- 无标题文档
查看论文信息

中文题名:

 LTE-A异构网络下家庭小区频谱资源分配问题研究    

姓名:

 段瑞猛    

学号:

 1401120153    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081001    

学科名称:

 通信与信息系统    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 西安电子科技大学    

院系:

 通信工程学院    

专业:

 通信与信息系统    

第一导师姓名:

 马文平    

第一导师单位:

 西安电子科技大学    

完成日期:

 2017-06-14    

答辩日期:

 2017-05-26    

外文题名:

 Research on Spectrum Resource Allocation of Femtocell in LTE-A Heterogeneous Network    

中文关键词:

 LTE-A ; 家庭小区 ; 资源分配 ; 认知无线电 ; 博弈算法 ; 载波聚合    

外文关键词:

 LTE-A ; Femtocell ; Resource Allocation ; Cognitive Radio ; Game Theory ; Carrier Aggregation    

中文摘要:

随着科学技术的不断进步,无线通信领域也发生了日新月异的变化。与此同时,用户的业务需求也在日益增加,无线通信的发展与用户多媒体数据需求的不匹配仍然是现今的主要矛盾。尤其在室内环境中,传统通信信号经过较长距离的衰减与损耗,使得室内通信质量与覆盖性能较差。家庭小区在此背景之下应运而生。家庭基站是一种部署在室内环境,服务用户范围相对较小的即插即用设备。家庭基站的部署不仅可以提升室内用户通信质量,满足室内用户高速数据传输速率,同时还可以卸载宏小区通信压力,提高整个通信网络的容量。然而,家庭小区的部署带来了组网方式和网络结构的变化,为家庭小区的管理带来严峻考验。尤其是家庭小区随意性,密集性以及分布式部署方式,会不可避免的带来同层干扰(家庭小区之间的相互干扰)以及跨层干扰(宏小区与家庭小区之间的相互干扰)。对频谱资源的合理利用及有效管理,是抑制家庭小区干扰的主要方式之一。

本文研究了家庭小区之间的同层干扰问题,并且利用不同技术手段,提出了三种全分布式资源分配策略。本文首先利用认知无线电技术,提出了一个简单的认知家庭小区资源分配策略。该策略将认知无线电技术引入家庭小区,使家庭基站可以感知周围环境,从而做出合适的频谱选择。然后,利用博弈理论,提出了一个全分布式比例资源分配策略。该策略在博弈算法的基础上,设计了一个资源需求减半策略和一个概率放弃策略,不仅可以保证高优先级用户的服务质量,并且使得其他用户的分配具有很好的比例公平性。最后,本文首次在家庭小区载波聚合领域引入全分布式资源分配思想,基于载波聚合技术,设计了一个全分布式动态资源分配策略。该策略设计了一个简单有效的算法,为各个家庭小区分配一个必需的主分量载波和相应的辅分量载波。该算法非常适合动态分量载波分配场景,尽可能的避免载波之间的干扰产生,并保证了分配的比例公平性。

仿真结果表明,对比于相关领域的其他资源分配策略,提出的算法在各个方面(比如公平性,频谱空间服用,信干噪比,收敛性等)都具有明显优势。最后,本文总结比较了设计的三个算法的优势与不足,并对下一步的工作内容做出展望。本文的工作为家庭小区的部署提供了有效的参考方案。

外文摘要:

With the development of science and technology, wireless communications has also undergone enormous changes. At the same time, the user's business needs are also increasing. The development of wireless communications still can not meet the user's multimedia data needs. Especially in the indoor environment, because of the traditional communication signal through a long distance attenuation and loss, the indoor communication quality and coverage performance is poor. Femtocells emerge as the times require. A home eNodeB is a plug-and-play device which deployed in an indoor environment and serves users in small range. The deployment of Femtocell can not only improve the communication quality of indoor user, meet the indoor user’s high-speed data rate, but also unload the macrocell’s communication pressure, improve the capacity of the entire communication network. However, the deployment of the Femtocell has changed network structure, which brought a serious ordeal for the management of the Femtocell. In particular, the randomness, denseness and distributed deployment of the Femtocell will inevitably lead to cross-tier interference between the Femtocell and the macrocell, as well as the intra-tier interference between the Femtocell. The effective management of spectrum resources is one of the main ways to mitigate the interference.

The intra-tier interference between Femtocells was studied, and three kinds of fully distributed resource allocation strategies by different technical means was proposed in this paper. Firstly, a simple Cognitive Femtocell resource allocation strategy is proposed by using cognitive radio technology. This strategy integrates cognitive radio technology into the Femtocells, Femtocell can avoid intra-tier interference by sensing environment and according alters its resource. Secondly, using the game theory, a fully distributed proportional resource allocation strategy was proposed. Based on the game algorithm, a half-allocation strategy and a probability quit strategy was designed in this strategy, which can guarantee the service quality of high priority users, and guarantee other users have a good fairness. Finally, the idea of full distributed resource allocation in the field of Femtocell carrier aggregation was introduced, and a fully distributed dynamic resource allocation strategy based on carrier aggregation technology was proposed. A simple but efficient algorithm was designed in this strategy. The algorithm allocates a necessary principal component carrier and the corresponding secondary component carrier for each Femtocell. This algorithm is very suitable for carrier allocation scene, it tries to avoid the interference between the carriers, and ensure the fairness.

The simulation results show that the proposed algorithms have obvious advantages in some aspects (such as fairness, spectrum spatial Reuse, SINR, convergence, etc.) compared with other resource allocation strategies in related fields. Finally, the advantages and disadvantages of the proposed three algorithms was summarized, and the next work plan was expected. The work of this paper provides effective reference schemes for the deployment of Femtocell.

参考文献:
参考文献
[1] 张玉艳, 于翠波. 移动通信[M]. 北京: 人民邮电出版社, 2010.
[2] ITU-R Rep. M. 2134. Requirements related to technical performance for IMT-Advanced radio interface(s)[S]. 2008.
[3] PARKVALL S, FURUSKAR A, DAHLMAN E. Evolution of LTE toward IMT-advanced[J]. IEEE Communications Magazine, 2011, 49(2): 84-91.
[4] ANDREWS J G. Seven ways that HetNets are a cellular paradigm shift[J]. IEEE Communications Magazine, 2013, 51(3): 136-144. 
[5] DAMNJANOVIC A, MONTOJO J, WEI Y, et al. A survey on 3GPP heterogeneous networks[J]. IEEE Wireless Communications, 2011, 18(3): 10-21.
[6] KHANDEKAR A, BHUSHAN N, TINGFANG J, et al. LTE-Advanced: Heterogeneous networks[C]. European Wireless Conference (EW), 2010, 978-982.
[7] AL-SHIBLY M A M, HABAEBI M H, CHEBIL J. Carrier aggregation in long term evolution advanced[C]//Control and System Graduate Research Colloquium (ICSGRC). New York: IEEE, 2012: 154-159.
[8] LOPEZ-PEREZ D, ROCHE G D L, et al. Interference Avoidance and Dynamic Frequency Planning for WiMAX Femtocells Networks[C]//IEEE International Conference on Communication Systems, Singapore , Nov 19-21, 2008. New York: IEEE, 2008: 1579-1584.
[9] ANDREWS J G, CLAUSSEN H, DOHLER M, et a1. Femtocells: Past, present, and future[J]. IEEE Journal on Selected Areas in Communications (JSAC), 2012, 30(3): 497-508.
[10] CHANDRASEKHAR V, ANDREWS J G, GATHERER A. Femtocell networks: a survey[J].IEEE Communications Magazine, 2008, 46(9), 59-67.
[11] CLAUSSEN H. Performance of Macro- and Co-Channel Femtocells in a Hierarchical Cell Structure[C]// IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, September, 2007. New York: IEEE, 2007: 1-5.
[12] LOPEZ-PEREZ D, VALCARCE A, DE LA ROCHE G, et al. OFDMA Femtocells: A roadmap on interference avoidance[J]. IEEE Communications Magazine.2009, 47(9):41-48.
[13] KPOJIME H O, SAFDAR G A. Interference mitigation in cognitive radio based femtocells[J]. IEEE Communications Surveys & Tutorials, 2015, 17(3): 1511-1534.
[14] MA Y, LV T, ZHANG J, et al. Cognitive interference mitigation in heterogeneous femto-macro cell networks[C]//Personal Indoor and Mobile Radio Communications. New York: IEEE, 2012: 2131–2136.
[15] HATOUM A, AITSAADI N, LANGAR R, et al. FCRA: Femtocell Cluster-Based Resource Allocation Scheme for OFDMA Networks[C]// IEEE International Conference on Communications. New York: IEEE, 2011: 1-6.
[16] UYGUNGELEN S, AUER G, BHARUCHA Z. Graph-Based Dynamic Frequency Reuse in Femtocell Networks[C]// IEEE Vehicular Technology Conference. New York: IEEE, 2011:1-6.
[17] HATOUM A, LANGAR R, AITSAADI N, PUJOLLE G. Q-FCRA: QoS based OFDMA femtocell resource allocation algorithm[C]//IEEE International Conference on Communications, New York: IEEE, 2012: 5151–5156.
[18] SUNDARESAN K, RANGARAJAN S. Efficient resource management in OFDMA Femto cells[C]// international symposium on Mobile ad hoc networking and computing, May 18-21, 2009, New Orleans, USA. New York: ACM, 2009:33-42.
[19] CHANDRASEKHAR V, ANDREWS J. Spectrum allocation in tiered cellular networks [J]. IEEE Transactions on Communications, 2009, 57(10): 3059–3068.
[20] COSTA G W O D, CATTONI A F, KOVACS I Z, et al. A scalable spectrum-sharing mechanism for local area network deployment[J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1630–1645.
[21] ELLENBECK J, HARTMANN C, BERLEMANN L. Decentralized inter-cell interference coordination by autonomous spectral reuse decisions[C]// European Wireless Conference. New York: IEEE, 2008: 1–7.
[22] COSTA G W O, CATTONI A F, KOVACS I Z, et al. A fully distributed method for dynamic spectrum sharing in femtocells[C]//IEEE Wireless Communications and Networking Conference Workshops, 1-1 April 2012, Paris, France. New York: IEEE ,2012: 87–92.
[23] GARCIA L G U, PEDERSEN K L, MOGENSEN P E. Autonomous component carrier ion: Interference management in local area environments for LTE-advanced[J]. IEEE Communications Magazine, 2009, 47(9): 110–116.
[24] LI Z, TIAN H, GAO L, et al. A component carrier ion scheme in macro and CSG femtocells co-channel deployment for LTE-advanced downlink systems[C]// IEEE International Symposium on Personal, Indoor, and Mobile Radio Communication. New York: IEEE, 2014: 175-1179.
[25] GE W, HUANG Q, YI S, et al. A Novel Component Carrier Selection and Collision Avoidance Scheme in Femtocell Networks[C]// IEEE Vehicular Technology Conference. New York: IEEE, 2014:1-5.
[26] 3GPP. TR 36.913-v810-2009, Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)[S], Sophia-Antipolis, France: 3GPP, 2009.
[27] SHEN Z, PAPASAKELLARIOU A, et al. Overview of 3GPP LTE-Advanced Carrier Aggregation for 4G Wireless Communications[J]. IEEE Communications Magazine, 2012, 50(2): 122–130.
[28] 3GPP. TS 32.541-v14-2014, Telecommunication management, Self-Organizing Networks (SON), Self-healing concepts and requirements[S], Sophia-Antipolis, France: 3GPP, 2014.
[29] HUANG L, ZHU G, DU X. Cognitive femtocell networks: an opportunistic spectrum access for future indoor wireless coverage[J]. IEEE Wireless Communications, 2013, 20(2): 44–51.
[30] SAQUIB N, HOSSAIN E, LE L B, et al. Interference management in OFDMA femtocell networks:Issues and approaches[J]. IEEE Wireless Communications, 2012, 19(3): 86-95.
[31] LOPEZ-PEREZ D, GUVENC I, DE LA ROCHE G, et al. Enhanced intercell interference corodination challenges in heterogeneous networks[J]. IEEE Wireless Communications, 2011, 189(3): 22-30.
[32] LOPEZ-PEREZ D, LADANYI A, JUTTNER A, et al. OFDMA femtocells: Intracell handover for interference and handover mitigation in two-tier networks[C]// IEEE Wireless Communications and Networking Conference. New York: IEEE, 2010: 1-6.
[33] ZAHIR T, ARSHAD K, NAKATA A, et al. Interference management in femtocells[J]. IEEE Communications Surveys & Tutorials, 2013, 159(1): 293-311.
[34] SON K, LEE S, YI Y, et al. REFIM: A practical interference management in heterogeneous wireless access networks[J]. IEEE Journal on Selected Areas in Communications, 2011, 29(6): 1260-1272.
[35] SUN Y, JOVER R P, WANG X. Uplink interference mitigation for OFDMA femtocell networks[J]. IEEE Transactions on Wireless Communications, 2012, 11(2): 614-625.
[36] GUVENC I, JEONG M, WATANABE F. A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation[J]. IEEE Communications Letters, 2008, 12(12): 880–882.
[37] ZHANG Y, LI Y Y, SOUSA E S, et al. Pilot power minimization in HSDPA femtocells[C]// IEEE Global Telecommunications Conference. New York: IEEE, 2010: 1-5.
[38] PARK S, SEO W, CHOI S, et al. A beamforming codebook restriction for cross-tier interference coordination in two-tier femtocell networks[J]. IEEE Transactions on Vehicular Technology, 2011, 60(4):1651–1663.
[39] HAHNE E. Round-robin scheduling for max–min fairness in data networks[J]. IEEE Journal on Selected Areas in Communications, 1991, 9(7): 1024–1039.
[40] MA Y, LV T, ZHUANG J, et al. Cognitive interference mitigation in heterogeneous femto-macro cell networks[C]// IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. New York: IEEE, 2012: 2131-2136.
[41] GUR G, BAYHAN S, ALAGOZ F. Cognitive femtocell networks:An overlay architecture for localized dynamic spectrum access [dynamic spectrum management][J]. IEEE Wireless Communications, 2010, 17(4): 62–70.
[42] YE Z, MEMIK G, GROSSPIETSCH J. Energy Detection using Estimation Noise Variance for Spectrum Sensing in Cognitive Radio Networks[C]//IEEE Communications Society subject matter experts for publication in the WCNC. New York: IEEE, 2008:711-716.
[43] SHELLHAMMER S, SHANKAR S, DANDRA R, et al. Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs[C]// ACM International Workshop on Technology and Policy for Accessing Spectrum. New York: ACM. 2006:1-9.
[44] QUAN Z, CUI S, SAYED A H. Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio Networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2008, 2(1):28-40.
[45] XU C, SHENG M, WANG X, et al. Distributed Subchannel Allocation for Interference Mitigation in OFDMA Femtocells: a Utility-based Learning Approach[J]. IEEE Transactions on Vehicular Technology, 2015, 64(6):2463-2475.
[46] HATOUM A, LANGAR R, AITSAADI N, et al. Cluster-based Resource Management in OFDMA Femtocell Networks with QoS Guarantees[J]. IEEE Transactions on Vehicular Technology, 2014, 63(5):2378–2391.
[47] 3GPP. TS 36.300-v10.5.0-2011. Evolved universal terrestrial radio access (E-UTRA) and evolved universal terrestrial radio access network (E-UTRAN)[S]. Sophia-Antipolis, France: 3GPP, 2011.
[48] LIEN S Y, LIN Y Y, CHEN K C. Cognitive and game-theoretical radio resource management for autonomous femtocells with QoS guarantees[J]. IEEE Transactions on Wireless Communications, 2011, 10(7): 2196-2206.
[49] GESBERT D, KIANI S G, GJENDEMSJ A, et al. Adaptation, coordination, and distributed resource allocation in interference-limited wireless networks[J]. Proceedings of the IEEE, 2007, 95(12): 2393-2409.
[50] MONDERER D, SHAPLEY L. Potential games[J].Games and Economic Behavior, 1996,14(1): 124-143.
[51] COSTA G W O, CATTONI A F, KOVACS I Z, et al. A Fully Distributed Method for Dynamic Spectrum Sharing in Femtocells[C]//Proceedings of IEEE WCNCW. Paris: IEEE, 2012:87–92.
[52] FRIEDMAN JW, MEZZETTI C. Learning in Games by Random Sampling[J]. Journal of Economic Theory, 2001, 98(1): 55–84.
[53] 3GPP. TR36.814-v9.0.0-2010. Further advancements for E-UTRA physical layer aspects[S]. Sophia-Antipolis, France: 3GPP, 2011.
[54] Iwamura M, Etemad K, Fong M, et al. Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update][J]. IEEE Communications Magazine, 2010, 48(8): 60-67.
[55] Motorola. PCFICH in carrier aggregation[C]//3GPP TDocs (written contributions) at Meeting: R1-60, Feb 22-26, 2010, San Francisco, CA, USA. Sophia-Antipolis, France: 3GPP, 2010.
[56] ZHANG L, YANG L, YANG T. Cognitive Interference Management for LTE-A Femtocells with Distributed Carrier Selection[C]// IEEE Vehicular Technology Conference. New York: IEEE, 2010:1-5.
[57] GARCIA L G U, KOVACS I Z, PEDERSEN K I, et al. Autonomous Component Carrier Selection for 4G Femtocells - A fresh look at an old problem[J].IEEE Journal on Selected Areas in Communications, 2012, 30(3): 525-537.
[58] AMIN P, TIRKKONEN O, HENTTONEN T, et al. Primary component carrier ion for a heterogeneous network: A comparison of Selfish, Altruistic and Symmetric Strategies[C]// IEEE Wireless Communications and Networking Conference Workshops. New York: IEEE, 2012:115-119.
中图分类号:

 11    

馆藏号:

 11-35037    

开放日期:

 2017-12-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式