- 无标题文档
查看论文信息

中文题名:

 微波光子接收前端关键技术研究    

姓名:

 翟伟乐    

学号:

 1601110113    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810J1    

学科名称:

 工学 - 信息与通信工程 - 光通信    

学生类型:

 博士    

学位:

 工学博士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 信息与通信工程    

研究方向:

 微波光子学    

第一导师姓名:

 文爱军    

第一导师单位:

 西安电子科技大学    

完成日期:

 2021-05-28    

答辩日期:

 2021-05-20    

外文题名:

 Research on Key Technologies of Microwave Photonic Receiving Front End    

中文关键词:

 微波光子 ; 接收前端 ; 变频 ; 线性优化 ; 色散补偿 ; 信道化接收    

外文关键词:

 Microwave photonics ; Receiving front end ; Frequency conversion ; Linear optimization ; Dispersion compensation ; Channelized reception    

中文摘要:

基于微波光子的通信技术,凭借其多频段,大带宽,重量轻,体积小,抗电磁干扰等众多优势,有望应用在雷达、侦查、卫星通讯、宽带无线通信等众多领域。本文针对无线通信系统的重要环节——接收前端部分展开了深入研究。传统电子接收前端由于电子瓶颈的限制,高频段、大带宽的信号接收往往需要极为复杂的接收结构,体积重量功耗大、且系统可重构性差。基于微波光子的接收前端虽然针对上述因素有着先天的优势,然而目前所报道的大多数方案也都存在明显的缺点。功能方面:多数混频方案功能单一,无法适应复杂的接收环境,例如需要波束赋形的雷达、侦察接收机;性能方面,需要进行多维度的考虑,例如系统增益、噪声系数、非线性优化等。本文重点针对这些问题,研究接收前端所涉及混频、移相、线性优化和色散补偿等技术要点,取得以下创新成果:

针对微波光子接收前端混频技术,提出了微波光子混频和移相的新方案。该方案利用一个集成的双偏振正交相移键控调制器对射频实现抑制载波的双边带调制方式,对本振信号实现抑制载波的单边带调制方式,并对两者实现偏振复用,利用偏振控制器对正交偏振态引入相位差的原理,对混频后的信号在0到360度范围内引入可调相移。实现了微波光子混频与移相的有机结合,在波束成型网络,矢量信号正交(IQ)解调等方向具有潜在的应用价值。由于本振信号的单边带调制方式,光纤色散引入的相位无法通过干涉作用影响信号功率,使该系统与光纤传输有更好的兼容性。同时还实验验证了该方案在矢量信号IQ解调上的有效性,对四进制相移键控、16进制正交幅度调制信号实现了IQ解调处理,得到了清晰的解调星座图。

针对微波光子接收前端及传输链路优化技术,提出了基于偏振调制器的同时线性优化和光纤色散补偿的方案,利用偏振调制器实现调制边带的奇偶阶偏振分离,通过分析非线性光边带的产生机理以及光纤色散对不同边带引入得相位变化,利用偏振控制器对正交偏振态引入相差的原理,同时对非线性和色散进行优化,系统无杂散动态范围至少提高10dB;提出了基于双偏振马赫-曾德尔调制器的系统综合优化方案,通过对调制器直流偏压,正交偏振态信号相位差以及偏分复用信号的偏振方向的控制,同时对色散、非线性以及载波边带比进行优化,显著优化了系统增益,无杂散动态范围以及噪声系数等;提出了基于双偏振正交相移键控调制器的混频与链路综合优化方案,将系统优化应用至接收前端,在下变频的同时,利用拉格朗日极值法求得射频衰减、偏振角度的最优值,以完成对非线性的优化。通过调节主调制器直流偏压,完成了光纤色散的补偿,通过调节子调制偏压,提高了系统增益。

针对传统信道化接收机通道间隔离度、通道一致性差,解调效率低等缺点,提出了基于信号偏振复用的超高效信道化接收机。所提方案利用4线射频光梳和3线本振光梳就实现了12个信道的解调,相对与传统方案,光梳利用率提升至2-4倍;由于信号的偏振复用,所占用光谱范围也降低至传统方案的一半以上。采用双输出的镜像抑制解调结构,并利用集成的双偏振相干接收板,不仅减少了器件的使用,降低系统成本和复杂度,同时还使得系统更加稳定。最后本方案利用简单的数字信号处理算法,有效的解决了宽带信号IQ解调接收情况下,IQ幅度相位不平衡的难点,提升了通道间隔离度、杂散抑制等指标。对于该方案偏振隔离度差导致的通道间隔离度变差的问题,提出了利用双芯光子晶体光纤的偏振分束器(偏振消光比为50 dB,带宽为60 nm)或硅偏振分束器(偏振消光比高达40 dB)替代原系统中偏振消光比较差的偏振分束器的解决思路,以提升隔离度的指标。系统结构简单,可扩展性强,为未来微波光子信道化接收提供了理论基础和关键技术支撑。

外文摘要:

The communication technology based on microwave photonics, with its advantages of multi-frequency band, large bandwidth, light weight, small size, and anti-electromagnetic interference, is expected to be applied in many fields such as radar, reconnaissance, satellite communication, broadband wireless communication and so on. This article has launched an in-depth study on the important part of the wireless communication system-the receiving front-end part. Due to the limitation of the electronic bottleneck of the traditional electronic receiving front-end, the signal reception of high frequency band and large bandwidth often requires a very complicated receiving structure, large volume and weight, high power consumption, and poor system reconfigurability. Although the reception front-end based on microwave photons has inherent advantages for the above factors, most of the currently reported solutions also have obvious shortcomings. In terms of function: most mixing schemes have a single function and cannot adapt to complex receiving environments, such as radars and reconnaissance receivers that require beamforming; in terms of performance, multi-dimensional considerations are required, such as system gain, noise figure, nonlinear optimization, etc. This article focuses on these issues and studies the technical points involved in the reception front-end such as mixing, phase shifting, linear optimization and dispersion compensation, and has achieved the following innovative results:

 

Aiming at the front-end mixing technology of microwave photon receiver, a new scheme of microwave photon mixing and phase-shifting is proposed. In this scheme, an integrated dual polarization quadrature phase shift keying modulator is used to realize the double sideband modulation for raido frequency signals and the single sideband modulation for local oscillator signals, and the polarization multiplexing is realized for both. Based on the principle of introducing phase difference to the orthogonal polarization state by the polarization controller, a tunable phase shift is introduced to the mixed signal in the range of 0 to 360 degrees. It realizes the organic combination of microwave photon mixing and phase shifting, and has potential application value in beamforming network, vector signal in-phase (I) and quadrature (Q) demodulation and other directions. Because of the single sideband modulation of local oscillator signal, the system overcomes the problem of power periodic fading caused by fiber dispersion, and makes the system more compatible with fiber transmission. At the same time, the effectiveness of the scheme in the vector signal IQ demodulation is verified by experiments. The quaternary phase shift keying and hexadecimal quadrature amplitude modulation signals are demodulated, and the demodulation constellation is obtained.

 

Aiming at the optimization technology of microwave photonic receiving front-end and transmission link, a scheme of simultaneous linear optimization and fiber dispersion compensation based on polarization modulator is proposed. The odd and even order polarization separation of modulation sideband is realized by using polarization modulator. The generation mechanism of nonlinear optical sideband and the phase change caused by fiber dispersion to different sidebands are analyzed, and the phase difference of orthogonal polarization state is introduced by using polarization controller By optimizing the nonlinearity and dispersion, the spurious free dynamic range of the system can be improved by at least 10dB; a comprehensive optimization scheme based on dual polarization Mach-Zehnder modulator is proposed, which significantly optimizes the gain and noise of the system by controlling the direct current bias voltage of the modulator, the phase difference of the orthogonal polarization state and the polarization direction of the polarization-multiplexed signal, as well as the dispersion, nonlinearity and carrier sideband ratio The system optimization is applied to the front end of the receiver, and the optimal values of radio frequency attenuation and polarization angle are obtained by using Lagrange extremum method at the same time of down conversion, so as to complete the optimization of nonlinearity. By adjusting the direct current bias voltage of the main modulator, the fiber dispersion is compensated. By adjusting the sub modulation bias voltage, the system gain is improved.

 

Aiming at the disadvantages of traditional channelized receiver, such as poor channel isolation, poor channel consistency and low demodulation efficiency, a super-efficient channelized receiver based on signal polarization multiplexing is proposed. The proposed scheme uses 4-wire radio frequency optical comb and 3-wire local oscillator optical comb to realize 12 channels demodulation. Compared with the traditional scheme, the utilization ratio of optical comb is increased to 2-4 times; due to the polarization multiplexing of signal, the occupied spectral range is reduced to more than half of the traditional scheme. Using dual output image suppression demodulation structure and integrated dual polarization coherent receiving board, not only reduces the use of devices, reduces the cost and complexity of the system, but also makes the system more stable. Finally, the scheme uses a simple digital signal processing algorithm to effectively solve the difficulty of IQ amplitude and phase imbalance in the case of broadband signal IQ demodulation reception, and improves the channel isolation, spurious suppression and other indicators. In order to solve the problem of poor isolation between channels caused by poor polarization isolation, the polarization beam splitter (polarization extinction ratio is 50 dB, bandwidth is 60 nm) or silicon polarization beam splitter (polarization extinction ratio is up to 40 dB) of dual core photonic crystal fiber is proposed to replace the polarization beam splitter with poor polarization extinction ratio in the original system, so as to improve the isolation index. The system has simple structure and strong scalability, which provides a theoretical basis and key technical support for the future microwave photonic channelization reception.

参考文献:
[1] T S Rappaport, E Ben-Dor, J N Murdock, et al. 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications[C]. 2012 IEEE International Conference on Communications (ICC), 2012: 4568-4573.
[2] Y Azar, G N Wong, K Wang, et al. 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city[C]. 2013 IEEE International Conference on Communications (ICC), 2013: 5143-5147
[3] M Sekine, S Ishii, S I Hwang, et a1. Weibull Raindrop-Size Distribution and Its Application to Rain Aaenuation from 30 GHz to 1000 GHz[J]. International Journal of Infrared and Millimeter Waves, 2007, 28(5): 383-392.
[4] 黄齐波, 陈建荣, 马美霞. 基于 LTCC 技术的 C 频段星载接收机混频器[J]. 微波学报, 2010, 26(1): 50-53.
[5] 李亚卓, 安建平, 马薇薇. Ku 波段通信卫星模拟转发器设计中的关键问题[J]. 电讯技术, 2003, 43(4): 77-80.
[6] C Sturm, W Wiesbeck. Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing[J]. Proceedings of the IEEE, 2011, 99(7):1236-1259.
[7] G C Tavik, C L Hilterbrick, J B Evins, et al. The advanced multifunction RF concept[J]. IEEE Transactions on Microwave Theory & Techniques, 2005, 53(3):1009-1020
[8] Van Genderen P. Recent advances in waveforms for radar, including those with communication capability[C]// Radar Conference, 2009. EuRAD 2009. European. IEEE, 2009:318-325.
[9] 高永胜. 微波光子混频及其关键技术研究[D]. 西安: 西安电子科技大学, 2016.
[10] Marki Microwave. QH-0867 3 dB Quadrature (90 degree) Hybrid Coupler [DB/OL]. https://www.markimicrowave.com/hybrids/qh-0867.aspx.
[11] Eospace. Ultra-Wideband (DC-65GHz-110GHz+) Modulator [DB/OL]. https://www.eospace.com/ultrawideband-modulator.
[12] Finisar corporation. 100 GHz Single High-speed Photodetector [DB/OL]. https://www.finisar.com/optical-components/xpdv412xr.
[13] P Shen, N J Gomes, P A Davies, et al. High-purity millimetre-wave photonic local oscillator generation and delivery[C]. International Topical Meeting on Microwave Photonics, 2003: 189-192.
[14] K. A. Fayza, Asha Maria Joseph, P. A. Meeva, D. Meena, Srinivas Talabattula. Microwave Signal Generation and Noise Reduction Using Cascaded MZM for Radar Applications[C], Advances in Computing and Communications (ICACC) 2015 Fifth International Conference on, 2015: 227-230.
[15] P Li, L Yan, J Ye, et al. Photonic generation of binary and quaternary phase-coded microwave signals by utilizing a dual-polarization dual-parallel Mach-Zehnder modulator[J]. Optics Express, 2018, 26(21): 28013-28021.
[16] W. Chen, D. Zhu, C. Xie, et al. Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation[J]. Optics Express, 2018, 26(25): 32491–32499.
[17] R Cheng, W Wei, W Xie, et al. Photonic generation of programmable coherent linear frequency modulated signal and its application in X-band radar system[J]. Optics Express, 2019, 27(26): 37469-37480.
[18] Y Han, W Zhang, J Zhang, et al. Two Microwave Vector Signal Transmission on a Single Optical Carrier Based on PM-IM Conversion Using an On-Chip Optical Hilbert Transformer[J]. Journal of Lightwave Technology, 2018, 36(3): 682-688.
[19] Y Gao, A Wen, W Jiang, et al. Fundamental/Subharmonic Photonic Microwave I/Q Up-Converter for Single Sideband and Vector Signal Generation. Transactions on Microwave Theory and Techniques, 2018, 66(9): 4282-4292.
[20] J Yao. Photonic generation of microwave arbitrary waveforms[J]. Optics Communications, 2011, 284(15): 3723-3736.
[21] G Quadri, B Onillon, H Martinez-Reyes, et al. Low phase noise optical links for microwave and RF frequency distribution[C]. Microwave and Terahertz Photonics. Microwave and Terahertz Photonics, 2004: 34-43.
[22] B Onillon, S Constant, G Quadri, et al. Low phase noise fiber optics links for space applications[J]. Low Phase Noise Fiber Optics Links for Space Applications, 2005.
[23] Y. Gao, A. Wen, L. Liu, et al. Compensation of the Dispersion-Induced Power Fading in an Analog Photonic Link Based on PM–IM Conversion in a Sagnac Loop[J]. Journal of Lightwave Technology, 2015, 33(13): 2899-2904.
[24] Z Xie, S Yu, S Cai, et al. Simultaneous Improvements of Gain and Linearity in Dispersion-Tolerant Phase-Modulated Analog Photonic Link[J]. Photonics Journal, 2017, 9(1): 1-12.
[25] W Li, L Wang, and N Zhu. Highly Linear Microwave Photonic Link Using a Polarization Modulator in a Sagnac Loop[J]. Photonics Technology Letters, 2013, 26(1): 89-92.
[26] S Li, X Zheng, H Zhang, et al. Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach-Zehnder Modulator[J]. Photonics Technology Letters, 2010, 22(24): 1775-1777.
[27] M Huang, J Fu, and S Pan. Linearized analog photonic links based on a dual-parallel polarization modulator[J]. Optics Letters, 2012, 37(11): 1823-1825.
[28] H Zhang, A Wen, W Zhang, et al. A Spectral Efficient Self-Homodyne-Detected Microwave Photonic Link With an Extended Fiber- Reach[J]. Photonics Technology Letters, 2018, 30(19): 1719–1722.
[29] X. Chen and J. Yao. A coherent microwave photonic link with digital phase noise cancellation[C]. The 2014 International Topical meeting on Microwave Photonics and the 2014 9th Asia-Pacific Microwave Photonics Conference, 2014: 438-441.
[30] X. Chen and J. Yao. A high spectral efficiency coherent microwave photonic link employing both amplitude and phase modulation with digital phase noise cancellation[J]. Journal of Lightwave Technology, 2015, 33(14): 3091–3097.
[31] A. C Lindsay, G A Knight, S T Winnall, et al. Photonic mixers for wide bandwidth RF receiver applications[J]. Transactions on Microwave Theory and Techniques, 1995, 43(9): 2311-2317.
[32] H Chen, Y Dong, H He, et al. Photonic radio-frequency phase shifter based on polarization interference[J]. Optics Letters, 2009, 34(15): 2375-2377.
[33] W Liu, W Li, and J Yao. An Ultra-Wideband Microwave Photonic Phase Shifter With a Full 360° Phase Tunable Range[J]. Photonics Technology Letters, 2013, 25(12): 1107-1110.
[34] Y Ma, D Liang, D Peng, et al. Broadband high-resolution microwave frequency measurement based on low-speed photonic analog-to-digital converters[J]. Optics Express, 2017, 25(3): 2355-2368.
[35] B Lu, W Pan, X Zou, et al. Wideband Microwave Doppler Frequency Shift Measurement and Direction Discrimination Using Photonic I/Q Detection[J]. Journal of Lightwave Technology, 2016, 34(20): 4639-4645.
[36] B Vidal, M A Piqueras, Marti J. Direction-of-arrival estimation of broadband microwave signals in phased-array antennas using photonic techniques[J]. Journal of Lightwave Technology, 2006, 24(7): 2741-2745.
[37] H Chen, E H. W. Chan. Simple Approach to Measure Angle of Arrival of a Microwave Signal[J]. Photonics Technology Letters, 2019, 31(22): 1795-1798.
[38] G A Sefler, J Chou, J A Conway, et al. Distortion Correction in a High-Resolution Time-Stretch ADC Scalable to Continuous Time[J]. Journal of Lightwave Technology, 2010, 28(10): 1468-1476.
[39] B M Jung, J D Shin, B G Kim. Optical true time-delay for two-dimensional x -band phased array antennas[J]. Photonics Technology Letters, 2007, 19(12): 877-879.
[40] J Ge, H Feng, G Scott, et al. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter[J]. Optics Letters, 2015, 40(1): 48-51.
[41] Y Yu, E Xu, J Dong, et al. Switchable microwave photonic filter between high Q bandpass filter and notch filter with flat passband based on phase modulation[J]. Optics Express, 2010, 24(18): 25271-25282.
[42] W Zhou, P Xiang, Z Niu, et al. Wideband Optical Multipath Interference Cancellation Based on a Dispersive Element[J]. Photonics Technology Letters, 2016, 28(8): 849-851.
[43] Q Zhou, H Feng, G Scott, et al. Wideband co-site interference cancellation based on hybrid electrical and optical techniques[J]. Optics Letters, 2014, 39(22), 6537-6540.
[44] M P Chang, Chia-Lo Lee, B Wu, et al. Adaptive Optical Self-Interference Cancellation Using a Semiconductor Optical Amplifier[J]. Photonics Technology Letters, 2015, 27(9), 1018-1021.
[45] NASA. Deep space network (DSN) [EB/OL]. 2017, https://www.nasa.gov/directorates/heo/scan/services/networks/txt_dsn.html.
[46] A Goutzoulis, K Davies, J Zomp, et al. Development and field demon stration of a hardware compressive fiber-optic true-time-delay steering system for phased array antennas[J]. Applied Optics, 1994, 33 (35): 8173-8185.
[47] D Dolfi, P Joffre, J Antoine, et al. Experimental demonstration of a phased-array antenna optically controlled with phase and time delays [J]. Applied Optics, 1996, 35(26): 5293-5300.
[48] A Kanno, T Kawanishi. Broadband frequency-modulated continuouswave signal generation by optical modulation technique[J]. Journal of Lightwave Technology, 2014, 32(20): 3566-3572.
[49] Q Guo, F Zhang, P Zhou, et al. Dual-band LFM signal generation by optical frequency quadrupling and polarization multiplexing[J]. Photonics Technology Letters, 2017, 29(16): 1320-1323.
[50] Y Gao, A Wen, W Jiang, et al. Photonic Microwave Generation with Frequency Octupling Based on a DP-QPSK Modulator[J]. Photonics Technology Letters, 2015, 27(21): 2260-2263.
[51] Z Zhu, S Zhao, Q Tan, et al. Photonically Assisted Microwave Signal Generation Based on Two Cascaded Polarization Modulators with a Tunable Multiplication Factor[J]. Transactions on Microwave Theory and Techniques, 2016, 64(11): 3748-3756.
[52] Y Chen, W Li, A Wen, et al. Frequency-Multiplying Optoelectronic Oscillator with a Tunable Multiplication Factor[J]. Transactions on Microwave Theory and Techniques, 2013, 61(9): 3479-3485.
[53] H Tang, Y Yu, Z Wang, et al. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultra-narrow passband[J]. Optics Letters, 2018, 43(10): 2328-2331.
[54] J Zhang, E H W Chan, X Wang, et al. High Conversion Efficiency Photonic Microwave Mixer With Image Rejection Capability[J]. 2016, 8(4).
[55] L Zhang, M Li, N Shi, et al. Photonic true time delay beamforming technique with ultra-fast beam scanning[J]. Optics Express, 2017, 25(13): 14524-14532.
[56] S Blais and J Yao. Photonic True-Time Delay Beamforming Based on Superstructured Fiber Bragg Gratings with Linearly Increasing Equivalent Chirps[J]. Journal of Lightwave Technology, 2009, 27(9): 1147-1154.
[57] X Yi, Thomas X H. Huang, and Robert A Minasian. Photonic Beamforming Based on Programmable Phase Shifters with Amplitude and Phase Control[J]. Photonics Technology Letters, 23(18): 1286-1288.
[58] Erwin H W Chan and Robert A Minasian. Microwave Photonic Downconverter With High Conversion Efficiency[J]. Journal of Lightwave Technology, 2012, 30(23): 3580-3585.
[59] H Cheng, X Zou, B Lu, et al. High-Resolution Range and Velocity Measurement Based on Photonic LFM Microwave Signal Generation and Detection[J]. Photonics Journal, 2019, 11(1).
[60] J Zhang, W Jiang, Y Yu, et al. Photonics-based simultaneous measurement of distance and velocity using multi-band LFM microwave signals with opposite chirps[J]. 2019, Optics Express, 2019, 27(20): 27580-27591
[61] G McConnell and E Riis. Ultra-short pulse compression using photonic crystal fibre[J]. 2004, 78(5): 557-563.
[62] W Li and J Yao. Dynamic range improvement of a microwave photonic link based on bi-directional use of a polarization modulator in a Sagnac loop[J]. Optics Express, 2013, 21(13): 15692-15697.
[63] Y Dai, X Liang, F Yin, et al. Feedforward linearization for RF photonic link with broadband adjustment-free operation[J]. Optics Express, 2017, 25(17): 20770-20779.
[64] I Gabitov, EG Shapiro, and SK Turitsyn. Optical pulse dynamics in fiber links with dispersion compensation[J]. Optics Communication, 1997, 134(1-6): 317-329.
[65] DARPA. Our Research[EB/OL]. [2017-06-30]. https://www.darpa.mil/ our-research.
[66] N Karafolas, J M P Armengol and I Mckenzie. Introducing photonics in spacecraft engineering: ESA's strategic approach[C]. IEEE Aerospace conference, 2009.
[67] K D McMullan, Michael A Brown, Manuel martin-neira, et al. SMOS: The payload. Transactions on Geoscience and Remote Sensing, 2008, 46(3): 594-605.
[68] P Ghelfi, F Laghezza, F Scotti, et al. A fully photonics-based coherent radar system[J]. Nature, 2014, 507(7492): 341-345.
[69] A Bogoni, P Ghelfi, F Laghezza, et al. PHODIR: Photonics-based fully digital radar system[C]. IEEE International Topical Meeting on Microwave Photonics (MWP), 2013.
[70] P Ghelfi, Laghezza F, F Scotti, et al. Photonics for radars operating on multiple coherent bands[J]. Journal of Lightwave Technology, 2016, 34 (2): 500-507.
[71] S Melo, S Pinna, A Bogoni, et al. Dual-use system combining simultaneous active radar & communication, based on a single photonics-assisted transceiver[C]//17th IEEE International Radar Symposium (IRS). Piscataway, NJ: IEEE, 2016, doi: 10.1109/IRS.2016.7497379.
[72] F Zhang, Q Guo, Z Wang, et al. Photonics-based broadband radar for high- resolution and real- time inverse synthetic aperture imaging[J]. Optics Express, 2017, 25(14): 16274-16281
[73] R Li, W Li, M Ding, et al. Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing[J]. Optics Express, 2017, 25(13): 14334-14340.
[74] D Marpaung, C Roeloffzen, R Heideman, et al.Integrated microwave photonics[J].Laser and Photonics Reviews, 2012, 7( 4): 506-538.
[75] M Krainak, M Stephen, E Troupaki, et al. Integrated photonics for NASA applications[C] //Components & Packaging for Laser Systems V. International Society for Optics and Photonics, 2019.
[76] N D Thomas, and B P Arturo. Direct Laser Modulation: US, 018109[P/OL]. 2001-01-31[2012-12-04]. https://www.freepatentsonline.com/y2012/0087655.ht ml.
[77] Svelto, Orazio. Principles of Lasers[M]. Springer, New York, 5th ed, 2010.
[78] Sennaroglu. Photonics and Laser Engineering[M]. McGraw-Hill, New York, 2010.
[79] W Kobayashi, T Ito, T Yamanaka, et al. 50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4).
[80] D Che, Y Matsui, R Schatz, et al. Direct Modulation of a 54-GHz Distributed Bragg Reflector Laser with 100-GBaud PAM-4 and 80-GBaud PAM-8[C] Optical Fiber Communications Conference and Exhibition (OFC), 2020.
[81] S Arahira, H Yaegashi, K Nakamura, et al. Chirp control and broadband wavelength-tuning of 40 GHz monolithic actively mode-locked laser diode module with an external CW light injection[J]. Journal of Selected Topics in Quantum Electronics, 2005, 11(5): 1103-1111.
[82] Y Matsui, D Mahgerefteh, X Zheng, et al. Chirp-managed directly modulated laser (CML)[J]. Photonics Technology Letters, 2006, 18(2): 385-387.
[83] H Halbritter, C Sydlo, Kogel, et al. Linewidth and chirp of MEMS-VCSELs[J]. Photonics Technology Letters, 2006, 18(20): 2180-2182.
[84] S Yamanaka, and E BannoBias. Control circuit for optical modulator, and optical transmitter comprising the same: JP, 951827[P/OL]. 2015-11-25[2017-06-20]. https://www.freepatentsonline. com/96860 17.html
[85] H S Chung, S H Chang, J C Lee, et al. Field Experiment of 112 Gb/s Dual-Carrier DQPSK Signal Transmission with Automatic Bias Control of Optical IQ Modulator[C]. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, 2013.
[86] L T D G Emmanuel, D Ogasahara, and S Fujisawa. Dc bias control for an optical modulator: JP, 004641[P/OL]. 2013-07-31[2015-0205]. https://patents.google.com/patent/WO2015015533A1/en.
[87] T V Sadagopan, S Y Kim, and J C Chen. Electro-optical modulator with differential bias control: CN, 051545[P/OL]. 2015-09-22[2017-03-30]. https://patents.google.com/patent/WO2017052520 A1/en
[88] X Yuan, Y Zhang, J Zhang, et al. Any Bias Point Control Technique for Mach-Zehnder Modulator[C]. Asia Communications and Photonics Conference, 2014.
[89] W. Jiang, C. Lin, C. Ho, et al. Photonic vector signal generation employing a novel optical direct-detection in-phase/quadrature-phase upconversion[J]. Optics Letters, 2010, 35(23): 4069-4071.
[90] T Kawanishi, and M Izutsu. Linear single-sideband modulation for high-snr wavelength conversion[J]. Photonics Technology Letters,2004, 16(6): 1534-1536.
[91] R Li, X Sun, and D Yang. A Novel Decoupling Bias Control Technique for Dual Parallel Mach-Zehnder Modulator[J]. Photonics Technology Letters, 2020, 32(13): 815-818.
[92] X Li, L Deng, X Chen, et al. Modulation-format-free and automatic bias control for optical IQ modulators based on dither-correlation detection[J]. Optics Express, 2017, 25(8): 9333-9345.
[93] J D Bull, N A Jaeger, H Kato, et al. 40-GHz electro-optic polarization modulator for fiber optic communications systems[C]. Photonics North. International Society for Optics and Photonics, 2004: 133-143.
[94] M Martinelli, and R Chipman. Polarization controller: US, 701675[P/OL]. 2003-11-05[2004-11-18]. https://www.freepatentsonline.com/y2004/0228567.html
[95] T Michael, T Alex, LB Allard, et al. Method and device for controlling the polarization of a Beam of Light: CA, EP20010810342[P/OL]. 2001-04-05[2001-10-24]. https://www.freepatentson line.com/EP1148373.html.
[96] R Noe, and H Heidrich. Endless polarization control systems for coherent optics[J]. Journal of Lightwave Technology, 1988, 6(7): 1199-1208.
[97] G Keiser. Optical Fiber Communication[M]. McGraw-Hill, New York, 2003.
[98] J Buck, and I Jacobs. Fundamentals of Optical Fibers[M]. Wiley, Hoboken, NJ, 2nd ed, 2004.
[99] D Gloge. The optical fibre as a transmission medium[J]. Reports on Progress in Physics, 1979, 42(11): 1777-1824.
[100] R Olshansky. Propagation in a glass optical waveguides[J]. Review of Modern Physics, 1979, 51(2): 341-369.
[101] K Tsujikawa, K Tajima, and Z JianIntrinsic. loss of optical fibers[J]. Optical Fiber Technology, 2005, 11(4): 319-331.
[102] E M Dianov, and V M Mashinsky. Germania-based core optical fibers[J]. Journal of Lightwave Technology, 23(11): 3500-3508.
[103] A Galtarossa, and C R Menyuk. Polarization Mode Dispersion[M]. Springer, New York, 2005.
[104] A E Willner, SMRM Nezam, L Yan,Z Pan, et al. Monitoring and control of polarization-related impairments in optical fiber systems[J]. Journal of Lightwave Technology, 2004, 22: 106-125.
[105] H Melchior. Detectors for lightwave communications[J]. Physics Today, 1977, 30(11): 32-39.
[106] A Beling, and J C Campbell. InP-based highspeed photodetectors: Tutorial[J]. Journal of Lightwave Technology, 2009, 27(3): 343-355.
[107] M. Johnsom. Photodetection and Measurement[M]. McGraw-Hill, New York, 2003.
[108] B M Oliver. Thermal and quantum noise[J]. Proceedings of the IEEE, 1965, 53(5): 436-454.
[109] A Beling, H G Bach, D Schmidt, et al. High-Speed Balanced Photodetector Module with 20dB Broadband Common-Mode Rejection Ratio[J]. Journal of Lightwave Technology, 2009, 27(3): 343-355.
[110] P Runge, G Zhou, T Beckerwerth, et al. Waveguide Integrated Balanced Photodetectors for Coherent Receivers[J]. Journal of Selected Topics in Quantum Electronics, 2017, 24(2).
[111] Richard Edward eppers. Balanced coherent receiver: CN, CN86100077A[P/OL]. https://patents.google.com/patent/CN86100077A.
[112] E I Ackerman, G E Betts, W K Burns, et al. Signal-to-Noise Performance of Two Analog Photonic Links Using Different Noise Reduction Techniques[C]. IEEE/MTT-S International Microwave Symposium, 2007.
[113] Nobuhiko Susa, Yoshiharu Yamauchi, and Hiroshi Kanbe. Vapor phase epitaxially grown InGaAs photodiodes[J]. Transactions on Electron Devices, 1980, 27(1): 92-98.
[114] A R J Marshall, C H Tan, and M J Steer. Extremely low excess noise in InAs electron avalanche photodiodes[J]. Photonics Technology Letters, 2009, 21(13): 866-868.
[115] Kallimani Klio I, et al. Relative intensity noise for laser diodes with arbitrary amounts of optical feedback[J]. Journal of Quantum Electronics, 1998, 34(8): 1438-1446.
[116] G Lachs. Effects of Photon Bunching on Shot Noise in Photoelectric Detection[J]. Journal of Applied Physics, 1968, 39(9): 4193-4199.
[117] J Lin, L Xi, J Li, et al. Low noise optical multi-carrier generation using optical-FIR filter for ASE noise suppression in re-circulating frequency shifter loop[J]. Optics Express, 2014, 22(7): 7852-7864.
[118] K Igarashi, K Katoh, and K Kikuchi. Suppression of ASE noise in the signal band by the spectral spread technique[C]. Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007.
[119] G Felinskyi, and M Dyriv. Noise Suppression Phenomenon in Fiber Raman Amplifier[J]. Measurement Science Review, 2015, 15(3).
[120] E. I. Ackerman, et al. Maximum dynamic range operation of a microwave external modulation fiber-optic link[J]. Transactions on Microwave Theory and Techniques, 1993, 41(8): 1299-1306.
[121] K Williams, L Nichols, and R Esman. Externally-modulated 3 GHz fibre optic link utilizing high current and balanced detection[J]. Electronics Letters, 1997, 33(15): 1327-1328.
[122] E. I. Ackerman, et al. Signal-to-noise performance of two analog photonic links using different noise reduction techniques[C]. IEEE International Microwave Symposium, 2007.
[123] D A I Marpaung. High dynamic range analog photonic links: design and implementation[M]. University of Twente, 2009.
[124] Á. R. Criado, C. D. Dios, P. Acedo. Characterization of ultra-nonlinear SOA in a heterodyne detector configuration with remote photonic local oscillator distribution[J]. IEEE Photonics Technology Letters, 2012, 24(13): 1136-1138.
[125] S Datta, B Das. Electronic analog of the electro-optic modulator[J]. Applied Physics Letters, 1990, 56(7): 665-667.
[126] T Zhang, F Zhang, X Chen, et al. A simple microwave photonic downconverter with high conversion efficiency based on a polarization modulator[C]. Asia Communications and Photonics Conference. 2014.
[127] G. K. Gopalakrishnan, W. K. Burns, C. H. Bulmer. Microwave-optical mixing in LiNbO3, modulators[J]. IEEE Transactions on Microwave Theory & Techniques, 1993, 41(12): 2383-2391.
[128] R. Helkey, J. C. Twichell, C. I. Cox. A down-conversion optical link with RF gain[J]. Lightwave Technology Journal of, 1997, 15(6): 956-961
[129] M. M. Howerton, R. P. Moeller, G. K. Gopalakrishnan, et al. Low-biased fiber-optic link for microwave downconversion[J]. IEEE Photonics Technology Letters, 1996, 8(12): 1692-1694.
[130] J T Gallo, J K Godshall. Comparison of series and parallel optical modulators for microwave down-conversion[J]. IEEE Photonics Technology Letters, 1998, 10(11): 1623-1625
[131] J. F. Coward, C. H. Chalfant, P. H. Chang. A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications[J]. Journal of Lightwave Technology, 1993, 11(12): 2201-2205.
[132] T Jiang, S Yu, R Wu. Photonic downconversion with tunable wideband phase shift[J]. Optics Letters, 2016, 41(11): 2640-2643.
[133] W Zhai, A Wen, W Zhang, et al. A Multichannel Phase Tunable Microwave Photonic Mixer with High Conversion Gain and Elimination of Dispersion-Induced Power Fading[J]. Photonics Journal, 10(1).
[134] Y Gao, A Wen, Z Tu, et al. Simultaneously photonic frequency downconversion, multichannel phase shift, and IQ demodulation for wideband microwave signals[J]. Optics Letters, 2016, 41(19): 4484-4487.
[135] Jiang T, Yu S, Wu R, et al. Photonic downconversion with tunable wideband phase shift[J]. Optics Letters, 2016, 41(11): 2640-2643.
[136] Jiang T, Wu R, Yu S, et al. Microwave photonic phase-tunable mixer[J]. Optics Express, 2017, 25(4): 4519-4527.
[137] F. Heismann. Analysis of a Reset-Free Polarization Controller for Fast Automatic Polarization Stabilization in Fiber-optic Transmission Systems[J]. Journal of Lightwave Technology, 1994, 12(4): 690-699.
[138] N Liu, H Chen, J Li, et al. A novel photonic RF phase shifter based on polarization controller[J]. Microwave & Optical Technology Letters, 2010, 52(11): 2598-2600.
[139] G Donati. Optical communications: Kramers–Kronig receiver[J]. Nature Photonics, 2016, 10(12): 751.
[140] A Mecozzi, C Antonelli, and M Shtaif. Kramers–Kronig coherent receiver[J]. Optica, 2016, 3(11): 1220 – 1227
[141] D Zhu, J Chen, and S Pan. Multi-octave linearized analog photonic link based on a polarization-multiplexing dual-parallel Mach-Zehnder modulator[J]. Optics Express, 2016, 24(10): 11009-11016.
[142] V J Urick, M S Rogge, P F Knapp, et al. Wide-band predistortion linearization for externally modulated long-haul analog fiber-optic links[J]. Transactions on Microwave Theory and Techniques, 2006, 54(4): 1458-1463.
[143] V Magoon, and B Jalali. Electronic linearization and bias control for externally modulated fiber optic link[C]. International Topical Meeting on Microwave Photonics MWP, 2000.
[144] E I Acherman. Broad-band linearization of a Mach-Zehnder electrooptic modulator[J]. Transactions on Microwave Theory and Techniques, 1999, 47(12): 2271-2279.
[145] W K Burns, G K Gopalakrishnan, and R P Moeller. Multi-Octive operation of low-biased modulators by balanced detection[J]. Photonics Technology Letters, 1996, 8(1): 130-132.
[146] X J Meng, A Yacoubian, and J H Bechtel. Electro-optical predistortion technique for linearisation of Mach-Zehnder modulators[J]. Electronics Letters, 2002, 36(25): 1545-1547.
[147] William K Burns. Linearized Optical Modulatorwith Fifth Order Correction[J]. Journal of Lightwave Technology, 1995, 13(8): 1724-1727.
[148] G E Betts, and F J O’Donnell. Microwave Analog Optical Links Usin Suboctave Linearized Modulators[J]. Photonics Technology Letters, 1996, 8(9): 1273-1275.
[149] Y Cui, Y Dai, F Yin, et al. Enhanced Spurious-Free Dynamic Range in Intensity-Modulated Analog Photonic Link Using Digital Postprocessing[J]. Photonics Journal, 2014, 6(2).
[150] H Zhang, M Huang, S Pan, et al. Linear Analog Photonic Link Based on Cascaded Polarization Modulators[C]. IEEE Asia Communications and Photonics Conference (ACP), 2012.
[151] S K Korotly, and R M de Ridder. Dual parallel modulation schemes for low-distortion analog optical transmission[J]. Journal on Selected Areas in Communications, 1990, 8(7): 1377-1381.
[152] Z Xie,Y Song,S Cai, et al. Linearized Phase-Modulated Analog Photonic Link with Large Spurious-Free Dynamic Range[C]. Asia Communications and Photonics Conference, 2016.
[153] D Jian,K Xu,R Duan, et al. Optical Linearization for Intensity-modulated Analog Links Employing Equivalent Incoherent Combination Technique[C]. International Topical Meeting on Microwave Photonics jointly held with the Asia-Pacific Microwave Photonics Conference, 2011.
[154] E Xu,M Zhang,P Li, et al. Dynamic-Range Enhancement in Microwave Photonic Link Based on Single-Sideband Phase Modulation[C]. Asia Communications and Photonics Conference, 2016.
[155] Y Song,T Jiang,L Jian, et al. Linearized Frequency Doubling for Microwave Photonics Links Using Integrated Parallel Mach-Zehnder Modulator[J]. Photonics Journal, 2013, 5(4).
[156] S Li,X Zheng,H Zhang, et al. Highly Linear Radio-Over-Fiber System Incorporating a Single-Drive Dual-Parallel Mach–Zehnder Modulator[J]. Photonics Technology Letters, 2010, 22(24): 1775-1777.
[157] J Yao, F Zeng, and Q Wang. Photonic Generation of Ultrawideband Signals[J]. IEEE Journal of Lightwave Technology, 2007, 25(11): 3219-3225.
[158] 阿戈沃. 非线性光纤光学[M]. 电子工业出版社, 2014
[159] U Gliese, S Norskov, T N Nielsen. Chromatic dispersion in fiber-optic microwave and millimeter-wave links[J]. IEEE Transactions on Microwave Theory & Techniques, 1996, 44(10): 1716-1724.
[160] J L Corral, J Marti, J M Fuster. General expressions for IM/DD dispersive analog optical links with external modulation or optical up-conversion in a Mach-Zehnder electrooptical modulator[J]. IEEE Transactions on Microwave Theory & Techniques, 2001, 49(10): 1968-1976.
[161] U Gliese, S Norskov, and T Nielsen. Chromatic dispersion in fiberoptic microwave and millimeter-wave links[J]. IEEE Transactions on Microwave Theory and Techniques, 1996, 44(10): 1716-1724.
[162] Z Tang, and S Pan. A filter-free photonic microwave single sideband mixer[J]. IEEE microwave and wireless components letters, 2016, 26(1): 67-69.
[163] W Zhai, A Wen, W Zhang, et al. A multi-channel Phase Tunable microwave photonic mixer with high conversion gain and elimination of dispersion-induced power fading[J]. IEEE Photonics Journal, 2018, 10(1).
[164] G H Smith, D. Novak, and Z Ahmed. Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems[J]. Electronics. Letters, 1997, 33(1): 74-75.
[165] L Jing, T Ning, P Li, et al. An Improved Radio Over Fiber System With High Sensitivity and Reduced Power Degradation by Employing a Triangular CFBG[J]. IEEE Photonics Technology Letters, 2010, 22(7): 516-518.
[166] J Park, W V Sorin, and K Y Lau. Elimination of the fibre chromatic dispersion penalty on 1550nm millimeter-wave optical transmission[J]. Electronics. Letters, 1997, 33(6): 512-513.
[167] S R Blais and J Yao. Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating[J]. IEEE Photonics Technology Letters, 2006, 18(21): 2230-2232.
[168] S Y Li, X P Zheng, H Y Zhang, et al. Compensation of dispersion induced power fading for highly linear radio-over-fiber link using carrier phase-shifted double sideband modulation[J]. Optics Letters, 2011, 36(4): 546-548.
[169] Y Gao, A Wen, X Wu, et al. Compensation of the Dispersion-Induced Power Fading in an Analog Photonic Link Based on PM-IM Conversion in a Sagnac Loop[J]. IEEE Journal of Lightwave Technology, 2015, 33(13): 2899-2904.
[170] H Zhang, S Pan, M Huang, et al. Polarization-modulated analog photonic link with compensation of the dispersion-induced power fading[J]. Optics Letters, 2012, 37(5): 866-868.
[171] Z Chen, L Yan, W Pan, et al. SFDR enhancement in analog photonic links by simultaneous compensation for dispersion and nonlinearity[J]. Optics Express, 2013, 21(18): 20999-21009.
[172] D Zhu, J Chen, and S Pan. Linearized phase-modulated analog photonic link with the dispersion-induced power fading effect suppressed based on optical carrier band processing[J]. Optis. Express, 2017, 25(9): 10397-10404.
[173] W Zhai, A Wen, H Zhang, et al. “Improvement of Linearity and Mitigation of Dispersion-Induced Power Fading in Multi-Channel Phase-Modulated Analog Photonic Link Based on a Polarization Modulator.” Journal of Lightwave Technology, 2018, 36(18): 3976-3987.
[174] M Attygalle, C Lim, G J Pendock, et al. Transmission improvement in fiber wireless links using fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 2005, 17(2): 190–192.
[175] J Li, T Ning, L Pei, et al. An improved radio over fiber system with high sensitivity and reduce power degradation by employing a tiriangular CFBG[J] IEEE Photonics Technology Letters, 2010, 22(7): 516–518.
[176] Y Gao, A Wen, Z Peng, et al. Analog Photonic Link with Tunable Optical Carrier to Sideband Ratio and Balanced Detection[J]. IEEE Photonics Journal, 2017, 9(2).
[177] B. Hraimel, X Zhang, Y Pei, et al. Optical single-sideband modulation with tunable optical carrier to sideband ratio in radio over fiber systems[J]. IEEE Journal of Lightwave Technology, 2011, 29(5): 775–781.
[178] Yi Zhang, F Zhang, and S Pan. Optical Single Sideband Modulation With Tunable Optical Carrier-to-Sideband Ratio[J]. IEEE Photonics Technology Letters, 2014, 26(7): 653–655.
[179] W Zhai, A Wen, D Shan. Multidimensional Optimization of a Raido Over Fiber Link[J]. IEEE Transactions on Microwave Theory & Techniques, 2021, 69(1): 210-221.
[180] B M Haas, T E Murphy, et al. Linearized Downconverting Microwave Photonic Link Using Dual-Wavelength Phase Modulation and Optical Filtering[J]. IEEE Photonics Journal, 2011, 3(1).
[181] G Li, T Shang, Y Zhang, et al. SFDR and gain enhancement in photonic downconversion link by linearization and full spectrum utilization[J] Applied Optics, 2019, 58(3): 579-587.
[182] W Zhai, A Wen and D Shan. Linearized Photonic Microwave and Mm-wave Mixer with Dispersion Induced Power Fading Compensation[J], IEEE Transactions on Microwave Theory and Techniques, 2020, 68(12): 5335-5346.
[183] V R Pagán, B M Haas, and T E Murphy. Linearized electrooptic microwave downconversion using phase modulation and optical filtering[J]. Optics Express, 2011, 19(2): 883-895.
[184] P Rugeland, Z Yu, C Sterner, et al. Photonic scanning receiver using an electrically tuned fiber Bragg grating[J]. Optics Letters, 2009, 34(24): 3794-3796.
[185] S T Winnall, and D B Hunter. A fibre Bragg grating based scanning receiver for electronic warfare applications[C]. International Topical Meeting on Microwave Photonics MWP, 2001.
[186] D Onori, F Scotti, F Laghezza, et al. A Photonically-enabled Compact 0.5 - 28.5 GHz RF Scanning Receiver[J]. Journal of Lightwave Technology, 2018, 36(10): 1831-1839.
[187] R E Brooks, and J Z Wilcox. SAW RF Spectrum Analyzer/Channelizer Uing a Focuing Phased Array Transducer[A]. In Proceedings of Ultrasonics Symposium[C], SanFrancisco: IEEE, 1985: 81-95.
[188] P F Snawerdt III, D Koontz, R K Morse, et al. Acousto-optic channelizer-based ultra-wideband signal processor U.S. 908452[P/OL]. 1997-08-07[1998-09-08].
[189] D B Hunter, and R A Minasian. Microwave optical filters using in-fiber Bragg grating arrays[J]. IEEE Microwave and Guided Wave Letters, 1996, 6(2): 103–105.
[190] X Zou, W Pan, B Luo, et al. Photonic approach for multiple-frequency-component measurement using spectrally sliced incoherent source[J]. Optics Letters, 2010, 35(3): 438-440.
[191] X Xie, Y Dai, Y Ji, et al. Broadband Photonic Radio-Frequency Channelization Based on a 39-GHz Optical Frequency Comb[J]. Photonics Technology Letters, 2012, 24(8): 661-663.
[192] Z Tang, Z Dan, and S Pan. Coherent Optical RF Channelizer With Large Instantaneous Bandwidth and Large In-Band Interference Suppression[J]. Journal of Lightwave Technology, 2018, 36(19): 4219-4226.
[193] X Xie, Y Dai, K Xu, et al. Broadband Photonic RF Channelization Based on Coherent Optical Frequency Combs and I/Q Demodulators[J]. Photonics Journal, 2012, 4(4).
[194] D Zhu, W Chen, C Xie, et al. Microwave channelizer based on a photonic dual-output image-reject mixer[J]. Optics Letters, 2019, 44(16): 4052-4055.
[195] H Jiang, E Wang, J Zhang, et al. Polarization splitter based on dual-core photonic crystal fiber[J]. Optics Express, 2014, 22(25): 30461-30466.
[196] T Y L Ang, J R Ong, E Sahin, et al. Broadband and fabrication tolerant silicon polarization beam splitters with ultra-high extinction ratio of 40 dB[C]. Optical Fiber Communication Conference, 2018, OSA, paper M3i. 2.
中图分类号:

 N34    

馆藏号:

 51229    

开放日期:

 2021-11-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式