- 无标题文档
查看论文信息

中文题名:

 基于四象限探测器的激光光斑中心高精度定位方法研究    

姓名:

 魏雨晨    

学号:

 20131213243    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0804Z2    

学科名称:

 工学 - 仪器科学与技术 - 飞行测控与空间信息处理    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 空间科学与技术学院    

专业:

 仪器科学与技术    

研究方向:

 光学精密测量    

第一导师姓名:

 李小平    

第一导师单位:

  西安电子科技大学    

完成日期:

 2023-06-08    

答辩日期:

 2023-05-23    

外文题名:

 Research on High Precision Positioning Method of Laser Spot Center Based on Four Quadrant Detector    

中文关键词:

 光斑中心位置检测 ; 四象限探测器 ; 椭圆高斯光斑 ; 融合式算法    

外文关键词:

 Spot center position detection ; four quadrant detector ; elliptical Gaussian spot ; fused algorithm    

中文摘要:

激光测量技术因其具有精度高、抗干扰能力强等优点被广泛应用于激光制导、精密测量、空间光通信等领域,高精度激光光斑定位是高精密激光测量的关键。本文面向星间高精度偏转角测量的应用需求,研究了基于激光加四象限探测器的光斑中心高精度定位方法,构建了激光光斑的椭圆高斯模型,探究了四象限探测器结构因素、系统噪声因素及空间复杂环境因素等对光斑定位精度影响的关系模型。在此基础上,提出了一种基于Composite法和Fourier级数法的融合式激光光斑中心位置高精度定位算法。搭建了地面实验系统,验证了本文所研究的基于激光加四象限探测器的光斑中心位置检测方法的可行性和有效性。主要研究内容如下:

1.推导了激光光斑的定位模型,研究了现有经典的激光光斑中心位置解算算法,揭示了四象限探测器尺寸、结构等对光斑定位影响的作用机理。

2.在空间环境下,构建了空间环境温度、星间基线长度、倾斜离轴入射高斯光束以及透镜畸变等几类因素对激光光斑定位影响的关系模型,并基于仿真实验分析得出当系统温度保持在20℃的恒温状态,激光器到探测器的距离越近、激光束倾斜离轴入射角为0°、选用畸变系数最小的透镜对光斑定位的影响最小,光斑定位精度最高。

3.针对现有椭圆高斯入射激光光斑定位算法精度难以满足实际需求的问题,构建了符合实际的椭圆高斯激光光斑模型,提出了一种以光斑长短轴长、探测器靶面大小以及死区宽度等三因子加权的新的基于Composite法和Fourier级数法的融合式光斑中心位置高精度定位算法,克服了光斑模型不准确等造成的光斑定位精度差的问题,显著提高了光斑定位精度,使其达到10-6mm量级,且适用于光斑检测范围比较宽的情况。

4.设计了激光加四象限探测器的光斑中心位置检测实验系统,搭建了激光光斑中心位置检测实验平台,验证了本文所提融合式光斑中心位置精估计算法和Composite算法的光斑中心位置检测性能。实验结果表明:Composite算法的定位误差在0.08mm,而本文所提融合算法的定位误差在0.01mm,显著优于现有精度较高的Composite算法。在此基础上,本文基于地面试验系统研究并检验了信噪比、光斑半径以及光斑中心位置对光斑定位的影响,验证并说明了仿真结果的有效性。

 

关 键 词:光斑中心位置检测,四象限探测器,椭圆高斯光斑,融合式算法

外文摘要:

Laser measurement technology is widely used in laser guidance, precision measurement, space optical communication and other fields because of its advantages of high accuracy and strong anti-interference ability, etc. High precision laser spot positioning is the key to high precision laser measurement. In this paper, we study the high-precision positioning method of spot center based on laser plus four-quadrant detector for interstellar high-precision deflection angle measurement, construct an elliptical Gaussian model of laser spot, and investigate the relationship model of the influence of four-quadrant detector structure factor, system noise factor and space complex environment factor on spot positioning accuracy. On this basis, a fused laser spot center position high-precision positioning algorithm based on Composite and Fourier series method is proposed. A ground experiment system is built to verify the feasibility and effectiveness of the laser plus four-quadrant detector-based spot center position detection method studied in this paper. The main research contents are as follows:

 

1. The localization model of laser spot is derived, and the existing classical algorithm for solving the laser spot center position is investigated to reveal the mechanism of the effect of four-quadrant detector size and structure on the spot localization.

 

2. In the space environment, the relationship models of several factors, such as the space environment temperature, the interstellar baseline length, the tilted off-axis incident Gaussian beam caused by the interstellar relative motion and the lens aberration, on the laser spot positioning are constructed, and based on the analysis of simulation experiments, it is concluded that when the system temperature is kept at a constant temperature of 20℃, the closer the distance from the laser to the detector, the tilted off-axis incident angle of the laser beam is 0°, and the lens with the smallest aberration coefficient is selected. The lens with the smallest distortion coefficient has the smallest influence on the spot positioning and the highest spot positioning accuracy.

 

3. To address the problem that the accuracy of the existing elliptical Gaussian incident laser spot positioning algorithm is difficult to meet the actual demand, we construct a realistic elliptical Gaussian laser spot model and propose a new high-precision positioning algorithm based on the composite and Fourier level method with three factors weighted by the spot length and short axis length, the detector target size and the dead zone width. This algorithm overcomes the problem of poor spot positioning accuracy caused by inaccurate spot model, significantly improves the spot positioning accuracy to the order of 10-6mm, and is suitable for a wide spot detection range.

 

4. The experimental system of laser plus four-quadrant detector spot center position detection is designed, and the experimental platform of laser spot center position detection is built to verify the spot center position detection performance of the fused spot center position estimation algorithm and Composite algorithm proposed in this paper. The experimental results show that the positioning error of Composite algorithm is 0.08mm, while the positioning error of the proposed fusion algorithm is 0.01mm, which is significantly better than the existing Composite algorithm with higher accuracy. On the basis of this paper, the effects of signal-to-noise ratio, spot radius and spot center position on spot localization are studied and examined based on the ground test system to verify and illustrate the validity of the simulation results.

 

Keywords: Spot center position detection, four quadrant detector, elliptical Gaussian spot, fused algorithm

参考文献:
[1] 中国航天透露“觅音计划”,将探索系外宜居行星[J].卫星与网络,2019(12):74. [J].实验力学,2011,26(05):518-531.
[2] 楼良盛, 缪剑, 陈筠力,等. 卫星编队InSAR系统设计系列关键技术[J]. 测绘学报, 2022(007):051.
[3] 黄普,杜凯,曹静等.基于衰减因子的分布式卫星高精度编队导航技术[J].现代导航,2021,12(06):399-404.
[4] 尚鸿雁. 激光自准直角度测量系统建模方法研究[J]. 测试技术学报, 2007, 21(1):7.
[5] 翟玉生. 多自由度误差同时测量中滚转角高精度测量方法的研究[D].北京交通大学,2012.
[6] 张华丽. 基于扫描探针显微镜的纳米加工相关理论及技术研究[D].哈尔滨工业大学,2008.
[7] 陈洪涛,李银妹,楼立人等.光镊技术中的纳米位移探测及其测量误差讨论[J].中国激光,2004(06):729-734.
[8] 胡春光,章承伟,安然等.光镊力谱系统微球位移的纳米精度测量[J].纳米技术与精密工程,2015,13(06):448-453.
[9] 胡博, 常伟军, 孙婷,等. 激光半主动制导导引头光学系统的设计[J]. 应用光学, 2012, 33(2):4.
[10] 刘冬,鲜勇,郭飞帅,等. 精确制导技术及其在武器中的应用[J].飞航导弹,2011(11):79-83.
[11] 鲍海阁. 国外激光半主动寻的制导武器的发展[J].舰船电子工程,2010(5):21-25.
[12] 郑利,宋怡然,蒋琪,等. 美国联合空地导弹项目最新进展[J].飞航导弹,2013(6):3-6.
[13] 刘箴,刘东洋.国外典型激光制导武器发展综述[J].飞航导弹,2021(04):20-26.
[14] 王狂飙.激光半主动制导技术的新发展[J].红外与激光工程,2008,37(S3):275-279.
[15] Jiang Huilin, Jiang Lun, Song Yansong, et al. Research of Optical and APT Technology in One-Point to Multi-Point Simultaneous Space Laser Communication System[J]. Chinese Journal of Lasers, 2015.
[16] Xin Z, Tong S F, Liu Y Q, et al. Application research on four-quadrant detector in space laser communication system[J]. Journal of Optoelectronics Laser,2010, 21(1):46-49.
[17] Orbital ATK, Inc.; Orbital ATK Concludes Eight Years of Comprehensive NFIRE Satellite Mission Support[J]. Defense & Aerospace Week,2015.
[18] Fields Renny, Lunde Carl, Wong Robert, et al. NFIRE-to-TerraSAR-X Laser Communication Results: Satellite Pointing, Disturbances, and Other Attributes Consistent With Successful Performance[J]. SENSORS AND SYSTEMS FOR SPACE APPLICATIONS III,2009,7330.
[19] Yang Yu, Patrick Michel. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: II. Fates and evolutionary dependencies[J]. Icarus,2018,312.
[20] Franco Perez, Dario Modenini, Antonio Vázquez, et al. a nanosatellite mission to binary asteroid 65803 Didymos as part of the ESA AIM mission[J]. Advances in Space Research,2018,62(12).
[21] 郭崇滨,夏喜旺,斯朝铭,刘沛龙,杜阳.分布式精密编队卫星相对位姿测量技术综述[J].航天控制,2018,36(06):83-89.
[22] 刘永顺,王晋.电荷耦合器件及其应用[J].物理教学,2010,32(03):50-51.
[23] 吴赛燕.基于PSD的位置测量系统[J].科技情报开发与经济,2007(02):159-161.
[24] 光探测与器件[J].中国光学与应用光学文摘,2001,15(05):66-67.
[25] 赵英超,宋毅恒.激光测向器件及其应用[J].光电技术应用,2017,32(04):38-41.
[26] Dandliker R, Geiser M, Giunti C, Zatti S, Margheri G. Improvement of speckle statistics in double-wavelength superheterodyne interferometry[J]. Applied optics,1995,34(31).
[27] van Lammeren JPM, Wissing RWB. Mixed-signal quadrature demodulator with a multicarrier regeneration system[J]. Custom Integrated Circuits Conference,2000,35(3):441-445.
[28] A. V. Marquina, L. A. Gonzalez, J. R. Noriega. Design and characterization of a four-quadrant detector and its application to shape recovering system [J]. Proc. of SPIE, 2006, 6294: 629410-1.
[29] Kral L. Automatic beam alignment system for a pulsed infrared laser[J]. The Review of scientific instruments,2009,80(1).
[30] Gilad M. Lerman,Uriel Levy.Pin Cushion Plasmonic Device for Polarization Beam Splitting, Focusing, and Beam Position Estimation[J].Nano Lett,2013,13(3):1100–1105.
[31] Michael J Willis,Steven E Skutnik,Howard L. Hall.Detection and positioning of radioactive sources using a four-detector response algorithm[J].ELSEVIER,2014,767:445-452.
[32] Žarko P.Barbarić,et al. New relationship of displacement signal at quadrant photodiode: Control signal analysis and simulation of a laser tracker[J]. Optik - International Journal for Light and Electron Optics,2014,125(4).
[33] Dogan Ugur Sakarya,Huseyin Sari.Design of dual mode seeker for millimeter wave and four-quadrant detectors in missile application[J].Optomechanical Engineering,2019.
[34] Safi Hossein,Dargahi, Akbar,Cheng, Julian.Beam Tracking for UAV-Assisted FSO Links With a Four-Quadrant Detector[J].IEEE COMMUNICATIONS LETTERS,2021,25(12):3908-3912.
[35] 舒柏宏,陆启生,张国清,刘泽金.四象限探测器的激光破坏及其对光学制导的影响[J].强激光与粒子束,1997(03):144-146.
[36] 雷肇棣.光电探测器原理及应用[J].物理,1994(04):220-226.
[37] 赵馨,佟首峰,刘云清,姜会林.四象限探测器在空间激光通信中应用研究[J].光电子.激光,2010,21(01):46-49.
[38] Chen M, Yang Y, Jia X, et al. Investigation of positioning algorithm and method for increasing the linear measurement range for four-quadrant detector[J]. Optik - International Journal for Light and Electron Optics, 2013, 124(24): 6806-6809.
[39] 张辉,陈云善,耿天文,等.四象限探测器位置检测精度的主要影响因素研究[J].中国激光,2015, 42(12): 306-314.
[40] 吴佳彬. 基于四象限探测器的高精度激光光斑位置检测技术研究[D].中国科学院研究生院(长春光学精密机械与物理研究所), 2016.
[41] Zhang J , Qian WX, Gu GH , et al.Quadrant response model and error analysis of four-quadrant detectors related to the non-uniform spot and blind area[J]. APPLIED OPTICS,2018,57(24).
[42] Wang X , Su X , Liu G , et al. Investigation of high-precision algorithm for the spot position detection for four-quadrant detector[J]. Optik , 2019, 203(6):163941.
[43] Wu gang Z , Wei G , Chuan wei Z , et al. An Improved Method for Spot Position Detection of a Laser Tracking and Positioning System Based on a Four-Quadrant Detector[J]. Sensors,2019, 19(21): 4722.
[44] Zhang J, Zhou W, Mao C, et al. A calibration and correction method for the measurement system based on four-quadrant detector[J]. Optik , 2020, 204: 164226.
[45] 张乃元. 基于四象限探测器的高精度光束偏转角度测量方法研究[D].华中科技大学,2021.000935.
[46] 刘忠源. 基于QD的光斑位置检测与快速跟踪系统技术研究[D].电子科技大学,2021.002989.
[47] 李鑫鹏.基于四象限探测器的宽范围高精度光斑位置检测系统研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所).2022.000153.
[48] 光生伏特效应[J].能源与节能,2017(07):172.
[49] 秦立存,贺伟.基于四象限探测器的激光光斑中心定位算法[J].应用激光,2021,41(03):561-568.
[50] 唐彦琴,顾国华,钱惟贤,陈钱,张骏.四象限探测器基于高斯分布的激光光斑中心定位算法[J].红外与激光工程,2017,46(02):64-70.
[51] 苟晔鹏,刘星,刘强,郭甲崇,邢博.基于Infinite integral的四象限探测器光斑位置检测算法[J].激光与红外,2021,51(09):1249-1256.
[52] 卢泉,张泽昊,张卫平,刘诣荣.基于Boltzmann函数刃边拟合的光栅成像系统点扩展函数模型[J].光学学报,2020,40(14):32-39.
[53] 张骏. 基于四象限探测器的高精度激光定位测量技术研究[D].南京理工大学,2021.
[54] 雷姿姿. 卫星激光通信四象限探测器精确定位算法研究[D].哈尔滨工业大学,2019.
[55] 刘韬. 考虑热致面型变化的消热差光学设计方法研究[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2022.
[56] 王汝冬,田伟,王平,王立朋,隋永新,杨怀江.温度变化对胶粘结透镜面形精度的影响[J].中国激光,2011,38(08):206-211.
[57] 常虹. 透射式红外系统热光学稳定性关键技术研究[D].哈尔滨工业大学,2011.
[58] 刘锡国,刘敏,毛忠阳,徐建武,胡昊.指向误差下高斯光束几何衰减模型分析[J].电子学报,2021,49(10):1893-1899.
[59] Zhi Yang,Collins formula interpreted as wavelet transform[J].Optik.2014,125(13):3181-3183.
[60] Junchang Li, Chongguang Li.Algorithm study of Collins formula and inverse Collins formula[J].Applied Optics.2008,47(4):97-102.
[61] Hong-Yi Fan,Hai-Liang Lu.Collins diffraction formula studied in quantum optics[J].Optics Letters.2006,31(17):2622-2624.
[62] 高学燕,何均章,谢川林,袁学文,田小强,周志强.阵列探测器对斜入射激光的功率测量不确定度[J].强激光与粒子束,2012,24(07):1656-1662.
[63] 赵延仲,孙华燕,樊鹏山,黎伟,赵星龙.大角度斜入射情况下的猫眼效应激光反射特性[J].强激光与粒子束,2010,22(07):1457-1461.
[64] 安伟.激光束斜入射光学系统参数计算[J].长春光学精密机械学院学报,1991(02):54-57.
[65] Yannick Sauer,Malte Scherff,Niklas Stein,Selam Wondimu Habtegiorgis,Markus Lappe,Siegfried Wahl. Inconsistent self-motion perception between hemifields from optic flow distorted by progressive addition lenses[J]. Journal of Vision,2022,22(14).
[66] 杨骜,曹杰,郝群,陈传训,高贯磊.基于透镜畸变效应的仿人眼扫描系统设计[J].应用光学,2021,42(03):418-422.
[67] 朱红,谢俊峰,孙广通,刘小阳,么嘉棋.面向星载激光光斑的质心定位精度分析[J].遥感信息,2021,36(02):1-5.
[68] 唐冠群.几种激光光斑中心定位算法的比较[J].北京机械工业学院学报,2009,24(01):61-64.
[69] 华国邑.推广的最小二乘法辨识及比较[J].科学技术创新,2023(04):14-17.
[70] 屈文星,刘浩,秦楚,刘锦鑫,杨凡.基于MATLAB傅里叶曲线拟合的天线跟踪精度评估方法[J].电子测量技术,2020,43(12):91-95.
[71] 杨桂栓,张志峰,翟玉生,王才东,郭莹莹,杨红军,白煌煌,王新杰.死区对四象限探测器探测范围和灵敏度影响的研究[J].激光与光电子学进展,2013,50(06):156-161.
[72] 马晓燠,母杰,饶长辉.死区对四象限跟踪传感器跟踪精度的影响[J].物理学报,2012,61(07):116-123.
中图分类号:

 V11    

馆藏号:

 56974    

开放日期:

 2023-12-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式