- 无标题文档
查看论文信息

中文题名:

 海水叶绿素a荧光传感器的研究与设计    

姓名:

 赵强星    

学号:

 1611122893    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085212    

学科名称:

 工学 - 工程(专业学位) - 软件工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 微电子学院    

专业:

 软件工程    

第一导师姓名:

 高海霞    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 董玉明    

完成日期:

 2019-12-06    

答辩日期:

 2019-12-06    

外文题名:

 Study and design of chlorophyll a fluorescence sensor in seawater    

中文关键词:

 海洋 ; 荧光 ; 叶绿素a ; 环境监测    

外文关键词:

 Ocean ; Fluorescence ; Chlorophyll a ; Environmental monitoring    

中文摘要:

科技的进步加快了海洋的开发,但随之而来的是海洋的污染也日益严重。人们从海洋中获得资源,但被污染的资源最终会伤害人类本身,所以海洋环境监测尤为重要。传统的方法如遥感技术、采样测量有或多或少的缺点,为了更准确便捷地监测海洋环境,本文研究了一种原位叶绿素a荧光传感器来实时监测海水中叶绿素a的浓度,进一步反映浮游植物的含量,为海洋的开发和治理提供参考依据。

基于荧光测量原理,设计了一套低功耗、小体积、高精度、长使用寿命的海水叶绿素a荧光传感器。选择了450nm的蓝光发光二极管作为光源,PN型光电二极管作为光敏元件,搭建了传感器的光路,并根据所选器件的性能进行了电路设计,主要分为四个模块:电源模块、LED驱动模块、信号采集模块、信号处理模块。工作机制为蓄电池为整个仪器供电,TM32F103C8T6微处理器产生一个70Hz的交流信号驱动LED灯,产生蓝光经透镜汇聚后照射到水体中,水体中的叶绿素a被激发从而产生荧光,荧光透过光学窗口经过透镜汇聚,再经过滤光片过滤后被光电二极管接收,转换为电信号,随后经过放大、滤波、AD采样转化为数字信号,最后传输到单片机中。单片机控制着整个仪器的工作,同时也通过RS485与上位机进行通信。此时接收到的荧光信号就能间接代表叶绿素a的浓度。随后,在Altium Designer软件中进行PCB板设计,按照仪器的需要定制PCB板,并制备出完整的PCB板。

实验结果表明,仪器检测到的荧光信号与叶绿素a浓度之间有很好的线性关系,在规定区间内相关系数R平方能达到0.99以上;仪器具有很低的检测限,能达到0.01ug/L;仪器具有较低的功耗,正常工作时功率小于1W,能满足长时间原位在线检测。将检测结果与国外先进仪器和国家标准法进行对照,都能表现出很好的相关性,因此海水叶绿素a荧光传感器是成功的,能够应用在实际的海洋环境监测中。

外文摘要:

Advances in science and technology have accelerated the development of the oceans, but the pollution of the oceans has become increasingly serious. People get resources from the oceans, but the polluted resources will eventually harm the human beings. Therefore, marine environmental monitoring is particularly important. Traditional methods such as remote sensing technology and sampling measurement have more or less disadvantages. In order to monitor the marine environment more accurately and conveniently, this paper studied an in situ chlorophyll a fluorescence sensor to monitor the concentration of chlorophyll a in seawater in real time, further reflecting The content of phytoplankton provides a reference for the development and management of the ocean.

Based on the principle of fluorescence measurement, a set of seawater chlorophyll a fluorescence sensor with low power consumption, small volume, high precision and long service life was designed. A 450nm blue light-emitting diode was selected as the light source, and the photodiode was used as a detector to build the optical path of the instrument. The circuit design was carried out according to the performance of the selected device. It was mainly divided into four modules: power module, LED driver module, and signal acquisition. Module, signal processing module. The working mechanism is that the battery supplies voltage to the whole instrument. The TM32F103C8T6 microprocessor generates a 70Hz AC signal to drive the LED lamp, which generates blue light to the water sample. The chlorophyll a in the water sample is excited to generate fluorescence, and the fluorescence passes through the optical window. After being filtered by the filter, it is received by the photodiode, converted into an electrical signal, and then converted into a digital signal by amplification, filtering, and AD sampling, and then transmitted to the microprocessor. The microprocessor is connected to the host computer through RS485, and also controls the operation of the entire instrument. The fluorescent signal received at this time can indirectly represent the concentration of chlorophyll a. Then, in the Altium Designer software, the PCB board design is performed according to the required circuit, the PCB board size is determined according to the needs of the instrument, and a complete PCB board is prepared.

The experimental results show that there is a good linear relationship between the fluorescence signal detected by the instrument and the concentration of chlorophyll a. The correlation coefficient R can reach 0.99 or more in the specified interval; the instrument has a very low detection limit and can reach 0.01ug/L. The instrument has low power consumption and the power is less than 1W during normal operation, which can meet the long-term in-situ online detection. Compared with foreign advanced instruments and national standard methods, they can show good correlation. Therefore, the seawater chlorophyll a fluorescence sensor is successful and can be applied in actual marine environment monitoring.

参考文献:
[1] 贾立斌,吴伟宏,袁国华.基于Mann-Kendall的中国近岸海域海洋生态环境承载力评价与预警[J].生态经济,2019(02):208-213+224.
[2] 陈中华.基于物联网的海洋环境监测系统研究与应用[D].上海:上海海洋大学, 2012.
[3] 张小磊.基于海洋环境监测与现代传感器技术的研究[J].中国新通信,2018,20(20):78.
[4] 朱光文.海洋环境监测与现代传感器技术[J].海洋技术,2000(03):38-43.
[5] 徐文龙,王桂芬,周雯,许占堂,曹文熙.南海东北部夏季叶绿素a浓度垂向变化特征及其对水动力过程的响应[J].热带海洋学报,2018,37(05):62-73.
[6] Lorenzen C J.A method for the continuous measurement of in vivo chlorophyll concentration[J]. Deep-Sea Res,1966,13:223-227
[7] 夏达英,王振先,夏荣环,辛海英.水中荧光计及其在海洋现场探测中的应用[J].黄渤海海洋,1997(02):64-70.
[8] Hongsuk H. Kim, "New Algae Mapping Technique by the Use of an Airborne Laser Fluorosensor," Appl. Opt. 12, 1454-1459 (1973)
[9] Ruth B. A Device for the Determination of the Microsecond Component of the in vivo Chlorophyll Fluorescence Induction Kinetics[J]. Meas. Sci. Technol, 1990, 12 (1): 517-521.
[10] K.Wild-Allen,P.Tett,D.Bowers.Observations of diffuse upwelling irradiance and chlorophyll in case i waters near the canary islands (Spain).Optics & Laser Technology.1997,29(1):3~8
[11] D.McKeea, A.Cunning Ham,K.Jones,An integrated submersible fluorometer/nephelometer/ transmissometer: design and testing at sea. Optics & Laser Technology .1997, Pages 35-39
[12] Brechet E, McStay D, Wakefield R D, et al. Novel blue LED-based handheld fluorometer for detection of terrestrial algae on solid surfaces[C], SPIE,1998, 3414: 184-191.
[13] 潘德炉,林寿仁,J。F。R。高尔,G。A。盖里.利用荧光高度遥感海洋中叶绿素a的浓度[J].海洋学报(中文版),1989(06):780-787.
[14] 夏达英,王振先,夏敬芳,夏荣环,辛海英.海水叶绿素a现场测量仪研究[J].海洋与湖沼,1997(04):433-439.
[15] 王荣, 鲁北纬, 余家栋. 海水叶绿素 a 含量的连续走航测定[J]. 海洋与湖沼, 1996, 27(3):296-301.
[16] 陈卫标,吴东,张亭禄,刘智深.海洋表层叶绿素浓度的激光雷达测量方法和海上实验[J]海洋与湖沼,1998(03):255-260.
[17] 王莉田,杨影,王玉田,郑龙江.光纤荧光海藻浓度测量仪的研究[J].传感技术学报,2001(02):119-122.
[18] 王志刚. 水体浮游植物浓度原位分类测量方法研究与系统研制[D].中国科学技术大学,2008.
[19] 崔建升,吕鹏翼,段莉丽.海水叶绿素现场检测仪的研制及性能研究[J].分析仪 器,2014(01):12-16.
[20] 李增惠.中国有害赤潮发展趋势与对策——香山科学会议第163次学术讨论会[J].中国基础科学,2001(06):40-42.
[21] Oxborough K, Hanlon A, Underwood G, Baker N. In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high resolution imaging of chlorophyll-a fluorescence[J]. Limnology and Oceanography, 2000, 26(45): 1420-1425.
[22] 金海龙,汪翔,王玉田.便携式全光纤海藻叶绿素a浓度测量仪的研究[J].自动化与仪表,2004(01):25-27.
[23] 李丹,魏红艳,赵友全.基于PSoC的紫外荧光法水中藻类检测系统设计[J].现代仪 器,2010,16(01):52-54.
[24] 陈国珍.荧光分析[M].北京:科学出版社,1975,12-45
[25] 张彪,储焰南,张玉平,龚平,杨世植.发光二极管作为现场叶绿素荧光仪激发光源实 验研究[J].量子电子学报,2003(04):472-476.
[26] Sharma A , Stephen G. Introduction to Fluorescence Spectroscopy[J]. New York: John Wiley and Sons, 1999:22-23.
[27] 唐天同,王兆宏,陈时. 集成光电子学. 第一版. 西安交通大学出版社, 2005.
[28] 赵丽娟,凌洁华.薄膜干涉滤光片单色性的研究与应用[J].光学仪器,2007(04):71- 74.
[29] 李鑫星,王聪,陈英义,赵佳,傅泽田,张领先.基于荧光分析法的水体叶绿素a传感器光通路设计[J].农业机械学报,2015,46(05):300-305.
[30] 胡静.光电二极管的工作原理及应用特性分析[J].技术与市场,2016,23(12):40- 41.
[31] 赵迪. 海水叶绿素a实时监测系统的研究[D].燕山大学,2012.
[32] 孙肖子.模拟电子技术基础.第一版.高等教育出版社.2012.
[33] 郭兴龙.基于RS485的实验室设备电源集控系统的设计[J].机电工程技术,2018,47(08):151-155.
[34] 谷树忠.Altium Designer实用教程.电子工业出版社.2015.
中图分类号:

 X85    

开放日期:

 2020-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式