- 无标题文档
查看论文信息

中文题名:

 工业园区应急设施选址研究    

姓名:

 武兵    

学号:

 17061212273    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085240    

学科名称:

 物流工程    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 西安电子科技大学    

院系:

 经济与管理学院    

专业:

 物流工程与管理    

研究方向:

 应急管理    

第一导师姓名:

 于江霞    

第一导师单位:

  西安电子科技大学    

第二导师姓名:

 张敏英    

完成日期:

 2020-04-15    

答辩日期:

 2020-05-23    

外文题名:

 Research on Location Selection of Emergency Facilities in Industrial Park    

中文关键词:

 工业园区 ; 应急疏散 ; 避难点选址 ; 消防站 ; 模拟退火算法    

外文关键词:

 industrial park ; emergency evacuation ; evacuation site selection ; fire station ; simulated annealing algorithm    

中文摘要:

近年来,工业园区作为区域经济发展的新焦点,工业园区的建设数量一直持续增多,规模也在不断扩大。由于风险聚集效应,工业园区内的安全问题越来越突出,危险化学品事故也层出不穷,事故一旦发生会对周边人群的生命财产安全造成极大威胁。而如何对工业园区内的应急设施(例如避难点、消防站等)进行合理的布局,提升工业园区的应急救援能力,从而减少事故造成的人员伤亡和财产损失,这是工业园区管理部门一直以来密切关注的问题。

本文主要针对考虑堵塞的应急避难点选址和基于设施分层的消防站选址问题进行了研究。在避难点和消防站之间存在着协同选址的逻辑结构,通过构建协同选址的逻辑结构,可以最大化工业园区应急救援系统的效率,满足工业园区日益增长的应急救援需求。

在应急避难点选址问题上,针对突发性的灾害事件发生时受灾人员在疏散过程中,道路发生堵塞的问题,利用最短路径进行饱和疏散的思想,以更具有现实意义的网络图为研究对象,建立以疏散时间最小为目标的避难点选址模型,设计了一种嵌入Floyd算法的模拟退火算法,最后以某工业园区为具体算例,给出了应急避难点的选址方案,通过对权重、应急设施数量等参数进行灵敏度分析,表明所提出选址模型及算法能够为现实的选址决策提供有益的参考。

工业园区应急设施协同选址逻辑结构包含时序逻辑和空间逻辑,其中时序逻辑意味着在确定了工业园区避难点的选址策略基础上,再进行工业园区的消防站选址。在消防站选址问题上,考虑到园区内危险源的异质性,将危险源分为一级、二级、三级危险源,相应建立包含微型站、普通消防站、特勤站3个层级的嵌套型应急服务网络结构。在此基础上,基于消防站层级、危险源的类型,建立效用值最大化的选址模型。针对问题不同的规模,设计了相应的求解算法。对于小规模算例设计了分支定界算法进行精确求解,对于大规模算例设计了模拟退火算法进行求解。最后以某工业园区为具体算例,给出了不同层级消防站的选址方案,通过对最低服务质量参数、最快到达时间等参数进行灵敏度分析,表明所提出选址模型及算法能够为园区管理部门提供决策支持。

外文摘要:

In recent years, industrial parks have become the new focus of regional economic development. The number of industrial park constructions has continued to increase and the scale has continued to expand. Due to the risk aggregation effect, the safety problems in industrial parks are becoming more and more prominent, and dangerous chemical accidents are also emerging one after another. Once an accident occurs, it will pose a great threat to the safety of life and property of the surrounding people. How to rationally arrange the emergency facilities (such as refuge points, fire stations, etc.) in the industrial park to improve the emergency rescue capacity of the industrial park, thereby reducing the casualties and property losses caused by the accident, this has been Pay close attention to the problem.

 

This paper mainly studies the location of emergency refuge points considering congestion and the location of fire stations based on facility stratification. There is a logical structure of collaborative site selection between the refuge point and the fire station. By constructing the logical structure of collaborative site selection, the efficiency of the emergency rescue system in the industrial park can be maximized to meet the growing emergency rescue needs of the industrial park.

 

Regarding the location of emergency evacuation points, in view of the problem of congestion of roads during the evacuation of disaster victims during sudden disasters, the idea of ​​saturated evacuation using the shortest path is studied with a more realistic network map Object, establish a refuge site location model with the minimum evacuation time as the target, design a simulated annealing algorithm embedded in the Floyd algorithm, and finally take an industrial park as a specific example to give an emergency evacuation site location plan. Sensitivity analysis of parameters such as weight and number of emergency facilities shows that the proposed site selection model and algorithm can provide useful references for realistic site selection decisions.

 

The logical structure of coordinated site selection of emergency facilities in industrial parks includes sequential logic and spatial logic. Among them, sequential logic means that the fire station of the industrial park is selected based on the location strategy of the evacuation point in the industrial park. Regarding the location of fire stations, considering the heterogeneity of the hazard sources in the park, the hazard sources are divided into primary, secondary, and tertiary hazard sources, and three levels including micro-stations, ordinary fire stations, and special service stations are established accordingly. Nested emergency service network structure. On this basis, based on the fire station level and the type of hazard source, a location model with maximum utility value is established. According to the different scales of the problem, the corresponding solving algorithm is designed. For small-scale studies, a branch and bound algorithm is designed for accurate solution, and for large-scale studies, a simulated annealing algorithm is designed for solution. Finally, taking an industrial park as a specific calculation example, the site selection schemes of fire stations at different levels are given. The sensitivity analysis of the parameters such as the minimum service quality parameters and the fastest arrival time shows that the proposed site selection model and algorithm can be used for the park The management department provides decision support.

参考文献:
[1] Weber A. On the location of industries[M]. Chicago: University of Chicago Press, 1929.
[2] Hakimi S L . Optimum Distribution of Switching Centers in a Communication Network and Some Related Graph Theoretic Problems[J]. Operations Research, 1965, 13(3):462-475.
[3] Handler, G. Y . Minimax Location of a Facility in an Undirected Tree Graph[J]. Transportation Science, 1973, 7(3):287-293.
[4] Kariv O , Hakimi S L . An Algorithmic Approach to Network Location Problems. II: The p -Medians[J]. Siam Journal on Applied Mathematics, 1979, 37(3):539–560.
[5] Minieka E. The m-center problem[J]. Siam Review, 1970, 12(1): 138-139.
[6] Handler G Y. The m-Center Problem: A Relaxation Approach[M]. Israel Institute of Business Research, 1977.
[7] Kariv O, Hakimi S L. An algorithmic approach to network location problems. I: The p-centers[J]. SIAM Journal on Applied Mathematics, 1979, 37(3): 513-538.
[8] Handler G Y. Finding two-centers of a tree: The continuous case[J]. Transportation Science, 1978, 12(2): 93-106.
[9] Maleki M, Majlesinasab N, Sepehri M M. Two new models for redeployment of ambulances[J]. Computers & Industrial Engineering, 2014, 78: 271-284.
[10] Ye F, Zhao Q, Xi M, et al. Chinese national emergency warehouse location research based on VNS algorithm[J]. Electronic Notes in Discrete Mathematics, 2015, 47: 61-68.
[11] 蔡延光,钱积新,孙优贤.受限p-中心的并行迭代算法[J].系统工程理论与实践,2000(07):1-6.
[12] 阎新芳,胡华东,赵仲华,孙雨耕.受限p-中心的遗传算法及其应用[J].计算机工程,2006(04):33-35.
[13] Hakimi, S. L . Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph[J]. Operations Research, 1964, 12(3):450-459.
[14] Drezner Z. On the conditional p-median problem[J]. Computers & operations research, 1995, 22(5): 525-530.
[15] Kariv O , Hakimi S L . An Algorithmic Approach to Network Location Problems. II: The p -Medians[J]. Siam Journal on Applied Mathematics, 1979, 37(3):539–560.
[16] Matula D W. Efficient multi-median location in acyclic networks[J]. ORSA/TIMS Bulletin, 1976.
[17] 万波,杨超,黄松,董鹏.基于分级选址模型的学校选址问题[J].工业工程与管理,2010,15(06):62-67.
[18] 万波,陈琴.不确定需求下基于鲁棒优化的层级设施选址模型[J].统计与决策,2018,34(06):57-61.
[19] 张进峰,刘永森,牟军敏,董唏中,王晓鸥.库区水上应急救助设施多因素P-median选址模型[J].中国安全科学学报,2016,26(11):163-168.
[20] 柏春松,姚云飞,王茂华.顾客为子树结构的树上半厌恶型2-中位问题[J].运筹与管理,2012,21(05):119-122.
[21] 吴钦钦,王珂,樊文有,彭玉玲.基于连续空间需求的公共图书馆最大覆盖选址方法——以武汉市主城区为例[J].地理与地理信息科学,2020,36(01):27-34+99.
[22] 李颖.物流配送网点选址PSO算法的研究[J].微型电脑应用,2019,35(10):90-92.
[23] 詹庆明,杨爽.村镇应急公共设施选址布局优化研究[J].地球信息科学学报,2019,21(05):641-653.
[24] Roth R . Computer Solutions to Minimum-Cover Problems[J]. Operations Research, 1969, 17(3):455-465.
[25] Toregas C, Swain R, ReVelle C, et al. The location of emergency service facilities[J]. Operations research, 1971, 19(6): 1363-1373.
[26] Farahani R Z , Asgari N , Heidari N , et al. Covering problems in facility location: A review[J]. Computers & Industrial Engineering, 2012, 62(1):368-407.
[27] 江元,王冰,张婷,熊威,何永秀.基于集合覆盖模型的电费缴纳点选址研究[J].中国电力,2013,46(02):60-64+71.
[28] 曹德胜,吕靖,艾云飞,张丽丽.基于集合覆盖的VTS雷达站选址优化模型[J].北京理工大学学报,2014,34(07):752-756.
[29] 韩珣,张锦,曾倩.考虑合作覆盖的多级自提点选址问题[J].交通运输系统工程与信息,2019,19(01):165-171.
[30] 肖卡飞,孙咏,王嵩,田月,王美吉.基于渐进服务半径的自提柜选址算法[J].计算机系统应用,2017,26(03):187-192.
[31] 刘嘉文,代颖,杨斐,马祖军.共享单车停放点联合覆盖选址及车辆配置模型[J].工业工程与管理,2020,25(01):127-135.
[32] Church R L , Revelle C . The Maximal Covering Location Problem[J]. Papers of the Regional ence Association, 1974, 32(1):101-118.
[33] Hogan K, ReVelle C. Concepts and applications of backup coverage[J]. Management science, 1986, 32(11): 1434-1444.
[34] Chiyoshi F Y, Galvão R D, Morabito R. A note on solutions to the maximal expected covering location problem[J]. Computers & Operations Research, 2003, 30(1): 87-96.
[35] Boffey B, Galvao R, Espejo L. A review of congestion models in the location of facilities with immobile servers[J]. European Journal of Operational Research, 2007, 178(3): 643-662.
[36] Sudtachat K, Mayorga M E, Mclay L A. A nested-compliance table policy for emergency medical service systems under relocation[J]. Omega, 2016, 58: 154-168.
[37] 白保存,徐一帆,贺仁杰,陈英武.卫星合成观测调度的最大覆盖模型及算法研究[J].系统工程学报,2010,25(05):651-658.
[38] 姚信威,王万良,岑跃峰,蒋一波.基于增强虚拟力的自适应多障碍区域最大覆盖算法[J].电信科学,2011,27(12):77-80.
[39] 周翔,许茂增,吕奇光.基于顾客点分布的自提点逐渐覆盖选址模型[J].计算机集成制造系统,2018,24(11):2879-2888.
[40] 叶臻,贺明光,梁科科.基于服务需求的出租汽车服务站选址方法[J].重庆交通大学学报(自然科学版),2019,38(03):75-82+109.
[41] 王申坪,李建华,杜敏,王强,王秀华,胡杰.基于两阶段的广义最大覆盖战时装备仓库选址模型[J].兵器装备工程学报,2020,41(03):41-45.
[42] Berlin G N. Facility Location and Vehicle Allocation for Provision of an Emergency Service[J]. 1974.
[43] Drezner T. Location of casualty collection points[J]. Environment and Planning C: Government and Policy, 2004, 22(6): 899-912.
[44] Kılcı F, Kara B Y, Bozkaya B. Locating temporary shelter areas after an earthquake: A case for Turkey[J]. European Journal of Operational Research, 2015, 243(1): 323-332.
[45] Paul N R, Lunday B J, Nurre S G. A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities[J]. Omega, 2017, 66: 147-158.
[46] Abounacer R, Rekik M, Renaud J. An exact solution approach for multi-objective location–transportation problem for disaster response[J]. Computers & Operations Research, 2014, 41: 83-93.
[47] Mohri S S, Akbarzadeh M, Matin S H S. A Hybrid model for locating new emergency facilities to improve the coverage of the road crashes[J]. Socio-Economic Planning Sciences, 2020, 69: 100683.
[48] 郗蒙浩,张静,赵秋红,叶峰.基于P-center问题的国家级应急物资储备设施选址优化布局研究[J].自然灾害学报,2019,28(03):123-129.
[49] 项寅.基于双层规划的反恐应急设施选址模型及算法[J].中国管理科学,2019,27(07):147-157.
[50] 宋艳,滕辰妹,姜金贵.基于改进NSGA-Ⅱ算法的多级服务设施备用覆盖选址决策模型[J].运筹与管理,2019,28(01):71-78.
[51] 朱莉,丁家兰,计梦婷.考虑区域异质性的应急物资选址-分配优化[J].系统管理学报,2018,27(06):1142-1149.
[52] 田书冰,杨亚东,田延飞,黄立文.长江干线中下游溢油应急设备点选址优化[J].安全与环境学报,2017,17(01):90-93.
[53] 苏强,杨微,王秋根.考虑空间随机需求的急救站点选址规划[J].中国管理科学,2019,27(10):110-119.
[54] 马云峰,杨超,张敏,郝春艳.基于时间满意的最大覆盖选址问题[J].中国管理科学,2006(02):45-51.
[55] 葛春景,王霞,关贤军.重大突发事件应急设施多重覆盖选址模型及算法[J].运筹与管理,2011,20(05):50-56.
[56] 俞武扬.服务能力受损情景下的应急设施选址模型[J].控制与决策,2016,31(11):1979-1984.
[57] 王文峰. 多级覆盖设施选址问题建模及求解方法研究[C]. 中国优选法统筹法与经济数学研究会.第九届中国管理科学学术年会论文集.中国优选法统筹法与经济数学研究会:中国优选法统筹法与经济数学研究会,2007:150-154.
[58] 肖俊华,侯云先.考虑多级覆盖衰减的双目标应急设施选址模型及算法[J].软科学,2012,26(12):127-131.
[59] 罗杰超,刘伟铭,郑丽媛.优化路网覆盖效率的高速公路救援点选址模型[J].公路工程,2019,44(06):109-114+134.
[60] 赵雪峰,李金林,彭春,冉伦.基于概率覆盖选址模型的移动警务站布局优化[J].系统工程,2017,35(09):138-143.
[61] Akella M R , Batta R , Delmelle E M , et al. Base station location and channel allocation in a cellular network with emergency coverage requirements[J]. European Journal of Operational Research, 2005, 164(2):301-323.
[62] Rawls C G , Turnquist M A . Pre-positioning of emergency supplies for disaster response[J]. Transportation Research Part B: Methodological, 2010, 44(4):0-534.
[63] Iannoni A P , Morabito R , Saydam C . An optimization approach for ambulance location and the districting of the response segments on highways[J]. European Journal of Operational Research, 2009, 195(2):528-542.
[64] Jia H, Ordóñez F, Dessouky M M. Solution approaches for facility location of medical supplies for large-scale emergencies[J]. Computers & Industrial Engineering, 2007, 52(2): 257-276.
[65] Kongsomsaksakul S , Graduate Student, Yang C , et al. Shelter location-allocation model for flood evacuation planning[J]. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6(1):4237-4252.
[66] Yamada T. A network flow approach to a city emergency evacuation planning[J]. International Journal of Systems Science, 1996, 27(10): 931-936.
[67] Cheng S W, Higashikawa Y, Katoh N, et al. Minimax regret 1-sink location problems in dynamic path networks[C]//International Conference on Theory and Applications of Models of Computation. Springer, Berlin, Heidelberg, 2013: 121-132.
[68] Higashikawa Y, Augustine J, Cheng S W, et al. Minimax regret 1-sink location problem in dynamic path networks[J]. Theoretical Computer Science, 2015, 588: 24-36.
[69] 计明军,宋婷婷,宋佳,杨永志,王清斌.线状需求下的长江航道危险品应急中心选址优化[J].运筹与管理,2016,25(05):68-74.
[70] 袁文燕,彭云,杨丰梅.基于危险化学品事故的双层次应急中心选址模型[J].系统工程理论与实践,2015,35(03):728-735.
[71] 刘强,阮雪景,付碧宏.特大地震灾害应急避难场所选址原则与模型研究[J].中国海洋大学学报(自然科学版),2010,40(08):129-135.
[72] 陈志芬,李强,陈晋.城市应急避难场所层次布局研究(Ⅱ)——三级层次选址模型[J].自然灾害学报,2010,19(05):13-19.
[73] 马丹祥,初建宇,王政,陈灵利.基于多目标规划的防灾避难场所选址模型研究[J].自然灾害学报,2015,24(02):1-7.
[74] 关文玲,张孟军,董呈杰,谢继彪.化工园区消防站多目标选址模型[J].中国安全科学学报,2018,28(03):62-67.
[75] 杨金顺,孙洪运,李林波,吴兵.公路网灾害应急救援点多目标选址模型及算法[J].同济大学学报(自然科学版),2013,41(12):1843-1848+1871.
[76] 邓亚娟,茹小磊,梁国华,周明妮.城市轨道交通应急接驳公交蓄车点选址[J].交通运输工程学报,2018,18(04):143-150.
[77] 丛雯婧,俞武扬.考虑台风情景的区域应急物资储备库选址模型与算法[J/OL].工业工程与管理:1-7[2020-03-30].http://kns.cnki.net/kcms/detail/31.1738.T.20191113.1758.008.html.
[78] 张富.应急避难场所选址问题的多目标规划模型及算法[J].数学的实践与认识,2019,49(15):283-289.
[79] 张亚楠,高惠瑛.基于ArcGIS的多准则地震应急避难所选址规划研究[J].震灾防御技术,2019,14(02):376-386.
[80] 何舟,徐永能,王笑天.轨道交通应急资源储备点选址优化研究[J].兵器装备工程学报,2019,40(07):185-189.
[81] Schmid V . Solving the dynamic ambulance relocation and dispatching problem using approximate dynamic programming[J]. European Journal of Operational Research, 2012, 219(3):611-621.
[82] Jabbarzadeh A, Fahimnia B, Seuring S. Dynamic supply chain network design for the supply of blood in disasters: A robust model with real world application[J]. Transportation Research Part E: Logistics and Transportation Review, 2014, 70: 225-244.
[83] 董银红.道路拥塞条件下的应急物流选址研究[J].经济与管理研究,2014(04):48-53.
[84] 安邦,程朋.基于分支割平面的一类无容量限制设施选址问题求解算法[J].运筹学学报,2015,19(04):1-13.
[85] 何永梅,宁爱兵,彭大江,尚春剑,张惠珍.无容量限制设施选址问题的降阶回溯算法[J].运筹与管理,2018,27(09):17-21.
[86] 彭大江,宁爱兵,尚春剑,张惠珍.最大覆盖选址问题的一种降阶回溯算法[J].系统管理学报,2020,29(01):11.
[87] Salman F S, Yücel E. Emergency facility location under random network damage: Insights from the Istanbul case[J]. Computers & Operations Research, 2015, 62: 266-281.
[88] 张聆晔,吕靖.风险不确定的海上应急物资储备库选址[J].中国安全科学学报,2019,29(09):173-180.
[89] 王诺,田玺环,吴迪,吴暖.基于陆海协同的海上战略投送选址-路径优化[J].系统工程理论与实践,2018,38(11):2929-2941.
[90] 孙华丽,项美康.设施失灵风险下不确定需求应急定位-路径鲁棒优化研究[J].中国管理科学,2020,28(02):199-207.
[91] 项寅.考虑信息隐藏策略的反恐应急设施选址模型[J].系统工程理论与实践,2019,39(05):1164-1177.
[92] 许可,宫华,刘芳,王世海.基于离散粒子群算法的应急物资选址与调度[J].重庆师范大学学报(自然科学版),2018,35(06):15-21.
[93] 段晓红,李晓婉.基于多目标分布估计算法的地铁网络化应急站点选址[J].安全与环境学报,2019,19(03):923-930.
[94] 马祖军,周愉峰.国家血液战略储备库选址—库存问题[J].管理科学学报,2018,21(03):54-68.
[95] 刘蓉. 化工生产企业事故分析与预测研究[D].中北大学,2015.
[96] 叶永峰,夏昕,李竹霞.化工行业典型安全事故统计分析[J].工业安全与环保,2012,38(09):49-51+55.
[97] Dial R , Glover F , Karney D , et al. A computational analysis of alternative algorithms and labeling techniques for finding shortest path trees[J]. Networks, 1979, 9(3):215-248.
[98] Floyd, Robert W . Algorithm 97: Shortest path[J]. Communications of the Acm, 1962, 5(6):345.
[99] 卜月华. 图论及其应用[M]. 东南大学出版社, 2002.
[100] 贾利新, 程相然. 绝对中位点定理在网络选址问题中的应用[J]. 河南科学, 2007(3):364-366.
[101] Kirkpatrick S, Gelatt C D, Vecchi M P, et al. Optimization by simulated annealing.[J]. Science, 1983, 220(4598): 671-680.
[102] Glover F. Tabu search—part I[J]. ORSA Journal on computing, 1989, 1(3): 190-206.
[103] Glover F. Tabu search—part II[J]. ORSA Journal on computing, 1990, 2(1): 4-32.
[104] Back T, Fogel D B, Michalewicz Z. Basic algorithms and operators[M]. IOP Publishing Ltd., 1999.
[105] Goldberg D E. Genetic algorithms in search[J]. Optimization, and MachineLearning, 1989.
[106] Dorigo M, Maniezzo V, Colorni A. The ant system: An autocatalytic optimizing process[J]. 1991.
[107] Gerrard R A, Church R L. Closest assignment constraints and location models: properties and structure[J]. Location Science, 1996, 4(4): 251-270.
[108] 朱悦妮,郑征,张逍怡,蔡开元.关键基础设施防护主从对策模型及其求解算法[J].系统工程理论与实践,2014,34(06):1557-1565.
[109] Ingolfsson E E.Catastrophe Avoidance Models for Hazardous Materials Route Planning[J].Transportation Science,2000, 34(2):165-179.
[110] 金军.蒸气云爆炸事故的风险评估方法[J].消防技术与产品信息,2014(12):25-27.
[111] Fridolf K, Nilsson D, Frantzich H. Evacuation of a metro train in an underground rail transportation system: flow rate capacity of train exits, tunnel walking speeds and exit choice[J]. Fire technology, 2016, 52(5): 1481-1518.
[112] Seike M, Kawabata N, Hasegawa M. Experiments of evacuation speed in smoke-filled tunnel[J]. Tunnelling and Underground Space Technology, 2016, 53: 61-67.
中图分类号:

 X45    

馆藏号:

 45088    

开放日期:

 2020-12-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式