- 无标题文档
查看论文信息

中文题名:

 绝缘层上硅晶圆应变机理及其相关效应研究    

姓名:

 苗东铭    

学号:

 1511110299    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080903    

学科名称:

 工学 - 电子科学与技术(可授工学、理学学位) - 微电子学与固体电子学    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西安电子科技大学    

院系:

 微电子学院    

专业:

 电子科学与技术    

研究方向:

 硅基应变材料与器件    

第一导师姓名:

 戴显英    

第一导师单位:

 西安电子科技大学    

完成日期:

 2020-06-14    

答辩日期:

 2020-05-24    

外文题名:

 A Study on Strain Mechanism and Related Effects of Silicon on Insulator    

中文关键词:

 晶圆级绝缘层上应变硅 ; 应变机理 ; 柔顺滑移特性 ; 应力尺度效应 ; 应变增强效应    

外文关键词:

 strained SOI in wafer-level ; train mechanism ; smooth sliding ; scale effect of stress ; strain enhancement    

中文摘要:

应变SOI材料兼具应变Si的载流子高迁移率特性和SOI材料低漏电流、低寄生电容及其他寄生效应、高抗辐照等优异特性,成为高速、低功耗以及抗辐照器件与电路的优选材料技术。随着半导体工艺技术的不断发展,应变SOI技术在提高电路性能与降低功耗方面发挥了越来越重要的作用,同时也对高质量应变SOI材料制备工艺技术提出了新的更高的要求。现有成熟的应变SOI材料技术均基于SiGe虚衬底,存在散热和Ge扩散的问题。因此,研究并开发一种无SiGe虚衬底、高性能晶圆级应变SOI技术具有非常重要的意义。

基于SOI晶圆的结构和材料特性、SiN薄膜的高应力特性、以及材料力学与热学理论,论文提出了基于高应力SiN薄膜无SiGe虚衬底的晶圆级应变SOI制作新方法,并对其应变引入机理、应变保持与记忆机理、应变效应增强机理、应变模型及制作工艺实验等进行了系统和深入的研究。论文的主要研究工作及取得的成果如下:

(1)SOI晶圆的力学特性研究。采用纳米压痕技术,论文对Si晶圆和SiO2薄膜的材料力学特性进行了实验研究,获得了单晶Si和SiO2的杨氏模量和硬度力学参数;建立了SOI晶圆材料纳米压痕实验的ANSYS有限元模型,结合实验结果,通过量纲分析法,论文获得了SOI晶圆顶层Si薄膜的屈服强度。

(2)机械致单轴应变SOI的理论与实验研究。

根据梁弯曲理论与SOI晶圆材料弹塑性力学特性,采用单片SOI晶圆方法,论文进行了机械致晶圆级单轴应变SOI的应变引入机理、应变保持机理以及实验研究,获得了-0.168%压应变和0.1554%张应变的晶圆级单轴应变SOI材料,应变效应高于文献报道的采用两片不同尺寸Si晶圆的方法。

SiN薄膜致晶圆级应变SOI的应变引入机理研究。

论文的实验研究发现,若只基于梁弯曲理论, 淀积SiN薄膜的SOI产生的晶圆弯曲不足以产生实验所测得的较大的应变量,说明SiN薄膜的应力一部分使SOI晶圆产生弯曲应变,另一部分则可能使顶层Si产生平面拉伸,引入拉伸应变。根据实验结果,基于SOI晶圆的材料与结构特性、柔顺滑移特性和弹性力学理论,本文提出了高应力SiN薄膜致晶圆级应变SOI的弯曲应变与平面伸缩应变的应变产生机理,并进行了实验验证。实验研究结果表明,制备高应力SiN致张应变SOI晶圆的弯曲应变仅为0.024%,而0.259%的应变是由顶层Si的平面拉伸或压缩应变引起。

(4)SiN薄膜致晶圆级应变SOI应变效应增强方法与机理研究。

基于SOI晶圆的结构特性和离子注入原理,论文提出了高应力SiN薄膜致晶圆级应变SOI的He+注入应变效应增强新方法。基于该方法和SOI晶圆的柔顺滑移特性,论文提出并系统阐述了应变增强效应机理,即注入SiO2-衬底Si界面的He+使界面结合强度降低,SOI晶圆的柔顺滑移特性产生了增强效应,导致顶层Si薄膜产生了增强的拉伸或压缩,最终使SOI晶圆的应变得到增强。基于该方法,论文设计并进行了应变增强效应的实验验证。实验结果表明,采用He+注入的应变效应增强创新方法,其应变SOI晶圆的应变量最大可以增加约300%。

(5)SiN致晶圆级应变SOI应变保持方法与机理研究。

基于SOI晶圆结构特性和高应力SiN薄膜力学特性,本文提出了SiN致晶圆级应变SOI埋SiO2层塑性形变的应变保持方法。基于该方法和SOI材料弹塑性力性质,论文提出并系统阐述了其应变保持机理,即由于SiO2的屈服强度比Si小,同一退火温度和SiN薄膜应力下,SOI晶圆埋SiO2层受到作用先发生塑性形变,Si仍保持弹性形变;去除SiN薄膜后,受塑性形变埋SiO2层的拉持作用,弹性形变顶层Si的应变保持不变。基于该方法,设计并进行了应变SOI应变保持机理的实验验证。实验验证研究表明,经650℃退火温度处理和去除-1GPa应力SiN薄膜后,获得了0.3072%应变量的应变SOI晶圆。

(6)SiN致晶圆级应变SOI应变记忆方法与机理研究。

根据局部应变的应变记忆技术的工艺原理,本文提出了顶层Si非晶化重结晶的SOI应变记忆方法。基于该方法和SOI晶圆结构和材料特性,论文提出并阐述了SOI应变记忆效应机理,即非晶化注入的SOI在高温退火过程中,受SiN薄膜应力及埋SiO2层塑性形变共同作用,将应变引入并记忆到重结晶的顶层Si中。基于该方法,论文对其机理进行了实验验证。研究结果表明,进行了As、Ge离子注入非晶化的SOI顶层Si,在退火重结晶过程中会将SiN薄膜中的应力记忆到顶层Si中。采用该方法,进行了As、Ge注入非晶化顶层Si的SOI晶圆,在重结晶并去除SiN应力膜后,分别获得了0.232%和0.184%的应变量。

(7)高应力SiN薄膜尺度效应与SOI双轴应变转为单轴应变的研究。

根据尺度效应理论,本文开展了SiN薄膜结构特性与应力特性的尺度效应和双轴应变转变为单轴应变的机理研究,重点研究微米/纳米尺度下SiN薄膜的应力弛豫的应力尺度效应行为,提出了双轴应变转变为单轴应变的工艺方法,即将高应力SiN薄膜形成微米或纳米尺度的图形,可使晶圆级双轴应变SOI转变为晶圆级单轴应变SOI。基于该方法和SOI晶圆的材料与结构特性,阐述了晶圆级单轴应变SOI应变机理,并设计实验对其应变机理进行实验验证。偏振拉曼表征研究表明,亚微米宽度SiN条形阵列使顶层Si将受到沿条长方向近似单轴应力作用,最终的SOI晶圆已完全成为晶圆级单轴应变SOI。

(8)基于高应力SiN薄膜的晶圆级应变SOI实验研究。

基于高应力SiN致应变SOI制作方法和应变机理的研究结果,论文进行了应变保持机理、应变增强效应、应变记忆、应变模型、应力尺度效应、以及晶圆级双轴应变和单轴应变SOI制作等实验研究。采用As和Ge离子注入非晶化顶层Si及退火重结晶的工艺方法,获得了0.232%和0.18361%的晶圆级双轴应变SOI材料;采用Si-SiO2界面He+注入的应变增强效应工艺方法,获得了0.3200%的张应变SOI晶圆材料;在此基础上,采用高应力SiN薄膜应力尺度效应的微米级条形图形工艺方法,在SOI中引入了0.6475%的单轴张应变和-0.5957%的单轴压应变; 采用XRD、偏振Raman、HRTEM、AFM等技术,对应变SOI晶圆的结晶质量、双轴应变与单轴应变、缺陷、弯曲度等特性进行了表征。

(9)晶圆级应变SOI应变模型与应力分布计算。

基于曲面结构的弧长理论,本文提出了机械致应变SOI晶圆弯曲应变的弧长模型,该模型具有物理意义清晰、数学表达准确、模型简介等特点;基于机械致应变SOI应变引入机理和弧长模型,论文建立了机械致应变SOI晶圆应变模型。应变模型考虑了弯曲半径和SOI晶圆厚度等关键参数对应变的影响。并采用光纤光栅法和ANSYS有限元仿真,测试和模拟了机械致应变SOI晶圆的应力分布。结果表明,应变模型与光纤光栅实验结果以及ANSYS有限元仿真结果基本一致,验证了应变模型的合理性。

根据高应力SiN薄膜致应变SOI的应变机理,本文建立了高应力SiN致应变SOI晶圆应变模型,模型包括弯曲应变和薄膜拉伸应变两部分。其中弯曲应变模型的基本原理与机械致应变SOI晶圆应变模型相同;薄膜拉伸应变模型考虑了SiN薄膜厚度与应力特性、顶层Si与埋SiO2层的厚度和杨氏模量等关键因素对应变的影响。模型验证实验表明,模型计算结果与实验结果基本吻合,但由于建立模型的近似假设,模型计算结果较实验结果偏大;建立的ANSYS有限元仿真结果也表明,模型中不同参数对应变量影响的趋势与模拟仿真结果基本吻合,验证了应变模型的合理性。

外文摘要:

Strained SOI has the characteristics of high carrier mobility of strained Si and low leakage current, low parasitic capacitance and other parasitic effects, and high radiation resistance of SOI materials. It has became the preferred material technology for high speed, low power consumption and radiation resistant devices and circuit. With the continuous development of semiconductor process technology, strained SOI plays an increasingly important role in improving circuit performance and reducing power consumption. At the same time, it also puts forward new and higher requirements for high-quality strained SOI material preparation process technology. The existing mature strained SOI material technologies are almost based on SiGe virtual substrates, which have the problems of heat dissipation and Ge diffusion. Therefore, research and development of a SiGe-free virtual substrate, high-performance wafer-level strained SOI technology is very important.

Based on the structure and material characteristics of SOI wafer, the high-stress characteristics of SiN film, and the mechanics and thermal theory of materials, a new method for manufacturing wafer-level strained SOI based on high-stress SiN films without SiGe virtual substrate was proposes in this thesis. The mechanism of strain introduction, retention, memory and enhancement have been systematically discuss, and the strain model and experiments of preparation process have been thoroughly researched in this thesis. The main research work and achievements of the thesis are as follows:

(1) Researches on the mechanical characteristics of SOI wafers. Using nano-indentation technology, experimental study on the mechanical properties of Si wafers and SiO2 thin films was performed, and obtained the Young's modulus and hardness of crystal Si and SiO2; The ANSYS finite element model of the nano-indentation experiment of SOI wafer was established, combined with the experimental results and dimensional analysis, the yield strength of the top Si film on the SOI wafer was obtained.

(2) Theoretical and experimental research on mechanically induced uniaxial strained SOI.

According to the beam bending theory and the elastoplastic mechanical properties of SOI wafer, experimental and theoretical researches on mechanisms of strain introduction and retention was carried out, uniaxial strained SOI in wafer-level with compressive strain of -0.168% and tensile strain of 0.1554% was obtained, which has a higher strain than the method reported in the literature.

(3) Researches on the mechanism of strain introduction of SiN film-induced strained SOI in wafer-level.

The experimental research of the thesis found that if based only on the beam bending theory, the wafer bending caused by the deposited SiN film on SOI is not enough to produce the larger strain measured in the experiment, indicating that the stress of the SiN film is partly generated SOI wafer bending, the other part may cause the top layer Si to produce plane tension/compression, and introduce tensile/compressive strain correspondingly. According to the experimental results, and based on the characteristics of material, structural, smooth sliding and elastic mechanics of SOI wafer, this thesis proposed the strain mechanism of wafer bending combing with plane stretching for high-stress SiN film induced strained SOI in wafer-leve, and carried out experimental verification. The experimental results show that the bending strain of the high-stress SiN-induced tensile strained SOI wafer is only 0.024%, and 0.259% of the strain is caused by the plane tensile or compressive strain of the top layer Si.

(4) Researches on the method and mechanism of strain enhancement in SiN film-induced wafer-level strained SOI.

Based on the structural characteristics of SOI wafer and the principle of ion implantation, a new method for enhancing the strain effect of wafer-level strained SOI induced by high-stress SiN film through He+ implantation was proposed in the thesis. Based on this method and the smooth sliding characteristics of SOI wafer, this thesis proposes and systematically elaborated the mechanism of the strain enhancement, that is, the bonding strength of SiO2-substrate interface could be reduced by He+ implanted, and enhanced the smooth sliding characteristics of the SOI which leading to the enhanced stretching or compression of the top Si film, and correspondingly enhanced the introduced strain in the SOI. Based on this method, confirmatory experiment of the strain enhancement was designed and carried out The results show that the introduced strain of SOI can be increased by about 300% with the innovative method of strain enhancement by He+ implantation.

(5) Researches on the method and mechanism of strain retention in SOI by highe-stress SiN film.

Based on the structural characteristics of SOI wafer and the mechanical properties of high-stress SiN thin film, the strain-holding method of plastic deformation of buried SiO2 layer in trained SOI by high-stress SiN film was proposed. Based on this method and the elasto-plastic properties of materials in SOI, this thesis proposes and systematically elaborated the mechanism of strain retention, that is, due to the smaller yield strength of SiO2 than that of Si, under the same annealing temperature and SiN film stress, plastic deformation of buried SiO2 occurred, while Si still maintains elastic deformation; after the removal of SiN film, the strain of the top Si remained by the pulling effect of the plastic deformation buried SiO2 layer. Based on this method, the experimental verification of strain retention mechanism of SOI was designed and carried out. The experimental verification study showed that, after annealing at 650 ℃ and the removal the -1GPa SiN film, strained SOI wafer  with tensil strain of 0.3072% strain is obtained by this method.

(6) Researches on the method and mechanism of strain memory in SOI by highe-stress SiN film.

According to the process principle of the strain memory technology of local strain, a strain memory method of recrystallization of non-crystallized top Si for SiN induced strained SOI was proposed. Based on this method and the structure and material characteristics of the SOI wafer, this thesis proposes and systematically elaborated the mechanism of strain memory, that is, the strain originated from SiN film stress in SOI was introduced into recrystallized top Si during annealing due to the affection of SiN stress and the plastic deformed SiO2 layer. Based on this method, the thesis experimentally verified its mechanism. The research results showed that As and Ge ions implanted amorphous top Si would memorize the strain introduced by SiN film during the annealing and recrystallization process. Using this method, after recrystallization of top Si and the removal of SiN film, tensile strain of 0.232% and 0.184% were successfully realized in SOI wafer respectively.

(7) Study on the scale effect of high-stress SiN film and the conversion of biaxial strained SOI to uniaxial strained SOI.

According to the theory of scale effect, the study on the structural and the scale effect of stress characteristics of SiN film, and the mechanism of the conversion of biaxial strained SOI to uniaxial strained SOI was presented in this thesis, and focusing on the stress scale effect behavior of SiN film stress relaxation at the micro/nano scale. In this thesis a process method for converting the strain in biaxially strained SOI to uniaxial strained is proposed, that is, with the formation of micron- or nano-scale pattern of high-stress SiN film on top Si, the biaxial strain in wafer-level introduced by SiN film in SOI can transform into uniaxial. Based on the method and the material and structure characteristics of SOI wafer, the strain mechanism of the wafer-level uniaxial strained SOI is expounded and experimentally verified by experiments. Polarization Raman spectra show that the submicron width SiN strip array makes the top layer Si subject to approximately uniaxial stress along the length of the strip. The final SOI wafer has become uniaxial strained SOI in wafer-level.

(8) Experimental study of strained SOI based on high-stress SiN film.

Based on the research results of preparation method and strain mechanism for the high-stress SiN-induced strained SOI, experimental studies for the mechanism of strain retention, strain memory, stress scale effect, and the preparation of biaxial- and uniaxial- strained SOI was carried out in this thesis. Using the process of amorphization top S by As and Ge ions implantation and the process of top Si recrystallization by annealing, biaxially tensile strain of 0.232% and 0.18361% was obtained in SOI in wafer-level; base on the strain-enhancement process of He+ implantation at Si-SiO2 interface, strained SOI wafer with tensile strain 0.3200% was realized; On this basis, using the method of micro-scale bar patterned high-stress SiN film which based on principle of the scale effect of SiN film stress, 0.6475% uniaxial tensile strain and -0.5957% uniaxial compressive strain are introduced into SOI; Using XRD, polarization Raman, HRTEM, AFM and other technologies, the characterization of the strained SOI wafer crystal quality, biaxial strain and uniaxial strain, defects, bending and other characteristics were performed.

The strain model and stress distribution calculation of strained SOI in wafer-level.

Based on the arc length theory of curved surface structure, an arc length model of mechanically-induced strained SOI wafer bending strain was proposed in this thesis, which has the advantages of clear in physical meaning, accurate and concise in mathematical expression and modeling etc .; based on the mechanism of strain introduction of mechanically-induced strained SOI and arc length model, the strain model of mechanically strained SOI wafer was established . The strain model takes into account the influence of key parameters such as bending radius and SOI wafer thickness on the strain. The fiber grating method and ANSYS finite element simulation were used to test and simulate the stress distribution of mechanically-induced strained SOI wafer. The results show that the strain model was basically consistent with the results of fiber grating experimental and the ANSYS finite element simulation, which verifies the rationality of the strain model.

According to the strain mechanism of high-stress SiN film-induced strained SOI, the strain model for high-stress SiN-induced strained SOI wafer is established in this thesis. The model includes parts of bending strain and film tensile/compressive strain. The basic principle of the bending strain model is the same as the strain model of mechanically-induced strained SOI wafer; on the other hand, the film tensile/compressive strain model considered the impact of the key factors such as the thickness and stress characteristics of the SiN film, the thickness and Young's modulus of the top Si and the buried SiO2 layer in SOI wafer. Model verification experiments showed that the model calculation results were basically consistent with the experimental results, but due to the approximate assumptions of the model, the model calculation results wrer all larger than the experimental results; the established ANSYS finite element simulation results also showed that impact of the different parameters in the model on strain were basically agree with the simulation results, which verifies the rationality of the strain model.

参考文献:
[1].International Technology Roadmap for Semiconductor 2011 Update Edition., http://www.itrs.net/Links/2011ITRS/Home2011.htm
[2].Iwai,H.CMOS scaling for sub-90 nm to sub-10 nm[C]. VLSI Design, 2004. Proceedings. 17th International Conference on. Mumbai, India,2004:30-35
[3].Yosi Shacham-Diamand,Tetsuya Osaka,Madhav Datta,MOS Device and Interconnects Scaling Physics[M] German.Springer Verlag.2009:45-162
[4].M.Reich, O.Moutanabbir, J.Hoentschel.,Strained Silicon Devices,Solid State Phenomena,2010, Vo156-158.p61-68.
[5].K.Rim, J.L.Hoyt, J.F.Gibbons. Fabrication and analysis of deep submicron Strained-Si MOSs. IEEE Transactions on Electron Devices. July 2000, 47(7):1406-1415.
[6].Mohammed Bouhassoune,Amo Schindlmayr,Electronic structure and effective masses in strained silicon, Physica Status Solidi (C) Current Topics in Solid State Physics. 2010. Vo7.p460-463.
[7].H. Miyata, T. Yamada, and D. K. Ferry. Electron transport properties of a strained-Si layer on a relaxed SiGe substrate by Monte Carlo simulation. Appl. Phys. Lett. 1993, vol. 62, pp. 2661–2663.
[8].Shang-Yi Chiang. ”Challenges of future silicon IC technology”, VLSI Technology, Systems and Applications (VLSI-TSA), 2011, pp. 1.
[9].Celler G.K, Cristoloveanu S.,Frontiers of silicon-on-insulator,J Appl Phys, 2003,93:4955–4978.
[10].Rim K., Koester S.,Hargrove M.,Chu J.,Mooney P.M., Ott J.,Kanarsky T.,Ronsheim P.,Ieong M.,Grill A.,Wong H.S.P., Strained Si NMOSFETs for high performance CMOS technology ,IEEE Symposium on VLSI Circuits, Digest of Technical Papers, TECHNOLOGY SYMP.,2001,p59-60
[11].W. Zhao, J. He, R. E. Belford, L. E. Wernersson, and A. Seabaugh. Partially depleted SOI MOSFETs under uniaxial tensile strain. IEEETrans. Electron Devices. Feb. 2003, vol. 51, pp. 317–323.
[12].K. Rim, R. Anderson, D. Boyd, et al. “Strained Si CMOS (SS CMOS) technology: opportunities and challenges”, Solid-State Electronics, 2003, 47, pp. 1133-1139.
[13].黄如、张国燕、李映雪、张兴,SOI CMOS技术及其应用,北京:科学出版社,2006年10月,第1版,p1-3
[14].Yamaguchi Y, Ishibashi A, Shimizu M, et al. A high speed 0.6-mu m 16 K CMOS gate array on a thin SIMOX film[J]. IEEE Transactions on Electron Devices, 1993, 40(1): 179-186.
[15].Zhang P, Tevaarwerk E, Park B N, et al. Electronic transport in nanometre-scale silicon-on-insulator membranes[J]. Nature, 2006, 439(7077): 703.
[16].Noguchi M, Numata T, Mitani Y, et al. Back gate effects on threshold voltage sensitivity to SOI thickness in fully-depleted SOI MOSFETs[J]. IEEE Electron Device Letters, 2001, 22(1): 32-34.
[17].Baudot S, Andrieu F, Faynot O, et al. Electrical and diffraction characterization of short and narrow MOSFETs on fully depleted strained silicon-on-insulator (sSOI)[J]. Solid-State Electronics, 2010, 54(9): 861-869.
[18].Rahim N A B A, Abdullah M H B, Rusop M. Performance Analysis of Si3N4 Capping Layer and SOI Technology in Sub 90 nm PMOS Device[C]. AIP Conference Proceedings. AIP, 2009, 1136(1): 770-774.
[19].(Hara K, Kochiyama M, Mochizuki A, et al. Radiation Resistance of SOI Pixel Devices Fabricated With OKI 0.15μm FD-SOI Technology[J]. IEEE Transactions on Nuclear Science, 2009, 56(5): 2896-2904.
[20].Minamisawa R A, Schmidt M, Özben E D, et al. High mobility strained Si0. 5Ge0. 5/SSOI short channel field effect transistors with TiN/GdScO3 gate stack[J]. Microelectronic engineering, 2011, 88(9): 2955-2958.
[21].Richter S, Sandow C, Nichau A, et al. Ω-Gated Silicon and Strained Silicon Nanowire Array Tunneling FETs[J]. IEEE Electron Device Letters, 2012, 33(11): 1535-1537.
[22].Coquand R, Casse M, Barraud S, et al. Strain-induced performance enhancement of trigate and omega-gate nanowire FETs scaled down to 10-nm width[J]. IEEE Transactions on Electron Devices, 2013, 60(2): 727-732.
[23].Luong G V, Knoll L, Süess M J, et al. High on-currents with highly strained Si nanowire MOSFETs[C]//2014 15th International Conference on Ultimate Integration on Silicon (ULIS). IEEE, 2014: 73-76.
[24].noll L, Richter S, Nichau A, et al. Strained Si and SiGe tunnel-FETs and complementary tunnel-FET inverters with minimum gate lengths of 50 nm[J]. Solid-State Electronics, 2014, 97: 76-81.
[25].Morvan S, Andrieu F, Barbé J C, et al. Study of an embedded buried SiGe structure as a mobility booster for fully-depleted SOI MOSFETs at the 10 nm node[J]. Solid-State Electronics, 2014, 98: 50-54.
[26].Bordallo C C M, Teixeira F F, Silveira M A G, et al. Analog performance of standard and uniaxial strained triple-gate SOI FinFETs under x-ray radiation[J]. Semiconductor Science and Technology, 2014, 29(12): 125015.
[27].Bonnevialle A, Reboh S, Le Royer C, et al. On the use of a localized STRASS technique to obtain highly tensile strained Si regions in advanced FDSOI CMOS devices[J]. physica status solidi (c), 2016, 13(10‐12): 740-745.)
[28].Lee W, Hwangbo Y, Kim J H, et al. Mobility enhancement of strained Si transistors by transfer printing on plastic substrates[J]. NPG Asia Materials, 2016, 8(3): e256.
[29].S. Johansson, M. Berg, K.-M. Persson, and E. Lind, IEEE Trans. Electron Devices 60, 776 (2013).
[30].K. Maitra, A. Khakifirooz, P. Kulkarni, V. S. Basker, J. Faltermeier, H. Jagannathan, H. Adhikari, C.-C. Yeh, N. R. Klymko, K. Saenger, T. Standaert, R. J. Miller, B. Doris, V. K. Paruchuri, D. McHerron, J. O’Neil, E. Leobundung, and B. Huiming, IEEE Electron Device Lett. 32, 713 (2011).
[31].M. Yoshimi, M. Terauchi, A. Nishiyama, O. Arisumi, A. Murakoshi, K. Matsuzawa, N. Shigyo, S. Takeno, M. Tomita, K. Suzuki, Y. Ushiku, and H. Tango, IEEE Trans. Electron Devices 44, 423 (1997).
[32].Y. Yamaguchi, A. Ishibashi, M. Shimizu, T. Nishimura, K. Tsukamoto, K. Horie, and Y. Akasaka, IEEE Trans. Electron Devices 40, 179 (1993).
[33].P. Zhang, E. Tevaarwerk, B. Park, D. Savage, G. Celler, I. Knezevic, P. Evans, M. Eriksson, and M. Lagally, Nature 439, 703 (2006).
[34].M. Noguchi, T. Numata, Y. Mitani, T. Shino, S. Kawanaka, Y. Oowaki, and A. Toriumi, IEEE Electron Device Lett. 22, 32 (2001).
[35].K. Hara, M. Kochiyama, A. Mochizuki, T. Sega, Y. Arai, K. Fukuda, H. Hayashi, M. Hirose, J. Ida, H. Ikeda, Y. Ikegami, Y. Ikemoto, Y. Kawai, T. Kohriki, H. Komatsubara, H. Miyake, T. Miyoshi, M. Ohno, M. Okihara, S. Terada, T. Tsuboyama, and Y. Unno, IEEE Trans. Nucl. Sci. 56, 2896 (2009).
[36].K. Sawano, Y. Hoshi, A. Yamada, Y. Hiraoka, N. Usami, K. Arimoto, K. Nakagawa, and Y. Shiraki, Appl. Phys. Express 1, 121401 (2008).
[37].K. Rim, J. L. Hoyt, and J. F. Gibbons, IEEE Trans. Electron Devices 47, 1406 (2000).
[38].S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, IEEE Trans. Electron Devices 51, 1790 (2004).
[39].S. Takagi, T. Mizuno, N. Sugiyama, T. Tezuka, and A. Kurobe, IEICE Trans. Electron. E84-C, 1043 (2001).
[40].T. Mizuno, N. Sugiyama, T. Tezuka, T. Numata, and S. Takagi, Trans. IEEE Trans. Electron Devices 50, 988 (2003).
[41].W. Xiong, C. Rinn Cleavelin, P. Kohli, C. Huffman, T. Schulz, K. Schruefer, G. Gebara, K. Mathews, P. Patruno, Yves-Matthieu Le Vaillant, I. Cayrefourcq, M. Kennard, C. Mazure, K. Shin, and T.-J. King Liu, IEEE Trans. Electron Devices 27, 612 (2006).
[42].N. Sugiyamaa, T. Mizunoa, S. Takagia, M. Koikeb, and A. Kurobea, Thin Solid Films 369, 199 (2000).
[43].Besnard G, Garros X, Subirats A, et al. Performance and reliability of strained SOI transistors for advanced planar FDSOI technology[C]//2015 IEEE International Reliability Physics Symposium. IEEE, 2015: 2F. 1.1-2F. 1.5.
[44].Maitra K, Khakifirooz A, Kulkarni P, et al. Aggressively Scaled Strained-Silicon-on-Insulator Undoped-Body High-k/Metal-Gate nFinFETs for High-Performance Logic Applications[J]. IEEE Electron Device Letters, 2011, 32(6): 713-715.
[45].Dubey S, Kondekar P N. Fin shape dependent variability for strained SOI FinFETs[J]. Microelectronic Engineering, 2016, 162: 63-68.
[46].Park J G, Kim S J, Shin M H, et al. A multi-level capacitor-less memory cell fabricated on a nano-scale strained silicon-on-insulator[J]. Nanotechnology, 2011, 22(31): 315201.
[47].Coquand R, Barraud S, Casse M, et al. Low-temperature transport characteristics in SOI and sSOI nanowires down to 8nm width: Evidence of I DS and mobility oscillations[C]//2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC). IEEE, 2013: 198-201.
[48].Barraud S, Lavieville R, Tabone C, et al. Strained silicon directly on insulator N-and P-FET nanowire transistors[C]//2014 15th International Conference on Ultimate Integration on Silicon (ULIS). IEEE, 2014: 65-68.
[49].Luong G V, Knoll L, Blaeser S, et al. Demonstration of higher electron mobility in Si nanowire MOSFETs by increasing the strain beyond 1.3%[J]. Solid-State Electronics, 2015, 108: 19-23.
[50].Kerber P, Kanj R, Joshi R V. Strained SOI FinFET SRAM Design[J]. IEEE electron device letters, 2013, 34(7): 876-878.
[51].International Technology Roadmap for Semiconductor 2015. http://www.itrs2.net/
[52].International Roadmap for Devices and Systems 2017. https://irds.ieee.org/roadmap-2017/
[53].Langdo T A, Currie M T, Lochtefeld A, et al. SiGe-free strained Si on insulator by wafer bonding and layer transfer[J]. Applied physics letters, 2003, 82(24): 4256-4258.
[54].Christiansen S H, Singh R, Radu I, et al. Strained silicon on insulator (SSOI) by waferbonding[J]. Materials science in semiconductor processing, 2005, 8(1-3): 197-202.
[55].Mu Z Q, Xue Z Y, Wei X, et al. Fabrication of ultra-thin strained silicon on insulator by He implantation and ion cut techniques and characterization[J]. Thin Solid Films, 2014, 557: 101-105.
[56].Bonnevialle A, Reboh S, Grenouillet L, et al. New insights on strained-Si on insulator fabrication by top recrystallization of amorphized SiGe on SOI[C]//EUROSOI-ULIS 2015: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon. IEEE, 2015: 177-180.
[57].Yang B F, Cai M. Advanced strain engineering for state-of-the-art nanoscale CMOS technology[J]. Science China Information Sciences, 2011, 54(5): 946-958.
[58].T. Tezuka, N. Sugiyama, S. I. Takagi. Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction[J]. Applied Physics Letter. 2001, 01.(79): 1798-1 800.
[59].T.A.Langdo,A.Lochtefeld,A.Currie,et a1.Preparation of novel SiGe-free strained Si on insulator substrates[C].IEEE International Silicon—on-Insulator Conference.2002,P.211-212.
[60].Yang H S, Malik R, Narasimha S, et al. Dual stress liner for high performance sub-45nm gate length SOI CMOS manufacturing[C]//IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004. IEEE, 2004: 1075-1077.
[61].Christiansen S H, Singh R, Radu I, et al. Strained silicon on insulator (SSOI) by waferbonding[J]. Materials science in semiconductor processing, 2005, 8(1-3): 197-202.
[62].X.Y. Dai, C.F. Shao, and Y. Hao, Appl. Phys. Express 6, 081302 (2013).
[63].Mishima Y, Ochimizu H, Mimura A. New strained silicon-on-insulator fabricated by laser-annealing technology[J]. Japanese journal of applied physics, 2005, 44(4S): 2336.
[64].Zoo Y, Theodore N D, Alford T L. Investigation of Biaxial Strain in Strained Silicon on Insulator (SSOI) Using High-Resolution X-ray Diffraction[J]. MRS Online Proceedings Library Archive, 2007, 994.
[65].Mantl S, Buca D, Zhao Q T, et al. Large current enhancement in n-MOSFETs with strained Si on insulator[C]//2007 International Semiconductor Device Research Symposium. IEEE, 2007: 1-2.
[66].Gu D, Baumgart H, Naumann F, et al. Finite Element Modeling and Raman Study of Strain Distribution in Patterned Device Islands on Strained Silicon-on-Insulator (sSOI) Substrates[J]. ECS Transactions, 2010, 33(4): 529-535.
[67].Mu Z Q, Xue Z Y, Wei X, et al. Fabrication of ultra-thin strained silicon on insulator by He implantation and ion cut techniques and characterization[J]. Thin Solid Films, 2014, 557: 101-105.
[68].Bonnevialle A, Reboh S, Grenouillet L, et al. New insights on strained-Si on insulator fabrication by top recrystallization of amorphized SiGe on SOI[C]//EUROSOI-ULIS 2015: 2015 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon. IEEE, 2015: 177-180.
[69].C. Himcinschi.,I. Radu, F. Muster, R. Singh, M. Reiche, M. Petzold,U. Go¨sele, S.H. Christiansen,Uniaxially strained silicon by wafer bonding and layer transfer,Solid-State Electronics,51 (2007) 226–230;、
[70].Luysberg, D. Kirch, H. Trinkaus, B. Holländer, St. Lenk, S. Mantl, H.-J. Herzog, T. Hackbarth, and P. F. P. Fichtner, J. Appl. Phys. 92, 4290 (2002).
[71].苗东铭、戴显英、郝跃等人. 基于氮化硅应力薄膜与尺度效应的晶圆级单轴应变SOI的制作方法: 中国, CN105938813A[P]. 2019-02-16.
[72].邓志杰,郑安生.半导体材料[M].北京:化学工业出版社,2004:28-30.
[73].Nikanorov S P, Elastic properties of silicon[J], Fizika Tverdogo Tela, 1971,13(10):3001-3004.
[74].万群,师昌绪.材料科学技术百科全书[M].上卷.北京:中国大百科全书出版社,1995:485.
[75].Hu J Z, Spain I L. Phases of silicon at high pressure. Solid State Commun[J]. Solid State Communications, 1984, 51(5):263-266.
[76].Smithells CJ, Ed. Metals Reference Handbook[M], //London,Butterworths, 1992.
[77].Lynch J F, Ruderer C G, Duckworth W H. Engineering properties of selected ceramic materials[J]. The American Ceramic Society. 1966.
[78].Jr W N S, Pulskamp J, Gianola D S, et al. Strain Measurements of Silicon Dioxide Microspecimens by Digital Imaging Processing[J]. Experimental Mechanics, 2007, 47(5):649-658.
[79].Gianola D S, Jr W N S. TECHNIQUES FOR TESTING THIN FILMS IN TENSION[J]. Experimental Techniques, 2010, 28(5):23-27.
[80].Carlotti G, Doucet L, Dupeux M. Elastic properties of silicon dioxide films deposited by chemical vapour deposition from tetraethylorthosilicate[J]. Thin Solid Films, 1997, 296(1–2):102-105.
[81].Sundararajan S, Bhushan B, Namazu T, et al. Mechanical property measurements of nanoscale structures using an atomic force microscope[J]. Ultramicroscopy, 2002, 91(1):111-118.
[82].T. P. Weihs, S. Hong, J. C. Bravman, et al. Mechanical deflection of cantilever microbeams: A new technique for testing the mechanical properties of thin films[J]. Journal of Materials Research, 1988, 3(5):931-942.
[83].Spearing S M. Materials issues in microelectromechanical systems (MEMS)[J]. Acta Materialia, 2000, 48(1):179-196.
[84].王仲仁,苑世剑,胡连喜.弹性与塑性力学基础[M].哈尔滨:哈尔滨工业大学出版社,2007.
[85].洪羽.单向压缩和纳米压痕引起的单晶硅相变研究[D].武汉:华中科技大学,2009.
[86].Suzuki T, Yonenaga I I, Kirchner H O. Yield strength of diamond[J]. Physical Review Letters, 1995, 75(19):3470..
[87].陈秀.MEMS薄膜纳米压痕法测试和仿真研究[D].北京:北京理工大学信息与电子学院,2014.
[88].Bucaille J L, Stauss S, Felder E, et al. Determination of plastic properties of metals by instrumented indentation using different sharp indenters[J]. Acta Materialia, 2003, 51(6):1663-1678.
[89].戎俊梅.基于纳米压痕技术及有限元模拟的薄膜力学性能研究[J].浙江工业大学学报,2011.
[90].Pelletier H. Predictive model to estimate the stress–strain curves of bulk metals using nanoindentation[J]. Tribology International, 2006, 39(7):593-606.
[91].Pelletier H, Krier J, Cornet A, et al. Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials[J]. Thin Solid Films, 2000, 379(1):147-155.
[92].Bouzakis K D, Michailidis N. Coating elastic–plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms[J]. Thin Solid Films, 2004, 469(469):227-232.
[93].Tsui T Y, Pharr G M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates[J]. Journal of Materials Research, 1999, 14(1):292-301..
[94].丘思畴.半导体表面与界面物理[M].武汉:华中理工出版社,1995.
[95].李映雪,奚雪梅.退火气氛对SIMOX材料Si/SiO2界面特性的影响[J].半导体学报,1996,17(1):11-15.
[96].恽正中,王恩信,完利祥.表面与界面物理[M].成都:电子科技大学出版社,1993.
[97].沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006:29-38.
[98].Himcinschi C, Radu I, Muster F, et al. Uniaxially strained silicon by wafer bonding and layer transfer[J]. Solid State Electronics, 2007, 51(2):226-230.
[99].张树霖.拉曼光谱与地位纳米半导体[M].北京:科学出版社,2008.
[100].刘凯,韩光平.微电子机械系统力学性能及尺寸效应[M].北京:机械工业出版社,2009.
[101].Himcinschi C, Singh R, Radu I, et al. Strain relaxation in nanopatterned strained silicon round pillars[J]. Applied Physics Letters, 2007, 90(2):811.
[102].Ma F, Zhang T W, Xu K W, et al. Conversion of strain state from biaxial to uniaxial in strained silicon[J]. Applied Physics Letters, 2011, 98(19):1515-326.
[103].Nayak D K, Woo J C S, Park J S, et al. High mobility p channel metal oxide semiconductor field effect transistor on strained Si[J]. Applied Physics Letters, 1993, 62(22):2853-2855.
[104].Langdo T A, Lochtefeld A, Currie M T, et al. Preparation of novel SiGe-free strained Si on insulator substrates, SOI Conference, IEEE International. IEEE, 2002:211-212.
[105].Himcinschi C, Reiche M, Scholz R, et al. Compressive uniaxially strained silicon on insulator by prestrained wafer bonding and layer transfer[J]. Applied Physics Letters, 2007, 90(23):4955.
[106].Sun Y, Sun G, Parthasarathy S, et al. Physics of process induced uniaxially strained Si[J]. Materials Science & Engineering B, 2006, 135(3):179-183.
[107].Smith D L, Alimonda A S, Preissig F J V. Mechanism of SiNxHy deposition from N2–SiH4 plasma[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1990, 8(3):551 - 557.
[108].陈治明,王建农.半导体器件的材料物理学基础.北京:科学出版社,1999.
[109].Fusahito Y, Fundementals of elastic mechanics, Kyritsu Shuppan co., Ltd.,1997.
[110].Roy R C, Jr., Mechanics of material sencond edition, John Wiley & Sons Inc., 1999.
[111].Sun Y, Thompson S E, Nishida T. Strain Effect in Semiconductors[M]// Strain effect in semiconductors :. Springer, 2010:51-135.
[112].Dresselhaus G, Kip A F, Kittel C. Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals[J]. Physical Review, 1955, 98(2):368-384.
[113].Sun Y, Thompson S E, Nishida T. Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2007, 101(10):381-414.
[114].Tan Y, Li X, Tian L, et al. Analytical Electron-Mobility Model for Arbitrarily Stressed Silicon[J]. IEEE Transactions on Electron Devices, 2008, 55(6):1386-1390.
[115].Sverdlov V, Ungersboeck E, Kosina H, et al. Effects of shear strain on the conduction band in silicon: An efficient two-band kp theory[J]. 2007:386-389.
[116].刘恩科,朱秉升,罗晋生等.半导体物理学[M].第四版.北京:国防工业出版社,1994.
[117].Dhar S, Ungersbock E, Kosina H, et al. Electron Mobility Model for 〈110 〉 Stressed Silicon Including Strain-Dependent Mass[J]. IEEE Transactions on Nanotechnology, 2007, 6(1):97-100.
Rim K, Hoyt J L, Gibbons J F. Fabrication and analysis of deep submicron strained-Si N-MOSFET's[J]. IEEE Transactions on Electron Devices, 2000, 47(7):1406-1415
中图分类号:

 TN3    

馆藏号:

 46341    

开放日期:

 2020-12-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式