINATH W, GHOSH T, ANANDHARAMAKRISHNAN C. Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements [J]. Journal of Magnetism and Magnetic Materials, 2016, 401: 1159-1172.
[59] JOHANNSEN M, GNEVECKOW U, ECKELT L, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: Presentation of a new interstitial technique [J]. International Journal of Hyperthermia, 2005, 21(7): 637-647.
[60] JOHANNSEN M, GNEUECKOW U, THIESEN B, et al. Thermotherapy of prostate cancer using magnetic nanoparticles: Feasibility, imaging, and three-dimensional temperature distribution [J]. European Urology, 2007, 52(6): 1653-1662.
[61] JOHANNSEN M, THIESEN B, GNEVECKOW U, et al. Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer [J]. Prostate, 2006, 66(1): 97-104.
[62] MAIER-HAUFF K, ULRICH F, NESTLER D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme [J]. Journal of Neuro-Oncology, 2011, 103(2): 317-324.
[63] TUCKER R D. Use of interstitial temperature self-regulating thermal rods in the treatment of prostate cancer [J]. Journal of Endourology, 2003, 17(8): 601-607.
[64] TUCKER R D, HUIDOBRO C, LARSON T. Ablation of stage T-1/T-2 prostate cancer with permanent interstitial temperature self-regulating rods [J]. Journal of Endourology, 2005, 19(7): 865-867.
[65] TUCKER R D, PLATZ C E, HUIDOBRO C, et al. Interstitial thermal therapy in patients with localized prostate cancer: Histologic analysis [J]. Urology, 2002, 60(1): 166-169.
[66] KUDR J, HADDAD Y, RICHTERA L, et al. Magnetic nanoparticles: from design and synthesis to real world applications [J]. Nanomaterials, 2017, 7(9): 29.
[67] ANSELMO A C, MITRAGOTRI S. Nanoparticles in the clinic [J]. Bioengineering & Translational Medicine, 2016, 1(1): 10-29.
[68] LI G G, TIAN Y, ZHAO Y, et al. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs [J]. Chemical Society Reviews, 2015, 44(23): 8688-8713.
[69] TSANG M K, BAI G X, HAO J H. Stimuli responsive upconversion luminescence nanomaterials and films for various applications [J]. Chemical Society Reviews, 2015, 44(6): 1585-1607.
[70] ADACHI S. Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review [J]. Journal of Luminescence, 2018, 202: 263-281.
[71] ALI R, SALEH S M, MEIER R J, et al. Upconverting nanoparticle based optical sensor for carbon dioxide [J]. Sensors and Actuators B-Chemical, 2010, 150(1): 126-131.
[72] AMOUROUX B, ROUX C, MARTY J D, et al. Importance of the mixing and high-temperature heating steps in the controlled thermal coprecipitation synthesis of sub-5-nm Na(Gd-Yb)F4:Tm [J]. Inorganic Chemistry, 2019, 58(8): 5082-5088.
[73] ANDRE T, SHIU K K, KIM T W, et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer [J]. New England Journal of Medicine, 2020, 383(23): 2207-2218.
[74] MARET W. Zinc Biochemistry: from a single zinc enzyme to a key element of life [J]. Advances in Nutrition, 2013, 4(1): 82-91.
[75] LI J C, RAO J H, PU K Y. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy [J]. Biomaterials, 2018, 155: 217-235.
[76] LI N, TAN H H, XIE S W, et al. Hexadecylpyridinium chloride mediated hydrothermal synthesis of NaYF4:Yb,Er nanocrystal and their luminescent properties [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(3): 1866-1872.
[77] XIE Z J, FAN T J, AN J, et al. Emerging combination strategies with phototherapy in cancer nanomedicine [J]. Chemical Society Reviews, 2020, 49(22): 8065-8087.
[78] LIU Y Y, MENG X F, BU W B. Upconversion-based photodynamic cancer therapy [J]. Coordination Chemistry Reviews, 2019, 379: 82-98.
[79] ZHANG J J, CHENG F F, LI J J, et al. Fluorescent nanoprobes for sensing and imaging of metal ions: Recent advances and future perspectives [J]. Nano Today, 2016, 11(3): 309-329.
[80] 吕锐婵,王燕兴,杨凡,et al 离散偶极近似仿真金属调制稀光及应用研究发光学报.2020.41(09): 1030-1044.
[81] LI Y H, LIU J, QIN X J, et al. Ultrafast synthesis of fluorine-18 doped bismuth based upconversion nanophosphors for tri-modal CT/PET/UCL imaging in vivo [J]. Chemical Communications, 2019, 55(50): 7259-7262.
[82] GUO S H, XIE X J, HUANG L, et al. Sensitive water probing through nonlinear photon upconversion of lanthanide-doped nanoparticles [J]. Acs Applied Materials & Interfaces, 2016, 8(1): 847-853.
[83] MAHATA M K, BAE H, LEE K T. Upconversion luminescence sensitized pH-nanoprobes [J]. Molecules, 2017, 22(12): 26.
[84] WANG X H, CHANG H J, XIE J, et al. Recent developments in lanthanide-based luminescent probes [J]. Coordination Chemistry Reviews, 2014, 273: 201-212.
[85] CUI Y J, CHEN B L, QIAN G D. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications [J]. Coordination Chemistry Reviews, 2014, 273: 76-86.
[86] DONG H, SUN L D, YAN C H. Energy transfer in lanthanide upconversion studies for extended optical applications [J]. Chemical Society Reviews, 2015, 44(6): 1608-1634.
[87] PAN G C, BAI X, YANG D W, et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties [J]. Nano Letters, 2017, 17(12): 8005-8011.
[88] YIN A X, ZHANG Y W, SUN L D, et al. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF4 : Yb,Tm nanocrystals [J]. Nanoscale, 2010, 2(6): 953-959.
[89] YE X C, COLLINS J E, KANG Y J, et al. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(52): 22430-22435.
[90] FENG M, LV R C, XIAO L Y, et al. Highly erbium-doped nanoplatform with enhanced red emission for dual-modal optical-imaging-guided photodynamic therapy [J]. Inorganic Chemistry, 2018, 57(23): 14594-14602.
[91] RAFIQUE R, BAEK S H, PHAN L M T, et al. A facile hydrothermal synthesis of highly luminescent NaYF4:Yb3+ /Er3+ upconversion nanoparticles and their biomonitoring capability [J]. Materials Science and Engineering C-Materials for Biological Applications, 2019, 99: 1067-1074.
[92] WANG X, ZHUANG J, PENG Q, et al. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121-124.
[93] MOUSAVAND T, OHARA S, NAKA T, et al. Organic-ligand-assisted hydrothermal synthesis of ultrafine and hydrophobic ZnO nanoparticles [J]. Journal of Materials Research, 2010, 25(2): 219-223.
[94] XU D Y, LIU J, WANG Y X, et al. Black phosphorus nanosheet with high thermal conversion efficiency for photodynamic/photothermal/immunotherapy [J]. Acs Biomaterials Science & Engineering, 2020, 6(9): 4940-4948.
[95] WANG F, DENG R R, LIU X G. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes [J]. Nature Protocols, 2014, 9(7): 1634-1644.
[96] ZHOU Y Z, CHEN Y H, HE H, et al. A homogeneous DNA assay by recovering inhibited emission of rare earth ions-doped upconversion nanoparticles [J]. Journal of Rare Earths, 2019, 37(1): 11-18.
[97] GAO Y, LI R F, ZHENG W, et al. Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu2+, Sm3+ nanocrystals [J]. Chemical Science, 2019, 10(21): 5452-5460.
[98] DAI Y, YANG D P, YU D P, et al. Engineering of monodisperse core-shell up-conversion dendritic mesoporous silica nanocomposites with a tunable pore size [J]. Nanoscale, 2020, 12(8): 5075-5083.
[99] LI F F, LI C G, LIU X M, et al. Hydrophilic, upconverting, multicolor, lanthanide-doped NaGdF4 nanocrystals as potential multifunctional bioprobes [J]. Chemistry-a European Journal, 2012, 18(37): 11641-11646.
[100] WANG G F, PENG Q, LI Y D. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications [J]. Accounts of Chemical Research, 2011, 44(5): 322-332.
[101] LIU K, LIU X M, ZENG Q H, et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells [J]. ACS Nano, 2012, 6(5): 4054-4062.
[102] ZHANG C, ZHAO K L, BU W B, et al. Marriage of scintillator and semiconductor for synchronous radiotherapy and deep photodynamic therapy with diminished oxygen dependence [J]. Angewandte Chemie-International Edition, 2015, 54(6): 1770-1774.
[103] DU P, LUO L H, PARK H K, et al. Citric-assisted sol-gel based Er3+/Yb3+-codoped Na0.5Gd0.5MoO4: A novel highly-efficient infrared-to-visible upconversion material for optical temperature sensors and optical heaters [J]. Chemical Engineering Journal, 2016, 306: 840-848.
[104] LIU S B, LIU S F, MING H, et al. Tunable multicolor and bright white upconversion luminescence in Er3+/Tm3+/Yb3+ tri-doped SrLu2O4 phosphors [J]. Journal of Materials Science, 2018, 53(20): 14469-14484.
[105] HASSAIRI M A, HERNANDEZ A G, DAMMAK M, et al. Tuning white upconversion emission in GdPO4:Er/Yb/Tm phosphors [J]. Journal of Luminescence, 2018, 203: 707-713.
[106] GAO X, LI T W, HE J F, et al. Synthesis of Yb3+, Ho3+ and Tm3+ co-doped beta-NaYF4 nanoparticles by sol-gel method and the multi-color upconversion luminescence properties [J]. Journal of Materials Science-Materials in Electronics, 2017, 28(16): 11644-11653.
中图分类号:

 R3    

开放日期:

 2023-12-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式