- 无标题文档
查看论文信息

题名:

 网络化雷达稀疏孔径综合及其通信一体化处理方法研究    

作者:

 宇文珊    

学号:

 20021210872    

保密级别:

 公开    

语种:

 chi    

学科代码:

 081002    

学科:

 信号与信息处理    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 电子工程学院    

专业:

 信息与通信工程    

研究方向:

 阵列信号处理    

导师姓名:

 陈伯孝    导师信息

导师单位:

  西安电子科技大学    

完成日期:

 2023-06-10    

答辩日期:

 2023-05-29    

外文题名:

 Research on Sparse Aperture Synthesis and Communication Integration Processing of Networked Radar    

关键词:

 网络化雷达 ; 稀疏孔径综合 ; 雷达通信一体化 ; 量子粒子群算法 ; 正交频分线性调频信号    

外文关键词:

 Networked Radar ; Sparse Aperture Synthesis ; Radar Communication Integration ; Quantum Particle Swarm Optimization ; Orthogonal Frequency Division Multiplexing Linear Frequency Modulated Signal    

摘要:

随着新型作战武器和样式的出现,雷达面临越来越复杂的“四大威胁”,单个雷达节点的能力逐渐接近物理“极限”,雷达必须从“点”向“网”演进,在这种背景下,产生了一种全新雷达体制——网络化雷达。网络化雷达包含许多广域空间零散分布的雷达节点,多个子处理系统以及多个中心处理系统,具有稀疏大孔径的特点。目标往往处于近场范围,远场阵列接收模型已不适用。网络化雷达与稀疏孔径综合、雷达通信一体化等其他领域相结合时,仍有很多问题需要解决。本文基于近场信号传播模型,研究网络化雷达稀疏孔径综合以及基于正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)线性调频(Linear Frequency Modulated, LFM)雷达通信一体化信号的设计与处理问题。本文的主要内容概括如下:

(1) 研究网络化雷达的基础理论与探测模型。简单介绍近场和远场的划分、近场信号传播模型、波束形成原理和OFDM-LFM雷达通信一体化信号模型,为后续工作提供理论基础。基于近场信号传播模型,构建网络化雷达的三维近场收发信号模型。从目标散射系数、多普勒单元一致性和距离单元一致性方面对网络化雷达的回波相参性进行分析,得出网络化雷达探测处理实际是空域角度和距离的三维匹配过程的结论。

(2) 研究网络化雷达稀疏孔径综合问题。首先,推导网络化雷达在稀疏大孔径下的近场收发联合方向图,引入阵列孔径、节点数量、节点间距等约束条件,通过优化方向图的最大旁瓣电平,提出节点位置优化模型。然后,针对均匀稀疏布阵带来的密集栅瓣和高旁瓣问题,提出两种布阵思路:随机稀疏布阵和随机稀布布阵,并对方向图性能进行分析。随机稀疏布阵将阵列孔径划分成若干栅格点,选择其中一部分栅格点作为节点位置。随机稀布布阵在实际可分配空间内生成若干随机点后逆映射回阵列孔径作为节点位置。仿真结果表明,降低稀疏率或提高稀布率能够有效抑制栅瓣问题,降低旁瓣。最后,引入量子粒子群算法,设计优化操作步骤,实现在这两种布阵方式下的节点位置的优化,进一步降低方向图的最大旁瓣电平。

(3) 研究OFDM-LFM雷达通信一体化信号在网络化雷达体制下的设计与处理。首先,对基于OFDM-LFM雷达通信一体化波形的发射信号进行仿真分析,验证发射信号具有良好的自相关性和互相关性,能够实现发射信号分离。然后,提出雷达回波信号相参处理方法以及通信信号解调方法。最后,通过一系列仿真实验进行验证。在单目标场景下,通过分析角度-距离匹配结果在时延和相位补偿、距离分辨率、近场波束形成、信噪比等方面的性能验证所提雷达回波相参处理方法的有效性;通过分析栅格失配情况,得到搜索间隔取值上限,并在多目标场景下进行验证。通过分析通信误码率,验证所提通信信号解调方法的有效性。仿真结果证明,所提方法在不影响网络化雷达探测性能的同时,完成数据传输,实现网络化雷达通信一体化。

外摘要要:

With the emergence of new combat weapons and styles, the "four major threats" is severer to radar. The ability of single radar node is gradually approaching its physical "limit", radar must evolve from "point" to "network", and the networked radar is a new system radar produced under this background. Networked radar is composed of many wide-area scattered nodes, multiple sub-processing systems and multiple central processing systems. Because of the characteristics of sparse and large aperture, the targets are usually within the near-field range, therefore the far-field array receiving model is no longer applicable. There are still many problems to be solved when networked radar is combined with other fields, such as sparse aperture synthesis and radar communication integration. Based on the near-field signal propagation model, this thesis studies the sparse aperture synthesis and the design and processing of Orthogonal Frequency Division Multiplexing(OFDM) Linear Frequency Modulated(LFM) radar communication integrated signal of networked radar. The main content of this thesis can be summarized as follows.

 

(1) The basic theory and detection model of networked radar are studied. We simply introduce the division of near field and far field, the propagation model of near field signal, the principle of beamforming and the radar communication integrated signal model of OFDM-LFM, which provides theoretical basis for the follow-up work. Based on the near-field signal propagate-on model, a three-dimensional near-field transmitting and receiving signal model of networked radar is constructed. The coherence of networked radar echoes is analyzed from the aspects of target scattering coefficient, doppler unit consistency and range unit consistency. It is concluded that networked radar detection processing is actually a three-dimensional matching process of spatial angle and range.

 

(2) The sparse aperture synthesis of networked radar is studied. Firstly, the near-field joint pattern of transceiver and receiver of networked radar under the sparse and large aperture is derived. Constraints such as array aperture, number of nodes and node spacing are introduced. By optimizing the maximum sidelobe level of the pattern, the node position optimization model is proposed. Then, two kinds of layout ideas: random sparse array and random thinned array are proposed in order to solve the problem of dense gate lobes and high sidelobe caused by uniform sparse array, and the performance of the pattern is analyzed. The random sparse array divide aperture array into several grid points and select some grid points as the nodes position. The random thinned array generates several random points in the actual distributable space and then inverse map to array aperture as the node position. The simulation results show that reducing the sparse rate or increasing the thinning rate can suppress the gate lobe problem and reduce the sidelobe. The quantum particle swarm optimization simulates the process of quantum particles moving to the direction of the lowest potential energy in the potential field and has good global convergence. At last, we introduce the quantum particle swarm optimization to design the optimization operation steps to realize the optimization of the node position under the two layout modes, and further reduce the maximum sidelobe level of the pattern.

 

(3) The design and processing of radar communication integrated signal of OFDM-LFM under networked radar system are studied. Firstly, the transmitted signals based on the radar communication integrated waveform of OFDM-LFM are simulated and analyzed to verify that the transmitted signals have good autocorrelation and mutual correlation, and can realize the separation of transmitted signals. Then the radar echo signal coherent processing method and communication signal demodulation method are proposed. Finally, a series of simulate on experiments are carried out to verify those methods. In a single target scenario, the effectiveness of the proposed radar echo coherent processing method is verified by analyzing the performance of angle-range matching results in time delay and phase compensation, range resolution, near-field beamforming, signal-to-noise ratio and other aspects. By analyzing the grid mismatch, the upper limit of the search interval is obtained and verified in the multi-object scenario. The effectiveness of the proposed demodulation method is verified by analyzing the error rate of communication signals. Simulation results show that the proposed method does not affect the detection performance of networked radar and can carry out data transmission, realizing the integration of networked radar communication.

参考文献:
[1] SKOLNIK M. Introduction to radar system[M]. New York: McGraw-Hill, 2008.
[2] 陈伯孝. 雷达原理与系统[M]. 西安: 西安电子科技大学出版社, 2021.
[3] 何子述, 李军, 刘红明, 等. MIMO雷达[M]. 北京: 国防工业出版社, 2017.
[4] 刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(2): 7-12.
[5] 陈伯孝. 现代雷达系统分析与设计[M]. 西安: 西安电子科技大学出版社, 2012.
[6] 徐洋, 袁振涛, 朱景雷, 等. 网络化雷达现状及技术发展趋势[J]. 现代雷达, 2019, 41(10): 14-18.
[7] MARC L. Some application of MIMO in radar[C]. IEEE International Radar Conference, Chengdu, China,2011.
[8] 刘继业, 陈西宏, 刘强, 等. 国外双(多)基地雷达发展现状及关键技术分析[J]. 飞航导弹, 2013, (06): 54-59.
[9] 王腾朝, 杨靖雯, 赵杭生, 等. “沉默哨兵”系统及其核心技术[J]. 军事通信技术, 2009, 30 (04): 89-93.
[10] 陈剑利. “橡皮套鞋”今安在——俄罗斯四代反导系统[J]. 国防科技, 2003, (11): 43-46.
[11] 兰俊杰, 陈蓓, 徐廷新. 组网雷达发展现状及其干扰技术[J]. 飞航导弹, 2009, (12): 39-41.
[12] BLISS D W, FORSYTHE K W. Multiple-input multiple-out (MIMO) radar and imaging: Degrees of freedom and resolution[C]. The Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2003.
[13] XU L, LI J, STOICA P. Adaptive techniques for MIMO radar[C]. 4th IEEE Workshop on Sensor Array and Multi-channel Processing, Waltham, MA, July 2006: 258-262.
[14] FISHLER E, HAIMOVICH A.M, BLUM R, et al. MIMO radar: an idea whose time has come[C]. The 2004 IEEE Radar Conference, Philadelphia, PA, USA, 2004.
[15] 戴喜增, 彭应宁, 汤俊. MIMO雷达检测性能[J]. 清华大学学报(自然科学版), 2007, (01): 88-91.
[16] LEHMANN N H, FISHLER E, HAIMOVICH A M , et al. Evalution of transmit deversity in MIMO-radar direction finding[J]. IEEE Trans. Signal Processing, May 2007, 55(5): 2215–2225.
[17] 戴喜增, 许稼, 彭应宁, 等. FD-MIMO距离高分辨雷达及其旁瓣抑制[J]. 电子与信息学报, 2008, (09): 2033-2037.
[18] 鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(01): 55-64.
[19] ROBEY F, PULSONE N. Wideband aperture coherence processing for next generation radar, ADA4305777[R]. Lexington: Massachusetts Inst. of Tech, Lexington Lincoln Lab, 2004.
[20] BERGIN J S, TEIXEIRA C M, TECHAU P M, et al. Improved clutter mitigation performance using knowledge-ai-ded space-time adaptive processing[J]. IEEE Transaction on Aerospace and Electronic Systems, 2006, 42(3): 997-1009.
[21] COUTTS S D, CUOMO K M, MCHARG J C, et al. Distributed coherent aperture measurements for next generation BMD radar[C]. Fourth IEEE Workshop on Sensor Array and Multichannel Processing, Waltham, MA, Jul, 2006: 390-393.
[22] BROOKNER E. Phased-array and radar breakthroughs[C]. Proceedings of the IEEE Radar Conference. Boston: IEEE Press, 2007: 37-42.
[23] 陈伯孝, 吴剑旗. 综合脉冲孔径雷达[M]. 北京: 国防工业出版社, 2011.
[24] 陈伯孝. SIAR. 四维跟踪及其长相干积累等技术研究[D]. 西安:西安电子科技大学, 1997.
[25] 陈伯孝, 张守宏. 相位编码信号在稀布阵综合脉冲与孔径雷达中的应用[J]. 西安电子科技大学学报, 1997, 24(3): 335-34.
[26] 陈伯孝, 许辉, 张守宏. 舰载无源综合脉冲/孔径雷达及其若干关键问题[J]. 电子学报, 2003(12) : 1776–1779.
[27] 鲁耀兵, 高红卫, 周宝亮. 分布式孔径相参合成雷达技术[J]. 雷达学报, 2017, 6(01): 55-64.
[28] 周宝亮, 高红卫, 文树梁, 等. 分布式相参雷达基线选择与标定误差分析[J]. 系统工程与电子技术, 2018, 40(11): 2438-2443.
[29] 金镇, 谢良贵, 文树梁. 分布式MIMO雷达稀布阵列研究[J]. 宇航学报, 2014, 35(02): 207-212.
[30] 周宝亮, 周东明, 高红卫, 等. 分布式孔径相参合成雷达技术试验验证与分析[J]. 太赫兹科学与电子信息学报, 2019, 17(03): 413-417+429.
[31] 殷丕磊. 地基宽带分布式全相参雷达技术研究[D]. 北京理工大学, 2016.
[32] 张聪. 动平台下分布式相参合成技术研究[D]. 西安电子科技大学, 2019.
[33] LO Y, LEE S. A study of space-tapered arrays[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(1).
[34] HARRINGTON R. Sidelobe reduction by nonuniform element spacing[J]. IRE Transactions on Antennas and Propagation, 1961, 9(2).
[35] WILLEY R. Space tapaering of linear and planar arrays[J]. IRE Transactions on Antennas and Propagation, 1962, 10(4).
[36] SKOLNIK M, SHERMAN J, OGG F, et al. Statistically designed density-tapered arrays[J]. IEEE Transactions on Antennas and Propagation, 1964, 12(4).
[37] KEIZER W P M N. Linear Array Thinning Using Iterative FFT Techniques[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(8).
[38] LIU Y H, NIE Z P, LIU Q H. Reducing the Number of Elements in a Linear Antenna Array by the Matrix Pencil Method[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9).
[39] SIEW ENG NAI, WEE SER, YU Z L, et al. Beampattern Synthesis for Linear and Planar Arrays With Antenna Selection by Convex Optimization[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(12).
[40] HUANG Z X, CHENG Y J. Near-Field Pattern Synthesis for Sparse Focusing Antenna Arrays Based on Bayesian Compressive Sensing and Convex Optimization[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(10).
[41] 张燕, 程先宬, 陈伯孝, 等. 大孔径超稀疏阵列综合算法研究与应用[J]. 雷达科学与技术, 2020, 18(04):452-456.
[42] FLAUPT R L. Thinned arrays using genetic algorithms[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(7).
[43] 陈客松. 稀布天线阵列的优化布阵技术研究[D]. 电子科技大学, 2006.
[44] 刘姜玲, 王小谟. 改进粒子群算法综合有间距约束的稀布阵列[J]. 微波学报, 2010, 26(05): 7-10.
[45] 刘小忠, 杨万麟, 高昭昭. 基于改进粒子群算法的稀布阵列优化设计[J]. 微波学报, 2011, 27 (05): 32-35+68.
[46] 曹浩. 基于改进布谷鸟算法的稀布阵列天线综合[D]. 南京航空航天大学, 2019.
[47] 陈政宇, 刘正平, 谢菊兰, 等. 基于自调整映射法则的矩形稀布阵列优化方法[J]. 现代雷达, 2022, 44(05): 12-18.
[48] 逯群峰. 基于智能进化算法的分布式MIMO雷达优化布站技术研究[D]. 电子科技大学, 2019
[49] 王铮, 孙雨泽, 杨小鹏, 等. 分布式雷达节点位置优化的多约束遗传算法研究[J]. 信号处理, 2019, 35(06): 979-985.
[50] 邢金凤. 同构/异构子阵的分布式阵列优化方法研究[D]. 西安电子科技大学, 2021.
[51] 郑春春. 网络化雷达近场探测系统设计与信号处理[D]. 电子科技大学, 2021.
[52] 李尚. 基于软件无线电平台雷达方式通信研究与实现[D]. 哈尔滨工业大学, 2014.
[53] 李晓柏, 杨瑞娟, 程伟. 基于频率调制的多载波Chirp信号雷达通信一体化研究[J]. 电子与信息学报, 2013, 35(02): 406-412.
[54] 刘玉涛, 詹平, 梁晨, 等. 基于MIMO-OFDM的雷达通信一体化收发方法[J]. 计算机测量与控制, 2019, 27(08): 202-206.
[55] XU S J, CHEN Y, ZHANG P. Integrated radar and communication based on DS-UWB[C]. Ultraw-ideband and Ultrashot Impulse Signals, Sevastopol, Ukraine, 2006: 142-144.
[56] DONNET B J, LONGSTAFF I D. Combining MIMO radar with OFDM communications[C]. Proceedings of the 3rd European Radar Conference, Manchester UK, 2006: 37-40.
[57] 刘永军. 基于OFDM的雷达通信一体化设计方法研究[D]. 西安电子科技大学, 2019.
[58] CHEN X B, WANG X M, XU S F, et al. A novel radar waveform compatible with communication[C]. Int. Conf. Comput. Probl.-Solving, Chengdu, China, pp. 177-181, Oct. 2011.
[59] 李晓柏, 杨瑞娟, 陈新永, 等.基于分数阶傅里叶变换的雷达通信一体化信号共享研究[J]. 信号处理, 2012, 28(04): 487-494.
[60] HASSANIEN A, HIMED B. A dual-function MIMO radar-communications system using frequency-hopping waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1721-1725.
[61] 刘冰凡, 陈伯孝. 基于OFDM-LFM信号的MIMO雷达通信一体化信号共享设计研究[J]. 电子与信息学报, 2019, 41(04): 801-808.
[62] 曾瑞琪. 基于分布式网络化电子信息系统的雷达通信一体化波形研究[D]. 国防科技大学, 2018.
[63] 鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017.
[64] 廖桂生, 陶海红, 曾操. 阵列信号处理[M]. 北京: 国防工业出版社, 2017.
[65] SUN J, XU W B, FENG B. A global search strategy of quantum-behaved particle swarm optimization [C]. Proc of the 2004 IEEE Conf on Cybernetics and Intelligent Systems, Singapore, 2004: 291-294.
[66] 凌雨晗. 基于频分波形的分布式MIMO雷达近场探测技术研究[D]. 西安电子科技大学, 2021.
[67] 石妙. 基于OFDM的雷达通信一体化共享信号设计[D]. 哈尔滨工程大学, 2021.
中图分类号:

 TN95    

馆藏号:

 60059    

开放日期:

 2024-09-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式