- 无标题文档
查看论文信息

中文题名:

 3D 打印凝胶基陶瓷复合 材料用于关节修复    

姓名:

 魏华夏    

学号:

 20141213400    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 材料与化工硕士    

学校:

 西安电子科技大学    

院系:

 先进材料与纳米科技学院    

专业:

 材料与化工    

研究方向:

 水凝胶    

第一导师姓名:

 张显    

第一导师单位:

 西安电子科技大学    

第二导师姓名:

 曾庆丰    

完成日期:

 2023-06-17    

答辩日期:

 2023-05-26    

外文题名:

 3D printed gel-based ceramic composite for joint repair    

中文关键词:

 复合材料 ; 组织工程支架 ; 羟基磷灰石 ; 泰森多边形 ; 3D 打印    

外文关键词:

 composites ; scaffold material ; hydroxyapatite ; Voronoi ; 3D Printing    

中文摘要:

软骨损伤是老龄化或特殊职业过度使用导致,而随着全球趋于老龄化,需要进行软骨损伤修复的患者日益增多。为解决大面积损伤修复供体不足问题。本文利用凝胶与活性陶瓷形成复合材料,并探讨了利用3D打印技术实现生物支架的制备。本文主要研究内容及结果如下:

(1)复合材料支架的制备研究。在天然生物材料透明质酸(Hyaluronic,HA)和海藻酸钠(Alginate,Al)构成的复合溶胶体系中引入羟基磷灰石(Hydroxyapatite,HAP)颗粒,室温条件下,在交联剂CaCl2溶液的作用下形成复合材料支架。实验结果表明:在HAP填充量为1wt%时,复合材料的孔隙数量随着HAP颗粒粒径的增大而增多;小于30μm的颗粒粒径制备的复合材料亲水性能更好,状态更加稳定,降解速率更快;而在HAP颗粒粒径在50~80μm之间时,当HAP的含量低于4wt%时,复合材料的孔隙率随HAP的填充量增多而增大;当HAP含量高于4wt%时,复合材料的孔隙率随HAP填充的增多而减小。通过对支架材料的溶胀与动电位实验,其分析结果表明:HAP的过多填充会降低复合材料的溶胀率;复合材料水溶胶的Zeta电位的绝对值随着HAP含量的增多而变大,说明含有HAP的水溶胶有良好的稳定性,可作为易于储备的生物墨水。

(2)探索复合材料支架挤出式打印的方法。通过改善挤出喷头、墨水配比和交联剂溶液浓度,实现挤出式制备复合材料支架的研究。研究结果表明:改良挤出喷头前端,外扩交联剂挤出通道,可以实现微丝成型打印;随着Al浓度的增加,复合凝胶的形变率增大,凝结时间略微缩短;交联剂CaCl2溶液浓度与复合凝胶的形变非线性相关,1mol/L的CaCl2溶液适合用在挤出式3D打印。

(3)泰森多边形立方体在软骨修复应用的研究。软骨组织支架对孔隙率及抗压能力均有一定需求,仅考虑结构的影响。利用Voronoi图特性衍生设计出泰森多边形立方体,使用Rhino软件以实现功能梯度支架的设计,改变压缩因子和离散点数目得到构型不同的泰森多边形立方体。结果表明:泰森结构的抗压能力随压缩因子的减小而增强,随离散点数目的增大而减少。实验结果中抗压能力最优的泰森模型数据参数为0.7压缩因子和25离散点数目,最高能够抵抗480.3N。

总之,通过天然凝胶与活性陶瓷复合材料支架研究,结合3D打印技术,可以获得具有优异力学性能和多孔隙的医用凝胶基陶瓷复合材料。

外文摘要:

Cartilage damage is a result of aging or overuse of specific occupations, and as the world tends to age, the number of patients requiring cartilage damage repair is increasing. To address the shortage of donor for extensive injury repair. In this paper, we use gels and activated ceramics to form composite materials and discuss the preparation of biological scaffolds using 3D printing technology. The main research contents and results of this paper are as follows:

 

Study on the preparation of composite scaffolds. Hydroxyapatite(HAP) particles were introduced into the composite sol-gel system composed of natural biomaterial hyaluronic acid and sodium alginate, and the composite scaffolds were formed under the action of the cross-linking agent CaCl2 solution at room temperature. The experimental results showed that the number of pores of the composites increased with the increase of the particle size of HAP when the filling amount of HAP was 1 wt%; the composites prepared with particle size less than 30 μm had better hydrophilic properties, more stable state and faster degradation rate; while in the particle size of HAP between 50 and 80 μm, when the content of HAP was less than 4 wt%, the porosity of the composites increased with HAP filling increased; when the content of HAP was higher than 4wt%, the porosity of the composites decreased with the increase of HAP filling. The analysis results of the swelling and kinetic potential experiments on the scaffold materials showed that: the overfilling of HAP decreases the swelling rate of the composites; the absolute value of the zeta potential of the composite hydrosols becomes larger with the increase of HAP content, which indicates that the hydrosols containing HAP have good stability and can be used as easy-to-stock bioink.

 

Exploration of extrusion-based printing of composite scaffolds. The study of extrusion-based preparation of composite scaffolds was achieved by improving the extrusion nozzle, ink ratios and crosslinker solution concentrations. The results showed that: the improved extrusion nozzle front end and externally expanded crosslinker extrusion channel can realize microfilament forming printing; the deformation rate of composite gel increased and the coagulation time was slightly shortened with the increase of Al concentration; the concentration of crosslinker CaCl2 solution was non-linearly correlated with the deformation of composite gel, and the 1 mol/L CaCl2 solution was suitable for extrusion-based 3D printing.

 

Study of Voronoi cubes in cartilage repair applications. Cartilage tissue scaffolds have a need for porosity and compressive capacity, considering only the effect of structure. The Voronoi cubes were designed by using the characteristic derivation of Voronoi diagram, and Rhino software was used in order to realize the design of functional gradient scaffolds, and the Voronoi cubes with different configurations were obtained by changing the compression factor and the number of discrete points. The results show that the compression resistance of the Voronoi structure increases with the decrease of the compression factor and decreases with the increase of the number of discrete points. The data parameters of the Voronoi model with the best compressive capacity are 0.7 compression factor and 25 number of discrete points, which can resist up to 480.3N.

 

In conclusion, medical gel-based ceramic composites with excellent mechanical properties and porosity can be obtained through the study of natural gel and active ceramic composite scaffolds, combined with 3D printing technology.

 

参考文献:
[1] Ahmed T A E, Hincke M T. Strategies for articular cartilage lesion repair and functional restoration[J]. Tissue Engineering Part B: Reviews, 2010, 16(3): 305-329.
[2] Ai C, Lee Y H D, Tan X H, et al. Osteochondral tissue engineering: perspectives for clinical application and preclinical development[J]. Journal of Orthopaedic Translation, 2021, 30: 93-102.
[3] Goldring S R, Goldring M B. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone crosstalk[J]. Nature Reviews Rheumatology, 2016, 12(11): 632-644.
[4] Varady N H, Grodzinsky A J. Osteoarthritis year in review 2015: mechanics[J]. Osteoarthritis and cartilage, 2016, 24(1): 27-35.
[5] Camarero-Espinosa S, Rothen-Rutishauser B, Foster E J, et al. Articular cartilage: from formation to tissue engineering[J]. Biomaterials science, 2016, 4(5): 734-767.
[6] 吴晓芳. 生物 3D 打印定向异构仿生关节软骨支架的构建及性能研究[D]. 中国矿业大学, 2021.
[7] Fell N L A, Lawless B M, Cox S C, et al. The role of subchondral bone, and its histomorphology, on the dynamic viscoelasticity of cartilage, bone and osteochondral cores[J]. Osteoarthritis and Cartilage, 2019, 27(3): 535-543.
[8] Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P ,Mobasheri A (2015) Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 16(3):6093–6112
[9] Steadman J R, Rodkey W G, Rodrigo J J. Microfracture: surgical technique and rehabilitation to treat chondral defects[J]. Clinical Orthopaedics and Related Research®, 2001, 391: S362-S369.
[10] Brittberg M, Lindahl A, Nilsson A, et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation[J]. New england journal of medicine, 1994, 331(14): 889-895.
[11] Hangody L, Füles P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints: ten years of experimental and clinical experience[J]. JBJS, 2003, 85(suppl_2): 25-32.
[12] Sechriest V F, Miao Y J, Niyibizi C, et al. GAG‐augmented polysaccharide hydrogel: A novel biocompatible and biodegradable material to support chondrogenesis[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 2000, 49(4): 534-541.
[13] Li L, Hui J H P, Goh J C H, et al. Chitin as a scaffold for mesenchymal stem cells transfers in the treatment of partial growth arrest[J]. Journal of Pediatric Orthopaedics, 2004, 24(2): 205-210.
[14] Benya P D, Shaffer J D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels[J]. Cell, 1982, 30(1): 215-224.
[15] 梁青飞. 同轴打印高强度明胶基复合水凝胶小口径类血管结构支架的研究[D]. 中国科学院大学 (中国科学院深圳先进技术研究院), 2020.
[16] Johnson E M, Berk D A, Jain R K, et al. Hindered diffusion in agarose gels: test of effective medium model[J]. Biophysical journal, 1996, 70(2): 1017-1023.
[17] Mauck R L, Soltz M A, Wang C C B, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels[J]. J. Biomech. Eng., 2000, 122(3): 252-260.
[18] Ng K W, Wang C C B, Mauck R L, et al. A layered agarose approach to fabricate depth‐dependent inhomogeneity in chondrocyte‐seeded constructs[J]. Journal of Orthopaedic Research, 2005, 23(1): 134-141.
[19] Kelly T A N, Wang C C B, Mauck R L, et al. Role of cell‐associated matrix in the development of free‐swelling and dynamically loaded chondrocyte‐seeded agarose gels[J]. Biorheology, 2004, 41(3-4): 223-237.
[20] Shelton J C, Bader D L, Lee D A. Mechanical conditioning influences the metabolic response of cell-seeded constructs[J]. Cells Tissues Organs, 2003, 175(3): 140-150.
[21] Rahfoth B, Weisser J, Sternkopf F, et al. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits[J]. Osteoarthritis and cartilage, 1998, 6(1): 50-65.
[22] Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate polymers, 2018, 187: 66-84.
[23] Awad H A, Wickham M Q, Leddy H A, et al. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds[J]. Biomaterials, 2004, 25(16): 3211-3222.
[24] Yang I H, Kim S H, Kim Y H, et al. Comparison of Phenotypic Characterization between[J]. Yonsei medical journal, 2004, 45(5): 891-900.
[25] Steinert A, Weber M, Dimmler A, et al. Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh‐viscosity alginate[J]. Journal of Orthopaedic Research, 2003, 21(6): 1090-1097.
[26] Weber M, Steinert A, Jork A, et al. Formation of cartilage matrix proteins by BMP-transfected murine mesenchymal stem cells encapsulated in a novel class of alginates[J]. Biomaterials, 2002, 23(9): 2003-2013.
[27] Masuda K, Sah R L, Hejna M J, et al. A novel two‐step method for the formation of tissue‐engineered cartilage by mature bovine chondrocytes: the alginate‐recovered‐chondrocyte (ARC) method[J]. Journal of Orthopaedic Research, 2003, 21(1): 139-148.
[28] Chia S H, Schumacher B L, Klein T J, et al. Tissue‐engineered human nasal septal cartilage using the alginate‐recovered‐chondrocyte method[J]. The Laryngoscope, 2004, 114(1): 38-45.
[29] Wang L, Shelton R M, Cooper P R, et al. Evaluation of sodium alginate for bone marrow cell tissue engineering[J]. Biomaterials, 2003, 24(20): 3475-3481.
[30] Chen W Y J. Functions of hyaluronan in wound repair[J]. Hyaluronan, 2002: 147-156.
[31] Park H, Choi B, Hu J, et al. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering[J]. Acta biomaterialia, 2013, 9(1): 4779-4786.
[32] Lee S J, Seok J M, Lee J H, et al. Three-dimensional printable hydrogel using a hyaluronic acid/sodium alginate bio-ink[J]. Polymers, 2021, 13(5): 794.
[33] Honda M, Yada T, Ueda M, et al. Cartilage formation by cultured chondrocytes in a new scaffold made of poly (L-lactide-ϵ-caprolactone) sponge[J]. Journal of oral and maxillofacial surgery, 2000, 58(7): 767-775.
[34] Li W J, Tuli R, Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells[J]. Biomaterials, 2005, 26(6): 599-609.
[35] Shieh S J, Terada S, Vacanti J P. Tissue engineering auricular reconstruction: in vitro and in vivo studies[J]. Biomaterials, 2004, 25(9): 1545-1557.
[36] Isogai N, Asamura S, Higashi T, et al. Tissue engineering of an auricular cartilage model utilizing cultured chondrocyte–poly (L-lactide-ε-caprolactone) scaffolds[J]. Tissue engineering, 2004, 10(5-6): 673-687.
[37] Bryant S J, Anseth K S. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 2002, 59(1): 63-72.
[38] Williams C G, Kim T K, Taboas A, et al. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel[J]. Tissue engineering, 2003, 9(4): 679-688.
[39] Alhadlaq A, Mao J J. Tissue-engineered neogenesis of human-shaped mandibular condyle from rat mesenchymal stem cells[J]. Journal of dental research, 2003, 82(12): 951-956.
[40] Bryant S J, Bender R J, Durand K L, et al. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production[J]. Biotechnology and bioengineering, 2004, 86(7): 747-755.
[41] Saad B, Neuenschwander P, Uhlschmid G K, et al. New versatile, elastomeric, degradable polymeric materials for medicine[J]. International journal of biological macromolecules, 1999, 25(1-3): 293-301.
[42] Grad S, Kupcsik L, Gorna K, et al. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations[J]. Biomaterials, 2003, 24(28): 5163-5171.
[43] Nehrer S, Breinan H A, Ramappa A, et al. Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes[J]. Biomaterials, 1997, 18(11): 769-776.
[44] Kuberka M, Von Heimburg D, Schoof H, et al. Magnification of the pore size in biodegradable collagen sponges[J]. The International journal of artificial organs, 2002, 25(1): 67-73.
[45] Lee W K, Ichi T, Ooya T, et al. Novel poly (ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering[J]. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2003, 67(4): 1087-1092.
[46] Suh S W, Shin J Y, Kim J, et al. Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique[J]. ASAIO journal, 2002, 48(5): 460-464.
[47] Hou Q, Grijpma D W, Feijen J. Preparation of interconnected highly porous polymeric structures by a replication and freeze‐drying process[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2003, 67(2): 732-740.
[48] Jin H J, Chen J, Karageorgiou V, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomaterials, 2004, 25(6): 1039-1047.
[49] Woodfield T B F, Malda J, De Wijn J, et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique[J]. Biomaterials, 2004, 25(18): 4149-4161.
[50] Moroni L, De Wijn J R, Van Blitterswijk C A. 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties[J]. Biomaterials, 2006, 27(7): 974-985.
[51] Harris L D, Kim B S, Mooney D J. Open pore biodegradable matrices formed with gas foaming[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, 42(3): 396-402.
[52] Hile D D, Amirpour M L, Akgerman A, et al. Active growth factor delivery from poly (D, L-lactide-co-glycolide) foams prepared in supercritical CO2[J]. Journal of controlled release, 2000, 66(2-3): 177-185.
[53] Moroni L. de, Wijn, JR; van Blitterswijk, CA 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties[J]. Biomaterials, 2006, 27(7): 974-985.
[54] Harris L D, Kim B S, Mooney D J. Open pore biodegradable matrices formed with gas foaming[J]. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998, 42(3): 396-402.
[55] Hile D D, Amirpour M L, Akgerman A, et al. Active growth factor delivery from poly (D, L-lactide-co-glycolide) foams prepared in supercritical CO2[J]. Journal of controlled release, 2000, 66(2-3): 177-185.
[56] 郝定均, 谢恩, 陈博, 等. 修复脊髓损伤的仿生多孔水凝胶的制备研究[J]. 生物骨科材料与临床研究, 2013, 10(5): 9-12.
[57] Holland T A, Tabata Y, Mikos A G. Dual growth factor delivery from degradable oligo (poly (ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering[J]. Journal of Controlled Release, 2005, 101(1-3): 111-125.
[58] Park H, Temenoff J S, Holland T A, et al. Delivery of TGF-β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications[J]. Biomaterials, 2005, 26(34): 7095-7103.
[59] Hoemann C D, Hurtig M, Rossomacha E, et al. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects[J]. JBJS, 2005, 87(12): 2671-2686.
[60] Behrens P, Bitter T, Kurz B, et al. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up[J]. The knee, 2006, 13(3): 194-202.
[61] Cherubino P, Grassi F A, Bulgheroni P, et al. Autologous chondrocyte implantation using a bilayer collagen membrane: a preliminary report[J]. Journal of Orthopaedic Surgery, 2003, 11(1): 10-15.
[62] Wood J J, Malek M A, Frassica F J, et al. Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration[J]. JBJS, 2006, 88(3): 503-507.
[63] Kesti M, Fisch P, Pensalfini M, et al. Guidelines for standardization of bioprinting: a systematic study of process parameters and their effect on bioprinted structures[J]. BioNanoMaterials, 2016, 17(3-4): 193-204.
[64] Landers R, Hübner U, Schmelzeisen R, et al. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23(23): 4437-4447.
[65] Zhang H, Cong Y, Osi A R, et al. Direct 3D printed biomimetic scaffolds based on hydrogel microparticles for cell spheroid growth[J]. Advanced Functional Materials, 2020, 30(13): 1910573.
[66] Guo L, Niu X, Chen X, et al. 3D direct writing egg white hydrogel promotes diabetic chronic wound healing via self-relied bioactive property[J]. Biomaterials, 2022, 282: 121406.
[67] Klebe R J. Cytoscribing: a method for micropositioning cells and the construction of two-and three-dimensional synthetic tissues[J]. Experimental cell research, 1988, 179(2): 362-373.
[68] Pataky K, Braschler T, Negro A, et al. Microdrop printing of hydrogel bioinks into 3D tissue‐like geometries[J]. Advanced Materials, 2012, 24(3): 391-396.
[69] Malda J, Visser J, Melchels F P, et al. 25th anniversary article: engineering hydrogels for biofabrication[J]. Advanced materials, 2013, 25(36): 5011-5028.
[70] Odde D J, Renn M J. Laser-guided direct writing for applications in biotechnology[J]. Trends in biotechnology, 1999, 17(10): 385-389.
[71] Zhang B, Li S, Hingorani H, et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing[J]. Journal of Materials Chemistry B, 2018, 6(20): 3246-3253.
[72] Hull C W. Apparatus for production of three-dimensional objects by stereolithography[J]. United States Patent, Appl., No. 638905, Filed, 1984.
[73] Fatimi A. Hydrogel-based bioinks for three-dimensional bioprinting: Patent analysis[J]. Materials Proceedings, 2021, 7(1): 3.
中图分类号:

 R31    

开放日期:

 2023-12-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式