- 无标题文档
查看论文信息

中文题名:

 SBR方法在若干复杂情形电磁特性预估中的应用    

姓名:

 黄瑜    

学号:

 20051212087    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070208    

学科名称:

 理学 - 物理学 - 无线电物理    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 西安电子科技大学    

院系:

 物理学院    

专业:

 物理学    

研究方向:

 计算电磁学高频算法及其应用    

第一导师姓名:

 魏兵    

第一导师单位:

 西安电子科技大学    

完成日期:

 2023-06-14    

答辩日期:

 2023-05-29    

外文题名:

 Application of SBR method in electromagnetic characteristic prediction in some complex situations    

中文关键词:

 弹跳射线法 ; 雷达散射截面 ; 雷达一维距离像 ; 微波暗室 ; 复合目标    

外文关键词:

 Shooting and Bouncing Ray ; Radar Cross Section ; Radar One-Dimensional Range Profile ; Microwave Anechoic Chamber ; Combinative Objects    

中文摘要:

各类复杂情形下的电磁特性预估与分析一直是计算电磁学中的重要研究课题,该类问题通常具有电尺寸大、几何外形复杂、难以开展实验测量、难以获取真实电磁参数等特点,但又极具工程应用价值,因此得到了许多学者的广泛关注。计算电磁学中的高频近似方法因其计算效率高,消耗计算资源少,在研究此类问题时相比低频数值方法具有更多优势。本文以经典高频方法——弹跳射线法为主要算法,对微波暗室、飞机目标、大型油库等复杂情形下的目标电磁特性进行初步计算和分析。文章主要内容如下:

(1)简单介绍了弹跳射线法的基础理论,重点说明了算法中射线管生成、线面求交、射线路径与场强跟踪、远区场积分等关键步骤。介绍了雷达散射截面、雷达一维距离像等常见的表征目标电磁散射特性的物理量。对复杂目标的建模流程,以及MSH格式文件的组织方式进行了说明。最后选取部分典型目标进行计算,验证了算法的正确性。

(2)使用弹跳射线法对微波暗室的指向精度进行初步计算和分析。以某暗室模型为例,介绍了暗室的内部构造,吸波材料贴合情况、发射天线的频率和辐射方向图等计算条件,使用弹跳射线法对若干收发点的反射电平和指向角误差进行了计算,结果表明发射天线频率、收发点位置等因素均会对暗室性能产生影响。

(3)使用弹跳射线法分析某飞机目标的电磁散射特性。计算了某飞机目标分别在空载和挂载炸弹情况下的RCS和雷达一维距离像,结果表明从飞机下方能更好地探测到其挂载情况。另外,在飞机表面涂敷介质材料,对比了涂敷前后的RCS值,结果表明涂敷材料后能够在一定程度上降低雷达回波强度,具体效果与观察角度、入射频率、涂敷材料厚度等因素有关。

(4)使用弹跳射线法计算油库及背景复合目标的电磁散射特性。使用时域方法计算了某大型油库目标不同观察角度下的时域回波,并利用傅里叶变换得到其宽频带内的RCS值,使用频域方法计算单个频点下,不同观察角度时的单站RCS和雷达一维距离像,计算结果表明该复合目标的电磁散射特性随入射角度和频率的不同表现出丰富的变化。

外文摘要:

Prediction and analysis of electromagnetic properties in various complex situations has always been a vital research topic in computational electromagnetics. These problems are usually characterized by large electrical size, complex geometry, difficulty in carrying out experimental measurements, and difficulty in obtaining true electromagnetic parameters. The topic has gained wide attention from the academic community because of its great engineering application value. The high frequency approximation method in computational electromagnetism has more advantages than the low frequency numerical method in studying such problems because of its high computational efficiency and less computational resources. This paper mainly uses the classical high-frequency method—The shooting and Bouncing Ray(SBR) to calculate and analyze the targets’ electromagnetic characteristics in complex situations such as microwave anechoic chamber, aircraft target and large oil depot. The main contents of thesis are as follows:

 

(1) The basic theory of Shooting and Bouncing Ray is briefly introducedwith emphasis on the key steps, for instance:ray tube generation, line intersection, ray path and field strength tracking, and far field integration. Then the common physical quantities that characterize the target’s electromagnetic scattering characteristics (radar cross section and radar one-dimensional range profile etc.) are presented in the paper.The modeling process for complex objects and the organization of MSH format files are further elaborated. Finally, the author sorts out some typical targets for calculation to verify the accuracy of the algorithm.

 

(2) Preliminary calculation and analysis of the pointing accuracy of the microwave anechoic chamber are conducted by using Shooting and Bouncing Ray. Taking the microwave anechoic chamber model as an example, the author expounds internal structure of the darkroom, the fitting of absorbing materials andthe frequency and radiation pattern of the transmitting antenna etc.. Then the reflection level and the pointing angle errors of several transmit-receive points are calculated by SBR. The results show that the frequency of the transmitting antenna and the position of the transmit-receive points both affect the performance of the microwave anechoic chamber.

 

(3) Based on the author’s analysis of the electromagnetic scattering characteristic for an aircraft target by using SBR. Then RCS and radar range profiles of an airplane target are calculated respectively in no-loading and mounting situations. The results show that the mounting situation can be better detected from the bottom of airplane. In addition, The RCS values before and after coating are compared by the author. The results reveal that the RCS values after coating can reduce the radar echo intensity to a certain extent. The specific effect is related to the observation angle, incidence frequency, coating material thickness and other factors.

 

(4) The electromagnetic scattering characteristics of fuel depot and background combinative objects are calculated by Shooting and Bouncing Ray. By using the time domain method ,the author calculates the time-domain echoes of a large fule reservoir target from different observation angles, and the RCS values in the broadband are using the Fourier transform. In addition, the frequency-domain method is utilized for the calculations of the single-station RCS and the one-dimensional range profile of radar from different observation perspectives under a single frequency. The calculationresults demonstrate that the electromagnetic scattering characteristics of the composite target vary abundantlywith the incident angle and frequency.

参考文献:
[1]李腾飞. 复杂环境下目标的电磁特性研究[D]. 南京师范大学, 2020.
[2]盛新庆. 计算电磁学要论.第一版[M]. 北京:科学出版社, 2004. 1-2.
[3]文舸一. 计算电磁学的进展与展望[J]. 电子学报, 1995, 23(10): 62-69.
[4]周磊. 复合目标电磁散射高频方法研究[D]. 电子科技大学, 2015.
[5]范文文. 基于TDSBR和TDEEC算法的电大目标散射特性分析[D]. 西安电子科技大学, 2020.
[6]姜宇轩. 电大尺寸目标电磁散射的高频方法研究[D]. 西安电子科技大学, 2020.
[7]K.K. Srivastava,S.R. Ramasamy. Design, Construction and Performance Evaluation of Microwave Anechoic Chamber for Antenna Measurements[J]. IETE Journal of Research,2015,26(5).
[8]Liu Jin,Li Gaosheng,Ma Liang,Hu Wangqiu,Li Yongzhen,Wang Xuesong. Dynamic measurement of micro-motion targets in microwave anechoic chamber[P]. IET International Radar Conference 2009,2009.
[9]魏秋方, 邵芸, 李坤等. 南方典型湿地植被微波暗室测量与散射特性分析[J]. 激光与光电子学进展, 2022, 59(02):429-440.
[10]尚迎雪. 基于微波远场的雷达目标特性缺陷检测技术研究[D]. 南京航空航天大学, 2021.
[11]Xin Zhonghua,Zhang Xiaodong,Tao Liu,He Chen. Design of High Power EMI Filter for Anechoic Chamber[J]. Journal of Physics: Conference Series,2020,1549(2).
[12]李培红, 刘曼, 蔡金珠. 天线测量微波暗室设计思路[J]. 环境技术,2015,33(03):50-53.
[13]詹海兵. 微波暗室的综合设计[D]. 西安电子科技大学, 2017.
[14]胡青林. 微波暗室的分析设计[D]. 西安电子科技大学, 2017.
[15]李想, 张锐, 赵金龙等. 基于几何光学法和惠更斯原理的微波暗室性能分析[J]. 数学的实践与认识, 2012, 42(14):192-201.
[16]齐玉涛, 张馨元, 林刚等. 飞机目标动态RCS仿真技术研究[J]. 电波科学学报, 2019, 34(01):97-103.
[17]马前阔, 张小宽, 宗彬锋等. 双基地雷达隐身飞机动态电磁散射特性[J]. 探测与控制学报, 2022, 44(06):70-75.
[18]Wang Jianbo,Ye Jianyu,Hua Guang. Radar cross section statistical characteristics of stealth aircraft using the Weibull‐generalized gamma mixture model[J]. Microwave and Optical Technology Letters,2022,64(9).
[19]贾道金, 张红梅. 论科技革命影响军事领域的基本途径与机理[J]. 国防科技, 2015,36(06):4-8.
[20]贺文涛. 复杂地面背景下目标电磁散射特性研究[D]. 电子科技大学, 2022.
[21]王安琪. 粗糙面及其与目标复合电磁散射的矩量法研究[D]. 西安电子科技大学, 2013.
[22]AZZI S, HUANG Y, SUDRET B, et al. Surrogate modeling of stochastic functions-application to computational electromagnetic dosimetry[J]. International Journal for Uncertainty Quantification, 2019, 9(4): 351-363.
[23]魏兵, 陈娟, 何欣波等. 电磁场时域数值算法的新进展[J]. 电波科学学报, 2020, 35(01):55-68
[24]葛德彪, 魏兵. 电磁波时域计算方法.第一版[M]. 西安电子科技大学出版社, 2014.12.
[25]关莹. 电大目标的时域及频域散射场计算方法研究[D]. 西安电子科技大学, 2012.
[26]葛德彪, 闫玉波. 电磁波时域有限差分法[M]. 西安电子科技大学出版社, 2005.
[27]Lopez-Menchon Hector,Heldring Alexander,Ubeda Eduard. A GPU parallel randomized CUR compression method for the Method of Moments[J]. Computer Physics Communications,2023,287.
[28]哈林顿. 计算电磁场的矩量法[M]. 国防工业出版社, 1981
[29]Anastasis C. Polycarpou. Introduction to the Finite Element Method in Electromagnetics[M].Morgan & Claypool Publishers:2006-12-01.
[30]Reddy J N. Introduction to the finite element method[M]. McGraw-Hill Education, 2019.
[31]Bathe K J. Finite element method[J]. Wiley encyclopedia of computer science and engineering, 2007: 1-12.
[32]D. Zarifi,H. Oraizi,M. Soleimani. Electromagnetic scattering from inhomogeneous planar-layered chiral media using the finite difference method[J]. Journal of Electromagnetic Waves and Applications,2013,27(5).
[33]陈剑, 刘春明, 王茂海等. 广义有限差分法在静态电磁场计算中的应用[J]. 电工技术学报, 2018, 33(07)
[34]SUN B, YANG P, KATTAWAR G W, et al. Physical-geometric optics method for large size faceted particles[J]. Optics Express, 2017, 25(20): 24044-24060.
[35]Zubia Joseba,Aldabaldetreku Gotzon,Durana Gaizka. Geometric optics analysis of inverted graded index fibers[J]. Journal of Optics,2022,24(11).
[36]张策. 物理光学法及其迭代加速算法在电磁散射中的应用[D]. 西安电子科技大学, 2019.
[37]覃璐瑶. 物理光学法在卫星电磁干扰问题中的应用研究[D]. 西安电子科技大学, 2015.
[38]汪茂光. 几何绕射理论[M]. 西安电子科技大学出版社, 1994.
[39]Pelosi G , Rahmat-Samii Y , Volakis J L . High-Frequency Techniques in Diffraction Theory: 50 Years of Achievements in GTD, PTD, and Related Approaches [Special section introduction][J].IEEE Antennas and Propagation Magazine, 2013, 55(3):16-17.
[40]Frank Weinmann. Ray Tracing With PO/PTD for RCS Modeling of Large Complex Objects[J]. IEEE Transactions on Antennas and Propagation. 2006,6,54(6). 1797-1806.
[41]S. W. Lee, H. Ling, R. Chou. Ray-tube integration in shooting and bouncing ray method[J]. Microwave and Optical Techonlogy Leters. 1988,10,1(1)
[42]S. W. Lee, R. Chou. A Versatile Reflector Antenna Pattern Computation Method: Shooting and Bouncing Rays[J]. Microwave and Optical Technology Leiters. 1988,5,1(3). 81-8
[43]H. Ling, R. Chou, S. W. Lee. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity[J]. IEEE Transactions on Antennas and Propagation. 1989,5, 37(1). 194-205
[44]Jeng S K, Bhalla R, Lee S W, et al. A time-domain SBR technique for range-profile computation[J]. IEEE Trans. Antennas Propagat., 1993.
[45]黄沛霖, 武哲. 一种射线追踪法的效率改进算法研究[J]. 北京航空航天大学学报, 2003(07):607-610.
[46]Suk S H. Multi-resolution grid algorithm in the SBR and its application to the RCS calculation[J]. Microwave and Optical Technology Letters, 2001, 9(6): 394-397.
[47]殷红成, 朱国庆, 董纯柱等. 基于自适应射线管分裂的多次反射计算方法[J]. 系统工程与电子技术, 2013(4) :7.
[48]J.K.Bang, B .C.Kim. Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms [J]. Electromagn. Waves and Appl,2007, 21(6): 829-840.
[49]荆朝阳. 解析TDSBR算法及其在复合目标电磁散射中的应用[D]. 西安电子科技大学, 2018.
[50]高鹏程. 基于GPU计算平台的电磁散射计算并行加速技术[D]. 浙江大学, 2013.
[51]刘芫健, 张业荣, 朱洪波等. 一种新型时域反射系数近似方法[J]. 电波科学学报, 2012, 27(1):5.
[52]丁剑博. 基于TDSBR-FDTD混合算法的多尺度目标电磁散射研究[D]. 西南交通大学, 2015.
[53]Y. Huang,Z. Zhao,X. Li,Z. Volume Equivalent SBR Method for Electromagnetic Scattering of Dielectric and Composite Objects[J]. IEEE Transactions on Antennas and Propagation, 2021.5:2842-2852.
[54]郭文玲. 无线信道特性的时域高频算法分析[D]. 南京邮电大学, 2012.
[55]梅晓蔚. 综合弹跳射线法的复杂电磁环境仿真计算研究[D]. 浙江大学, 2017.
[56]李腾飞. 复杂环境下目标的电磁特性研究[D]. 南京师范大学, 2020.
[57]谭小龙. 逆合成孔径雷达图像仿真与目标识别技术研究[D]. 安徽大学, 2020.
[58]黄思. 3Dsmax真实场景效果制作与应用性的分析[J]. 科技风,2018(19):95-97.
中图分类号:

 O45    

馆藏号:

 56526    

开放日期:

 2023-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式