- 无标题文档
查看论文信息

中文题名:

 面向微角秒精度的脉冲星角位置测量方法研究    

姓名:

 丛少鹏    

学号:

 1613123051    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081105    

学科名称:

 工学 - 控制科学与工程 - 导航、制导与控制    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 空间科学与技术学院    

专业:

 导航 ; 制导与控制    

第一导师姓名:

 方海燕    

第一导师单位:

 西安电子科技大学    

完成日期:

 2019-05-27    

外文题名:

 Pulsar Angular Position Measurement Method Oriented to Micro-arcsecond Accuracy    

中文关键词:

 脉冲星角位置 ; 高精度 ; 符合矩阵 ; 二阶相干函数 ; 时间校正 ; 验证系统    

外文关键词:

 pulsar angular position ; high precision ; coincidence matrix ; second order coherence function ; time transfer ; verification system    

中文摘要:

脉冲星角位置参数是诸多研究领域的重要基础,如参考架建立、脉冲星计时模型建模、引力波探测和脉冲星导航等。获取高精度的角位置参数将推动脉冲星方面的研究工作进入更具实际价值的工程应用阶段。地面甚长基线干涉测量精度在毫角秒至亚毫角秒量级,由于地球半径限制、大气扰动、基线长度和时延估计误差等因素的影响,其测量精度难以继续提高。本文针对现有测量手段对角位置参数测量精度不足的难题,研究了高精度的脉冲星角位置测量方法。

脉冲星角位置测量是在惯性空间基准下,利用脉冲星辐射信号解算出赤经和赤纬参数的过程。本文研究了基于光子聚束效应的X射线脉冲星角位置测量方法。所提方法是利用两颗或两颗以上航天器的皮秒量级的观测数据,根据光子聚束原理,采用统计方法高精度的反演脉冲星的赤经和赤纬参数。它涉及脉冲星信号模型、光子聚束、高精度光子到达时间、时间校正分析、空间基线误差分析、符合矩阵拟合处理和光子到达时间仿真等。本文从以上方面开展了研究。

首先提出了一种基于光子符合的脉冲星角位置测量方法,该方法利用光子聚束效应中光子符合数目与角位置参数精度成正相关的现象,通过相干性测量获取高精度脉冲星角位置。本文设计了二阶相干函数计算方法,利用实验数据分析了相干函数的展宽效应,提出了X射线脉冲星辐射场相干性测量方案。观测X射线脉冲星相干性,即符合光子的数目,需要高精度的角位置参数,据此设计了所提方法流程并给出了证明过程。为从符合光子中提取角位置参数,构造了符合矩阵,设计了符合矩阵最大元素所在位置的拟合方法,给出了符合矩阵中主要图像特征为椭圆或直线两种情况下的算法和约束方程。考虑脉冲星自行,推导了角位置变化速率公式,分析了观测时长的约束条件,给出了任意时刻脉冲星角位置拟合方法。并将所提方法与时延量测角方法进行比较,从理论上表明了所提方法不存在难以收敛的问题。

然后从时间校正、光子聚束比例、光子符合精度、位置误差和航天器轨道夹角等方面,分析了所提方法的影响因素,并进行了仿真。仿真结果表明:为实现亚皮秒量级的仿真精度需要采用全部航天器处到太阳系质心处的时间校正项;航天器处到参考位置处的时间校正公式只需使用几何、太阳和地球Shapiro时延项即可实现皮秒量级的时间校正;所提方法要求位置误差小于厘米量级,在高光子聚束比例下,光子符合精度提高1个数量级对应测角精度提高1个数量级,在低光子聚束比例下,为实现同样的测量精度需要适当降低光子符合精度;航天器轨道夹角和初始位置会影响符合矩阵主要特征图像的形状,最好采用三个航天器进行联合观测。

最后设计了高精度的数值仿真方法,实现了软件验证系统,并给出仿真结果。推导了含有自行速度参数的太阳系质心处脉冲星计时模型,通过仿真计算,在30天内传统计时模型的相位精度约在10-8量级。设计了一种亚皮秒量级的具有二阶相干特性的航天器处光子到达时间仿真方法。以可视化软件形式实现了数值仿真验证系统,可进行在轨实验前的地面验证。对光子符合角位置测量方法的仿真结果表明:在光子聚束比例为0.0001,光子符合精度为0.1 ns,总观测时长为10000 s,航天器和地球位置误差标准差均为1 cm,使用三个航天器且探测器有效面积均为100 cm2进行联合观测的情况下,实现了对Crab脉冲星赤经的测量误差小于5个微时秒和赤纬小于32个微角秒的高精度测量。

本文所提基于光子符合的测量方法实现了微角秒精度的脉冲星角位置测量目标,分析了影响因素并进行仿真验证。该方法比地面甚长基线干涉测量的精度高1到2个数量级。

外文摘要:

Pulsar angular position parameters are the important basis of many research fields, such as reference frame establishment, pulsar timing modeling, gravitational wave detection and pulsar navigation. The parameter with high precision is essential part of the process from the research work on pulsars to practical engineering. The accuracy of very long baseline interferometry ranges from milliarcsecond to sub-milliarcsecond. Because of the limitation of Earth radius, atmospheric disturbance and estimation error of baseline length and time delay, it is difficult to improve the measurement accuracy. Aiming at the problem of inadequate accuracy of angular position by existing methods, this paper studies a high precision method for measuring the angular position of pulsars.

Pulsar angular position measurement is a process of calculating the right ascension and the declination by the radiation signal of the pulsar in the inertial space reference. In this paper, we study a method for measuring the angular position of pulsars. Based on photon coincidence principle, a new method is proposed which uses the observed picosecond data of two or more spacecraft to precisely retrieve the right ascension and the declination of pulsars by statistical method. This paper introduces pulsar signal model, high precision photon arrival time, time transfer analysis, spatial baseline error analysis, coincidence matrix fitting and simulation of photon time of arrival.

Firstly, we propose a method for measuring the angular position of pulsars based on photon coincidence. The method is based on the phenomenon that the number of photon coincidence in photon bunching effect is positively related to the accuracy of angular position parameters, so the high-precision pulsar angle position can be obtained through coherence measurement. We also design the calculation method of second-order coherence function, and analyze the broadening effect of this function by using experimental data, and propose the coherent measurement scheme for X-ray pulsars. Observing the radiation field coherence of X-ray pulsar, which is consistent with the number of photon coincidence, requires high accuracy angular position parameters. Based on this, this paper introduces the proof and flow of the method. In order to get angular position parameters from coincidence photons, we construct a coincidence matrix, and design a fitting method for the location of the largest element of the matrix, introducing constraint equation and algorithm when the main image features of the coincidence matrix are ellipse or straight line. Considering the self-motion of pulsars, we deduce the formula of angular position change rate, and analyze the constraints of observation time, and introduce the fitting method for obtaining the angular position at any time. The theoretical comparison between the proposed method and the angle measurement by time-delay method shows that the proposed method is convergent.

Then, the influence factors of the proposed method are analyzed by simulation, such as time transfer model, photon bunching ratio, photon coincidence accuracy, position error and spacecraft orbit angle. The sub-picosecond simulation accuracy can only be achieved by using all time transfer items from spacecraft to the center of mass of the solar system. In addition, time transfer formula from spacecraft to reference position can be realized in picosecond order merely using geometry, Sun and Earth Shapiro time delay items. And the proposed method demands that the position error is less than centimeter. In the case of high photon bunching ratio, increasing photon coincidence accuracy by one order of magnitude leads to an increase in angle measurement accuracy by one order of magnitude. Otherwise, in the case of low photon bunching ratio, the same measurement accuracy can be achieved by reducing the photon coincidence accuracy appropriately. The orbital angle of spacecraft will affect the shape of the main characteristic image of coincidence matrix, so it is best to use three spacecraft for observation.

Finally, we put forward a high-precision numerical simulation method and design a verification software. The timing model is deduced at the center of mass of the solar system containing pulsar velocity information, and the phase accuracy of the traditional timing model is about 10-8 orders of magnitude in 30 days. A method of simulating photon time of arrival at spacecraft is proposed, which has sub-picosecond accuracy and second-order coherence. So the software can be used for ground verification before on-orbit experiments. The simulation results show that the measurement error of Crab pulsar right ascension and declination is less than 5 μs and 32 μas respectively, in the case of ratio of photon bunching 0.0001, photon coincidence accuracy 0.1 ns, position error 1 cm, three spacecraft’s effective area 100 cm2 and total observation time length 10,000 s.

The method based on photon coincidence proposed in this paper achieves the target of micro-arcsecond accuracy of pulsar angular position. The influencing factors are analyzed and verified by simulation. The accuracy of this method is 1 to 2 orders of magnitude higher than that of very long baseline interferometry.

参考文献:
[1]Sheikh S I . The use of variable celestial X-ray sources for spacecraft navigation[M]. 2005.
[2]Schuh H, Behrend D. VLBI: A fascinating technique for geodesy and astrometry[J]. Journal of Geodynamics, 2012, 61(61):68-80.
[3]李金岭,郭丽,孙中苗.关于脉冲星参数的我国VLBI网测量[J].武汉大学学报(信息科学版),2013,38(04):386-389.
[4]范昊鹏,孙中苗.我国新一代VLBI网性能分析[J].测绘科学技术学报,2018,35(02):141-146.
[5]刘庆会,仲伟业,史俊,王锦清,吴亚军,马小飞,曹志宇,朱人杰,李斌.我国空间VLBI背景型号关键技术研究[J].中国科学:物理学 力学 天文学,2016,46(06):89-97.
[6]魏二虎. 我国空间VLBI系统的有关设计和模拟计算研究[D]. 武汉大学, 2006.
[7]贝晓敏,吴耀军,黄良伟,张倩,陈强,陈绍龙,帅平. 一种基于双卫星平台的脉冲星角位置测量系统及方法[P]. 北京:CN103644907A,2014-03-19.
[8]苏桐,盛立志,赵宝升,高玉平,罗近涛,童明雷. 基于X射线的VLBI测量系统以及地面验证装置[P]. 陕西:CN206192364U,2017-05-24.
[9]Tong S , Yao L , Lizhi S , et al. Angular Position Measurement of Pulsars Based on X-ray Intensity Correlation[J]. Optik, 2018.
[10]Li Y , Su T , Sheng L , et al. Study of a high-precision pulsar angular position measuring method[J]. Modern Physics Letters B, 2018.
[11]孙海峰,方海燕,丛少鹏,刘彦明,李小平,苏剑宇,包为民. X射线脉冲星角位置测量地面仿真验证系统及其使用方法[P]. 陕西:CN108981749A,2018-12-11.
[12]帅平. X射线脉冲星导航系统原理与方法[M]. 中国宇航出版社, 2009.
[13]Arias E F, Charlot P, Feissel M, et al. The extragalactic reference system of the International Earth Rotation Service, ICRS[J]. Astronomy & Astrophysics, 1995, 23(303):604-608.
[14]Arias E F, Bianco G, Boboltz D A, et al. The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry[J]. Astronomical Journal, 2009, 150(2):512.
[15]Belokurov V , Evans N W . Astrometric Microlensing with the GAIA Satellite[J]. Monthly Notices of the Royal Astronomical Society, 2018, 331(3):649-665.
[16]Chen D , Zhu X Z , Wang N . Research on Ensemble Pulsar Time Based on Observed Data[J]. Chinese Astronomy & Astrophysics, 2012, 36(2):187-197.
[17]赵成仕,高玉平,童明雷.天然时钟——脉冲星时间尺度[J].科学,2018,70(05):44-47.
[18]Messenger C, Lommen A, Demorest P, et al. A Bayesian parameter estimation approach to pulsar time-of-arrival analysis[J]. Classical & Quantum Gravity, 2012, 28(28):55001-55013.
[19]Sun H F , Sun X , Fang H Y , et al. Building X-ray pulsar timing model without the use of radio parameters[J]. Acta Astronautica, 2018, 143:155-162.
[20]Becker W , Sesana A , Kramer M . Pulsar Timing and its Application for Navigation and Gravitational Wave Detection[J]. Space Science Reviews, 2018, 214(1):30.
[21]Sheikh S I, Suneel I, Darryll J. Recursive estimation of spacecraft position and velocity using x-ray pulsar time of arrival measurements[J]. Navigation, 2006, 53(3):149-166.
[22]郑世界,葛明玉,韩大炜,王文彬,陈勇,卢方军,鲍天威,柴军营,董永伟,冯旻子,贺健健,黄跃,孔敏南,李汉成,李陆,李正恒,刘江涛,刘鑫,师昊礼,宋黎明,孙建超,王瑞杰,王源浩,文星,吴伯冰,肖华林,熊少林,许寒晖,徐明,张娟,张来宇,张力,张晓峰,张永杰,赵一,张双南.基于天宫二号POLAR的脉冲星导航实验[J].中国科学:物理学 力学 天文学,2017,47(09):120-128.
[23]Mitchell J W, Winternitz L M, Hassouneh M A, et al. Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results[C]//41st Annual American Astronautical Society (AAS) Guidance and Control Conference 2018. 2018.
[24]Taylor J H, Weisberg J M. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16[J]. Astrophysical Journal, 1982, 253(2):908-920.
[25]童明雷,丁勇恒,赵成仕,高峰,高玉平.引力波引起的脉冲星计时残差模拟与分析[J].时间频率学报,2015,38(01):44-51.
[26]Hobbs G B, Jenet F A, Lee K J, et al. TEMPO2: a new pulsar timing package III: gravitational wave simulation[J]. Monthly Notices of the Royal Astronomical Society, 2010, 394(4):1945-1955.
[27]Sesana A , Vecchio A , Volonteri M . Gravitational waves from resolvable massive black hole binary systems and observations with Pulsar Timing Arrays[J]. Monthly Notices of the Royal Astronomical Society, 2010, 394(4):2255-2265.
[28]王双强,王娜,张承民,李菂,尚伦华,王德华,潘元月,杨佚沿,岳友岭.特殊类型脉冲星的研究进展[J].天文学进展,2018,36(01):1-16.
[29]黄克谅,彭秋和,何香涛,童彝.脉冲星的空间分布和产星率[J].天文学报,1980(03):237-242.
[30]杨建邺.细推物理须行乐,何用浮名绊此生——乔瑟琳·贝尔·伯勒尔[J].自然杂志,2005(01):55-60.
[31]张慈农.原子频标综述[J].空间电子技术,1999(04):32-36.
[32]何妙福,钱志瀚.甚长基线射电干涉测量技术[J].科学,1992(05):55.
[33]Alef W . A Review of VLBI instrumentation[J]. Proceedings of the 7th Symposium of the European VLBI Network on New Developments in VLBI Science and Technology. Held in Toledo, Observatorio Astronomico Nacional of Spain, 2004:237-244.
[34]项英, 张秀忠. VLBI技术新进展[J]. 天文学进展, 2003, 21(3):185-194.
[35]孙中苗,范昊鹏.VLBI全球观测系统(VGOS)研究进展[J].测绘学报,2017,46(10):1346-1353.
[36]徐家岩.微角秒级的天体测量技术及其在天文学研究中的意义[J].天文学进展,1992(04):275-282.
[37]Perryman M A P , Lindegren L , Kovalevsky J , et al. The Hipparcos Catalogue[J]. Astronomy & Astrophysics, 1997, 323(1):L49-L52.
[38]Brown R H . A Test of a New Type of Stellar Interferometer on Sirius[J]. Nature, 1956, 178(4541):1046-1048.
[39]史砚华. 量子光学导论:单光子和双光子物理[M]. 高等教育出版社, 2016.
[40]程肖肖,郑为民.脉冲星信号VLBI软件相关处理方法研究[J].中国科学院上海天文台年刊,2014(00):70-80.
[41]Wen C , Wu J , Zhi-Xuan L , et al. VLBI Observation of Pulsar B0329+54 with the CVN at S/X Bands[J]. Chinese Astronomy and Astrophysics, 2016, 40(4):494-503.
[42]南仁东,姜鹏.500 m口径球面射电望远镜(FAST)[J].机械工程学报,2017,53(17):1-3.
[43]张大鹏,王奕迪,姜坤,郑伟.XPNAV-1卫星实测数据处理与分析[J].宇航学报,2018,39(04):411-417.
[44]徐延庭,宫超林,胡慧君,张玉兔,邵思霈,史钰峰,宋娟,宋晓林.脉冲星MCP探测器设计与在轨验证[J].航天器工程,2018,27(05):114-119.
[45]傅灵忠. X射线脉冲星信号的物理特征建模和仿真研究[D].西安电子科技大学,2014.
[46]薛梦凡,李小平,孙海峰,刘兵,方海燕,沈利荣.一种新的X射线脉冲星信号模拟方法[J].物理学报,2015,64(21):487-497.
[47]孙守明, 郑伟, 汤国建. 基于CV模型的X射线脉冲星位置误差估计[J]. 系统仿真学报, 2010(11):2712-2714.
[48]雷伟伟,张捍卫,李凯.岁差章动模型更新等因素对坐标转换的影响[J].飞行器测控学报,2016,35(01):53-62.
[49]艾玛德扎赫. X射线脉冲星导航[M]. 国防工业出版社, 2013.
[50]孙海峰,包为民,方海燕,李小平.X射线脉冲轮廓稳定性对导航精度的影响[J].物理学报,2014,63(06):441-448.
[51]毛悦. X射线脉冲星导航算法研究[D].解放军信息工程大学,2009.
[52]吕林蔚. 基于DiFX软件的卫星信号软相关处理[D].中国科学院研究生院(国家授时中心),2015.
[53]Hanbury-Brown R . Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(1):192-196.
[54]Hobbs G, Lorimer D R, Lyne A G, et al. A statistical study of 233 pulsar proper motions[J]. Monthly Notices of the Royal Astronomical Society, 2010, 360(3):974-992.
[55]冯象初. 数值分析[M]. 西安电子科技大学出版社, 2015.
[56]Sheikh S I, Hellings R W, Matzner R A. High-Order Pulsar Timing For Navigation[C]. 63rd Annual Meeting of The Institute of Navigation, 2007.
[57]宁如云. 非齐次泊松过程的仿真方法[J]. 高等数学研究, 2012, 15(1):86-89.
[58]罗华飞. MATLAB GUI设计学习手记.第3版[M]. 北京航空航天大学出版社, 2014.
中图分类号:

 P12    

馆藏号:

 42525    

开放日期:

 2019-12-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式